Searched hist:2015 (Results 851 - 875 of 1505) sorted by relevance

<<31323334353637383940>>

/gem5/tests/long/se/60.bzip2/ref/arm/linux/simple-atomic/
H A Dstats.txt10827:7f5467f2f8b8 Tue May 05 03:22:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> stats: Update stats to reflect cache changes
10812:bacaefeb126a Thu Apr 30 15:17:00 EDT 2015 Nilay Vaish <nilay@cs.wisc.edu> stats: arm: updates
10726:8a20e2a1562d Mon Mar 02 05:04:00 EST 2015 Andreas Hansson <andreas.hansson@arm.com> stats: Update stats to reflect cache and interconnect changes

This is a bulk update of stats to match the changes to cache timing,
interconnect timing, and a few minor changes to the o3 CPU.
/gem5/tests/long/se/70.twolf/ref/arm/linux/o3-timing/
H A Dconfig.ini11103:38f6188421e0 Tue Sep 15 09:14:00 EDT 2015 Nilay Vaish <nilay@cs.wisc.edu> stats: updates due to recent changesets including d0934b57735a
10900:ac6617bf9967 Sat Jul 04 11:43:00 EDT 2015 Nilay Vaish <nilay@cs.wisc.edu> stats: update stale config.ini files, eio and few other stats.
10798:74e3c7359393 Wed Apr 22 23:22:00 EDT 2015 Steve Reinhardt <steve.reinhardt@amd.com> stats: update for previous changeset

Very small differences in IQ-specific O3 stats.
/gem5/tests/long/se/60.bzip2/ref/x86/linux/simple-timing/
H A Dconfig.ini11103:38f6188421e0 Tue Sep 15 09:14:00 EDT 2015 Nilay Vaish <nilay@cs.wisc.edu> stats: updates due to recent changesets including d0934b57735a
10901:8cfa8dac39fe Sun Jul 05 21:26:00 EDT 2015 Nilay Vaish <nilay@cs.wisc.edu> stats: x86: update stats missed out on in preivous changeset
10645:cd95d4d51659 Sat Jan 10 19:06:00 EST 2015 Nilay Vaish <nilay@cs.wisc.edu> stats: changes due to recent changesets.
/gem5/tests/quick/se/00.hello/ref/arm/linux/o3-timing/
H A Dsimout11268:8b4b55d79ddd Sat Dec 12 17:27:00 EST 2015 Anthony Gutierrez <atgutier@umich.edu> stats: bump stats to reflect ruby tester changes
11219:b65d4e878ed2 Mon Nov 16 06:08:00 EST 2015 Nilay Vaish <nilay@cs.wisc.edu> stats: updates due to recent chagnesets
10798:74e3c7359393 Wed Apr 22 23:22:00 EDT 2015 Steve Reinhardt <steve.reinhardt@amd.com> stats: update for previous changeset

Very small differences in IQ-specific O3 stats.
/gem5/tests/quick/se/00.hello/ref/power/linux/o3-timing/
H A Dsimout11268:8b4b55d79ddd Sat Dec 12 17:27:00 EST 2015 Anthony Gutierrez <atgutier@umich.edu> stats: bump stats to reflect ruby tester changes
11219:b65d4e878ed2 Mon Nov 16 06:08:00 EST 2015 Nilay Vaish <nilay@cs.wisc.edu> stats: updates due to recent chagnesets
10798:74e3c7359393 Wed Apr 22 23:22:00 EDT 2015 Steve Reinhardt <steve.reinhardt@amd.com> stats: update for previous changeset

Very small differences in IQ-specific O3 stats.
/gem5/tests/quick/se/00.hello/ref/x86/linux/simple-atomic/
H A Dstats.txt11268:8b4b55d79ddd Sat Dec 12 17:27:00 EST 2015 Anthony Gutierrez <atgutier@umich.edu> stats: bump stats to reflect ruby tester changes
11219:b65d4e878ed2 Mon Nov 16 06:08:00 EST 2015 Nilay Vaish <nilay@cs.wisc.edu> stats: updates due to recent chagnesets
10827:7f5467f2f8b8 Tue May 05 03:22:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> stats: Update stats to reflect cache changes
/gem5/tests/quick/se/00.hello/ref/x86/linux/o3-timing/
H A Dsimout11268:8b4b55d79ddd Sat Dec 12 17:27:00 EST 2015 Anthony Gutierrez <atgutier@umich.edu> stats: bump stats to reflect ruby tester changes
11219:b65d4e878ed2 Mon Nov 16 06:08:00 EST 2015 Nilay Vaish <nilay@cs.wisc.edu> stats: updates due to recent chagnesets
10798:74e3c7359393 Wed Apr 22 23:22:00 EDT 2015 Steve Reinhardt <steve.reinhardt@amd.com> stats: update for previous changeset

Very small differences in IQ-specific O3 stats.
/gem5/tests/quick/se/00.hello/ref/x86/linux/simple-timing-ruby/
H A Dsimout11268:8b4b55d79ddd Sat Dec 12 17:27:00 EST 2015 Anthony Gutierrez <atgutier@umich.edu> stats: bump stats to reflect ruby tester changes
11219:b65d4e878ed2 Mon Nov 16 06:08:00 EST 2015 Nilay Vaish <nilay@cs.wisc.edu> stats: updates due to recent chagnesets
11023:97cf7ba82f0c Fri Aug 14 02:19:00 EDT 2015 Joel Hestness <jthestness@gmail.com> stats: Bump for MessageBuffer, cache latency changes
/gem5/tests/quick/se/02.insttest/ref/sparc/linux/o3-timing/
H A Dsimout11268:8b4b55d79ddd Sat Dec 12 17:27:00 EST 2015 Anthony Gutierrez <atgutier@umich.edu> stats: bump stats to reflect ruby tester changes
11219:b65d4e878ed2 Mon Nov 16 06:08:00 EST 2015 Nilay Vaish <nilay@cs.wisc.edu> stats: updates due to recent chagnesets
10798:74e3c7359393 Wed Apr 22 23:22:00 EDT 2015 Steve Reinhardt <steve.reinhardt@amd.com> stats: update for previous changeset

Very small differences in IQ-specific O3 stats.
/gem5/src/dev/arm/
H A Dtimer_sp804.hh11174:5a9019db4a08 Fri Oct 23 09:51:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> arm: Add missing explicit overrides for ARM devices

Make clang >= 3.5 happy when compiling build/ARM/gem5.opt on OSX.
11168:f98eb2da15a4 Mon Oct 12 04:07:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> misc: Remove redundant compiler-specific defines

This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap
(and similar) abstractions, as these are no longer needed with gcc 4.7
and clang 3.1 as minimum compiler versions.
10905:a6ca6831e775 Tue Jul 07 04:51:00 EDT 2015 Andreas Sandberg <andreas.sandberg@arm.com> sim: Refactor the serialization base class

Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:

* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.

* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.

* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).

* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.

* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.
H A Dkmi.hh11174:5a9019db4a08 Fri Oct 23 09:51:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> arm: Add missing explicit overrides for ARM devices

Make clang >= 3.5 happy when compiling build/ARM/gem5.opt on OSX.
11168:f98eb2da15a4 Mon Oct 12 04:07:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> misc: Remove redundant compiler-specific defines

This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap
(and similar) abstractions, as these are no longer needed with gcc 4.7
and clang 3.1 as minimum compiler versions.
10905:a6ca6831e775 Tue Jul 07 04:51:00 EDT 2015 Andreas Sandberg <andreas.sandberg@arm.com> sim: Refactor the serialization base class

Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:

* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.

* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.

* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).

* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.

* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.
H A Dtimer_cpulocal.hh11174:5a9019db4a08 Fri Oct 23 09:51:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> arm: Add missing explicit overrides for ARM devices

Make clang >= 3.5 happy when compiling build/ARM/gem5.opt on OSX.
11168:f98eb2da15a4 Mon Oct 12 04:07:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> misc: Remove redundant compiler-specific defines

This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap
(and similar) abstractions, as these are no longer needed with gcc 4.7
and clang 3.1 as minimum compiler versions.
10905:a6ca6831e775 Tue Jul 07 04:51:00 EDT 2015 Andreas Sandberg <andreas.sandberg@arm.com> sim: Refactor the serialization base class

Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:

* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.

* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.

* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).

* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.

* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.
/gem5/src/arch/arm/linux/
H A Dsystem.hh11359:b0b976a1ceda Fri Nov 27 09:41:00 EST 2015 Andreas Sandberg <andreas@sandberg.pp.se> base: Add support for changing output directories

This changeset adds support for changing the simulator output
directory. This can be useful when the simulation goes through several
stages (e.g., a warming phase, a simulation phase, and a verification
phase) since it allows the output from each stage to be located in a
different directory. Relocation is done by calling core.setOutputDir()
from Python or simout.setOutputDirectory() from C++.

This change affects several parts of the design of the gem5's output
subsystem. First, files returned by an OutputDirectory instance (e.g.,
simout) are of the type OutputStream instead of a std::ostream. This
allows us to do some more book keeping and control re-opening of files
when the output directory is changed. Second, new subdirectories are
OutputDirectory instances, which should be used to create files in
that sub-directory.

Signed-off-by: Andreas Sandberg <andreas@sandberg.pp.se>
[sascha.bischoff@arm.com: Rebased patches onto a newer gem5 version]
Signed-off-by: Sascha Bischoff <sascha.bischoff@arm.com>
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
10822:d259f2bc2b31 Tue May 05 03:22:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> arm: Remove unnecessary boot uncachability

With the recent patches addressing how we deal with uncacheable
accesses there is no longer need for the work arounds put in place to
enforce certain sections of memory to be uncacheable during boot.
10810:683ab55819fd Wed Apr 29 23:35:00 EDT 2015 Ruslan Bukin <br@bsdpad.com> arch, base, dev, kern, sym: FreeBSD support

This adds support for FreeBSD/aarch64 FS and SE mode (basic set of syscalls only)

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
/gem5/src/sim/
H A Dticked_object.hh11169:44b5c183c3cd Mon Oct 12 04:08:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> misc: Add explicit overrides and fix other clang >= 3.5 issues

This patch adds explicit overrides as this is now required when using
"-Wall" with clang >= 3.5, the latter now part of the most recent
XCode. The patch consequently removes "virtual" for those methods
where "override" is added. The latter should be enough of an
indication.

As part of this patch, a few minor issues that clang >= 3.5 complains
about are also resolved (unused methods and variables).
11168:f98eb2da15a4 Mon Oct 12 04:07:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> misc: Remove redundant compiler-specific defines

This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap
(and similar) abstractions, as these are no longer needed with gcc 4.7
and clang 3.1 as minimum compiler versions.
10905:a6ca6831e775 Tue Jul 07 04:51:00 EDT 2015 Andreas Sandberg <andreas.sandberg@arm.com> sim: Refactor the serialization base class

Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:

* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.

* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.

* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).

* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.

* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.
H A Droot.hh11169:44b5c183c3cd Mon Oct 12 04:08:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> misc: Add explicit overrides and fix other clang >= 3.5 issues

This patch adds explicit overrides as this is now required when using
"-Wall" with clang >= 3.5, the latter now part of the most recent
XCode. The patch consequently removes "virtual" for those methods
where "override" is added. The latter should be enough of an
indication.

As part of this patch, a few minor issues that clang >= 3.5 complains
about are also resolved (unused methods and variables).
11168:f98eb2da15a4 Mon Oct 12 04:07:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> misc: Remove redundant compiler-specific defines

This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap
(and similar) abstractions, as these are no longer needed with gcc 4.7
and clang 3.1 as minimum compiler versions.
10905:a6ca6831e775 Tue Jul 07 04:51:00 EDT 2015 Andreas Sandberg <andreas.sandberg@arm.com> sim: Refactor the serialization base class

Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:

* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.

* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.

* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).

* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.

* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.
/gem5/src/cpu/minor/
H A Dpipeline.hh11169:44b5c183c3cd Mon Oct 12 04:08:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> misc: Add explicit overrides and fix other clang >= 3.5 issues

This patch adds explicit overrides as this is now required when using
"-Wall" with clang >= 3.5, the latter now part of the most recent
XCode. The patch consequently removes "virtual" for those methods
where "override" is added. The latter should be enough of an
indication.

As part of this patch, a few minor issues that clang >= 3.5 complains
about are also resolved (unused methods and variables).
11168:f98eb2da15a4 Mon Oct 12 04:07:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> misc: Remove redundant compiler-specific defines

This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap
(and similar) abstractions, as these are no longer needed with gcc 4.7
and clang 3.1 as minimum compiler versions.
10913:38dbdeea7f1f Tue Jul 07 04:51:00 EDT 2015 Andreas Sandberg <andreas.sandberg@arm.com> sim: Refactor and simplify the drain API

The drain() call currently passes around a DrainManager pointer, which
is now completely pointless since there is only ever one global
DrainManager in the system. It also contains vestiges from the time
when SimObjects had to keep track of their child objects that needed
draining.

This changeset moves all of the DrainState handling to the Drainable
base class and changes the drain() and drainResume() calls to reflect
this. Particularly, the drain() call has been updated to take no
parameters (the DrainManager argument isn't needed) and return a
DrainState instead of an unsigned integer (there is no point returning
anything other than 0 or 1 any more). Drainable objects should return
either DrainState::Draining (equivalent to returning 1 in the old
system) if they need more time to drain or DrainState::Drained
(equivalent to returning 0 in the old system) if they are already in a
consistent state. Returning DrainState::Running is considered an
error.

Drain done signalling is now done through the signalDrainDone() method
in the Drainable class instead of using the DrainManager directly. The
new call checks if the state of the object is DrainState::Draining
before notifying the drain manager. This means that it is safe to call
signalDrainDone() without first checking if the simulator has
requested draining. The intention here is to reduce the code needed to
implement draining in simple objects.
H A Dfetch1.cc11148:1bc3d93c7eaa Wed Sep 30 12:14:00 EDT 2015 Mitch Hayenga <mitch.hayenga@arm.com> cpu: Add per-thread monitors

Adds per-thread address monitors to support FullSystem SMT.
10950:d262e02c26b3 Fri Jul 31 12:04:00 EDT 2015 Andreas Sandberg <andreas.sandberg@arm.com> cpu: Update debug message from Fetch1 isDrained() in Minor

Fix a spurious %s and include the state of the Fetch1 stage in the
debug printout.
10713:eddb533708cb Mon Mar 02 04:00:00 EST 2015 Andreas Hansson <andreas.hansson@arm.com> mem: Split port retry for all different packet classes

This patch fixes a long-standing isue with the port flow
control. Before this patch the retry mechanism was shared between all
different packet classes. As a result, a snoop response could get
stuck behind a request waiting for a retry, even if the send/recv
functions were split. This caused message-dependent deadlocks in
stress-test scenarios.

The patch splits the retry into one per packet (message) class. Thus,
sendTimingReq has a corresponding recvReqRetry, sendTimingResp has
recvRespRetry etc. Most of the changes to the code involve simply
clarifying what type of request a specific object was accepting.

The biggest change in functionality is in the cache downstream packet
queue, facing the memory. This queue was shared by requests and snoop
responses, and it is now split into two queues, each with their own
flow control, but the same physical MasterPort. These changes fixes
the previously seen deadlocks.
/gem5/src/arch/x86/
H A Dremote_gdb.hh11274:d9a0136ab8cc Fri Dec 18 16:12:00 EST 2015 Boris Shingarov <shingarov@labware.com> arm: remote GDB: rationalize structure of register offsets

Currently, the wire format of register values in g- and G-packets is
modelled using a union of uint8/16/32/64 arrays. The offset positions
of each register are expressed as a "register count" scaled according
to the width of the register in question. This results in counter-
intuitive and error-prone "register count arithmetic", and some
formats would even be altogether unrepresentable in such model, e.g.
a 64-bit register following a 32-bit one would have a fractional index
in the regs64 array.
Another difficulty is that the array is allocated before the actual
architecture of the workload is known (and therefore before the correct
size for the array can be calculated).

With this patch I propose a simpler mechanism for expressing the
register set structure. In the new code, GdbRegCache is an abstract
class; its subclasses contain straightforward structs reflecting the
register representation. The determination whether to use e.g. the
AArch32 vs. AArch64 register set (or SPARCv8 vs SPARCv9, etc.) is made
by polymorphically dispatching getregs() to the concrete subclass.
The subclass is not instantiated until it is needed for actual
g-/G-packet processing, when the mode is already known.

This patch is not meant to be merged in on its own, because it changes
the contract between src/base/remote_gdb.* and src/arch/*/remote_gdb.*,
so as it stands right now, it would break the other architectures.
In this patch only the base and the ARM code are provided for review;
once we agree on the structure, I will provide src/arch/*/remote_gdb.*
for the other architectures; those patches could then be merged in
together.

Review Request: http://reviews.gem5.org/r/3207/
Pushed by Joel Hestness <jthestness@gmail.com>
10804:df2aa91dba5b Fri Apr 24 03:30:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> misc: Appease gcc 5.1 without moving GDB_REG_BYTES

This patch rolls back the move of the GDB_REG_BYTES constant, and
instead adds M5_VAR_USED.
10799:1e8e6c141372 Thu Apr 23 13:37:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> misc: Appease gcc 5.1

This patch fixes a few small issues to ensure gem5 compiles when using
gcc 5.1.

First, the GDB_REG_BYTES in the RemoteGDB header are, rather
surprisingly, flagged as unused for both ARM and X86. Removing them,
however, causes compilation errors as they are actually used in the
source file. Moving the constant into the class definition fixes the
issue. Possibly a gcc bug.

Second, we have an unused EthPktData constructor using auto_ptr, and
the latter is deprecated. Since the code is never used it is simply
removed.
H A Dcpuid.cc11217:b29d5816936f Mon Nov 16 05:58:00 EST 2015 Bjoern A. Zeeb <baz21@cam.ac.uk> x86: cpuid: add family to warn() message

doCpuid() has to identical warn messages about unimplemented functions. Add
the family to the log message to make them distinguishable.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
10638:5d119a460f15 Wed Jan 07 01:15:00 EST 2015 Gabe Black <gabeblack@google.com> x86: Enable three bits in the FamilyModelStepping ECX CPUID bitfield.

These are for the monitor/mwait instructions, SSSE3, and XSAVE.
10637:e9bc4cde5d8e Wed Jan 07 01:13:00 EST 2015 Gabe Black <gabeblack@google.com> cpuid, x86: Revert "Enabling more features in CPUid"

That change enables CPUID bits for features that aren't implemented in gem5.
If a simulated system tries to use those features because it was told it
could, bad things can happen.
/gem5/src/dev/mips/
H A Dmalta_io.cc10905:a6ca6831e775 Tue Jul 07 04:51:00 EDT 2015 Andreas Sandberg <andreas.sandberg@arm.com> sim: Refactor the serialization base class

Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:

* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.

* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.

* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).

* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.

* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.
10642:9d3b6e7dd205 Tue Jan 06 17:10:00 EST 2015 cdirik<cdirik@micron.com> dev: prevent intel 8254 timer counter events firing before startup

This change includes edits to Intel8254Timer to prevent counter events firing
before startup to comply with SimObject initialization call sequence.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
10631:6d6bfdb036ce Sat Jan 03 18:51:00 EST 2015 Cagdas Dirik <cdirik@micron.com> dev: prevent RTC events firing before startup

This change includes edits to MC146818 timer to prevent RTC events
firing before startup to comply with SimObject initialization call sequence.

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
/gem5/configs/common/
H A DSysPaths.py10759:37fd40f8300f Mon Mar 23 19:14:00 EDT 2015 Steve Reinhardt <steve.reinhardt@amd.com> config: expand '~' and '~user' in paths
10682:3d17366c0423 Thu Feb 05 19:45:00 EST 2015 Steve Reinhardt <steve.reinhardt@amd.com> config: rename 'file' var

Rename uses of 'file' as a local variable to avoid conflict
with the built-in type of the same name.
10681:c35efeacc933 Thu Feb 05 19:45:00 EST 2015 Steve Reinhardt <steve.reinhardt@amd.com> config: make M5_PATH a real search path

Although you can put a list of colon-separated directory names
in M5_PATH, the current code just takes the first one that
exists and assumes all files must live there. This change
makes the code search the specified list of directories
for each individual binary or disk image that's requested.

The main motivation is that the x86/Alpha binaries and the
ARM binaries are in separate downloads, and thus naturally
end up in separate directories. With this change, you can
have M5_PATH point to those two directories, then run any
FS regression test without changing M5_PATH. Currently,
you either have to merge the two download directories
or change M5_PATH (or do something else I haven't figured out).
/gem5/src/mem/
H A DXBar.py11132:fbd597034299 Fri Sep 25 07:26:00 EDT 2015 Ali Jafri <ali.jafri@arm.com> mem: Add snoop filters to L2 crossbars, and check size

This patch adds a snoop filter to the L2XBar. For now we refrain from
globally adding a snoop filter to the SystemXBar, since the latter is
also used in systems without caches. In scenarios without caches the
snoop filter will not see any writeback/clean evicts from the CPU
ports, despite the fact that they are snooping. To avoid inadvertent
use of the snoop filter in these cases we leave it out for now.

A size check is added to the snoop filter, merely to ensure it does
not grow beyond the total capacity of the caches above it. The size
has to be set manually, and a value of 8 MByte is choosen as suitably
high default.
10720:67b3e74de9ae Mon Mar 02 04:00:00 EST 2015 Andreas Hansson <andreas.hansson@arm.com> mem: Move crossbar default latencies to subclasses

This patch introduces a few subclasses to the CoherentXBar and
NoncoherentXBar to distinguish the different uses in the system. We
use the crossbar in a wide range of places: interfacing cores to the
L2, as a system interconnect, connecting I/O and peripherals,
etc. Needless to say, these crossbars have very different performance,
and the clock frequency alone is not enough to distinguish these
scenarios.

Instead of trying to capture every possible case, this patch
introduces dedicated subclasses for the three primary use-cases:
L2XBar, SystemXBar and IOXbar. More can be added if needed, and the
defaults can be overridden.
10719:b4fc9ad648aa Mon Mar 02 04:00:00 EST 2015 Marco Balboni <Marco.Balboni@ARM.com> mem: Add crossbar latencies

This patch introduces latencies in crossbar that were neglected
before. In particular, it adds three parameters in crossbar model:
front_end_latency, forward_latency, and response_latency. Along with
these parameters, three corresponding members are added:
frontEndLatency, forwardLatency, and responseLatency. The coherent
crossbar has an additional snoop_response_latency.

The latency of the request path through the xbar is set as
--> frontEndLatency + forwardLatency

In case the snoop filter is enabled, the request path latency is charged
also by look-up latency of the snoop filter.
--> frontEndLatency + SF(lookupLatency) + forwardLatency.

The latency of the response path through the xbar is set instead as
--> responseLatency.

In case of snoop response, if the response is treated as a normal response
the latency associated is again
--> responseLatency;

If instead it is forwarded as snoop response we add an additional variable
+ snoopResponseLatency
and the latency associated is
--> snoopResponseLatency;

Furthermore, this patch lets the crossbar progress on the next clock
edge after an unused retry, changing the time the crossbar considers
itself busy after sending a retry that was not acted upon.
H A Daddr_mapper.cc11284:b3926db25371 Thu Dec 31 09:32:00 EST 2015 Andreas Hansson <andreas.hansson@arm.com> mem: Make cache terminology easier to understand

This patch changes the name of a bunch of packet flags and MSHR member
functions and variables to make the coherency protocol easier to
understand. In addition the patch adds and updates lots of
descriptions, explicitly spelling out assumptions.

The following name changes are made:

* the packet memInhibit flag is renamed to cacheResponding

* the packet sharedAsserted flag is renamed to hasSharers

* the packet NeedsExclusive attribute is renamed to NeedsWritable

* the packet isSupplyExclusive is renamed responderHadWritable

* the MSHR pendingDirty is renamed to pendingModified

The cache states, Modified, Owned, Exclusive, Shared are also called
out in the cache and MSHR code to make it easier to understand.
10862:c78bfcfdfb02 Sat May 30 07:45:00 EDT 2015 Christoph Pfister <pfistchr@student.ethz.ch> mem: addr_mapper: restore old address if request not sent

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
10713:eddb533708cb Mon Mar 02 04:00:00 EST 2015 Andreas Hansson <andreas.hansson@arm.com> mem: Split port retry for all different packet classes

This patch fixes a long-standing isue with the port flow
control. Before this patch the retry mechanism was shared between all
different packet classes. As a result, a snoop response could get
stuck behind a request waiting for a retry, even if the send/recv
functions were split. This caused message-dependent deadlocks in
stress-test scenarios.

The patch splits the retry into one per packet (message) class. Thus,
sendTimingReq has a corresponding recvReqRetry, sendTimingResp has
recvRespRetry etc. Most of the changes to the code involve simply
clarifying what type of request a specific object was accepting.

The biggest change in functionality is in the cache downstream packet
queue, facing the memory. This queue was shared by requests and snoop
responses, and it is now split into two queues, each with their own
flow control, but the same physical MasterPort. These changes fixes
the previously seen deadlocks.
/gem5/src/mem/ruby/system/
H A DDMASequencer.cc11284:b3926db25371 Thu Dec 31 09:32:00 EST 2015 Andreas Hansson <andreas.hansson@arm.com> mem: Make cache terminology easier to understand

This patch changes the name of a bunch of packet flags and MSHR member
functions and variables to make the coherency protocol easier to
understand. In addition the patch adds and updates lots of
descriptions, explicitly spelling out assumptions.

The following name changes are made:

* the packet memInhibit flag is renamed to cacheResponding

* the packet sharedAsserted flag is renamed to hasSharers

* the packet NeedsExclusive attribute is renamed to NeedsWritable

* the packet isSupplyExclusive is renamed responderHadWritable

* the MSHR pendingDirty is renamed to pendingModified

The cache states, Modified, Owned, Exclusive, Shared are also called
out in the cache and MSHR code to make it easier to understand.
11111:6da33e720481 Wed Sep 16 12:59:00 EDT 2015 Nilay Vaish <nilay@cs.wisc.edu> ruby: message buffer, timer table: significant changes

This patch changes MessageBuffer and TimerTable, two structures used for
buffering messages by components in ruby. These structures would no longer
maintain pointers to clock objects. Functions in these structures have been
changed to take as input current time in Tick. Similarly, these structures
will not operate on Cycle valued latencies for different operations. The
corresponding functions would need to be provided with these latencies by
components invoking the relevant functions. These latencies should also be
in Ticks.

I felt the need for these changes while trying to speed up ruby. The ultimate
aim is to eliminate Consumer class and replace it with an EventManager object in
the MessageBuffer and TimerTable classes. This object would be used for
scheduling events. The event itself would contain information on the object and
function to be invoked.

In hindsight, it seems I should have done this while I was moving away from use
of a single global clock in the memory system. That change led to introduction
of clock objects that replaced the global clock object. It never crossed my
mind that having clock object pointers is not a good design. And now I really
don't like the fact that we have separate consumer, receiver and sender
pointers in message buffers.
11108:6342ddf6d733 Wed Sep 16 00:03:00 EDT 2015 David Hashe <david.hashe@amd.com> ruby: rename System.{hh,cc} to RubySystem.{hh,cc}

The eventual aim of this change is to pass RubySystem pointers through to
objects generated from the SLICC protocol code.

Because some of these objects need to dereference their RubySystem pointers,
they need access to the System.hh header file.

In src/mem/ruby/SConscript, the MakeInclude function creates single-line header
files in the build directory that do nothing except include the corresponding
header file from the source tree.

However, SLICC also generates a list of header files from its symbol table, and
writes it to mem/protocol/Types.hh in the build directory. This code assumes
that the header file name is the same as the class name.

The end result of this is the many of the generated slicc files try to include
RubySystem.hh, when the file they really need is System.hh. The path of least
resistence is just to rename System.hh to RubySystem.hh.
11025:4872dbdea907 Fri Aug 14 01:04:00 EDT 2015 Nilay Vaish <nilay@cs.wisc.edu> ruby: replace Address by Addr
This patch eliminates the type Address defined by the ruby memory system.
This memory system would now use the type Addr that is in use by the
rest of the system.
10928:afe7e137943a Fri Jul 24 03:25:00 EDT 2015 Brandon Potter <brandon.potter@amd.com> ruby: dma sequencer: removes redundant code
10919:80069a602c83 Fri Jul 10 17:05:00 EDT 2015 Brandon Potter <brandon.potter@amd.com> ruby: replace global g_system_ptr with per-object pointers

This is another step in the process of removing global variables
from Ruby to enable multiple RubySystem instances in a single simulation.

With possibly multiple RubySystem objects, we can no longer use a global
variable to find "the" RubySystem object. Instead, each Ruby component
has to carry a pointer to the RubySystem object to which it belongs.
10917:c38f28fad4c3 Fri Jul 10 17:05:00 EDT 2015 Brandon Potter <brandon.potter@amd.com> ruby: remove extra whitespace and correct misspelled words
10913:38dbdeea7f1f Tue Jul 07 04:51:00 EDT 2015 Andreas Sandberg <andreas.sandberg@arm.com> sim: Refactor and simplify the drain API

The drain() call currently passes around a DrainManager pointer, which
is now completely pointless since there is only ever one global
DrainManager in the system. It also contains vestiges from the time
when SimObjects had to keep track of their child objects that needed
draining.

This changeset moves all of the DrainState handling to the Drainable
base class and changes the drain() and drainResume() calls to reflect
this. Particularly, the drain() call has been updated to take no
parameters (the DrainManager argument isn't needed) and return a
DrainState instead of an unsigned integer (there is no point returning
anything other than 0 or 1 any more). Drainable objects should return
either DrainState::Draining (equivalent to returning 1 in the old
system) if they need more time to drain or DrainState::Drained
(equivalent to returning 0 in the old system) if they are already in a
consistent state. Returning DrainState::Running is considered an
error.

Drain done signalling is now done through the signalDrainDone() method
in the Drainable class instead of using the DrainManager directly. The
new call checks if the state of the object is DrainState::Draining
before notifying the drain manager. This means that it is safe to call
signalDrainDone() without first checking if the simulator has
requested draining. The intention here is to reduce the code needed to
implement draining in simple objects.
10912:b99a6662d7c2 Tue Jul 07 04:51:00 EDT 2015 Andreas Sandberg <andreas.sandberg@arm.com> sim: Decouple draining from the SimObject hierarchy

Draining is currently done by traversing the SimObject graph and
calling drain()/drainResume() on the SimObjects. This is not ideal
when non-SimObjects (e.g., ports) need draining since this means that
SimObjects owning those objects need to be aware of this.

This changeset moves the responsibility for finding objects that need
draining from SimObjects and the Python-side of the simulator to the
DrainManager. The DrainManager now maintains a set of all objects that
need draining. To reduce the overhead in classes owning non-SimObjects
that need draining, objects inheriting from Drainable now
automatically register with the DrainManager. If such an object is
destroyed, it is automatically unregistered. This means that drain()
and drainResume() should never be called directly on a Drainable
object.

While implementing the new functionality, the DrainManager has now
been made thread safe. In practice, this means that it takes a lock
whenever it manipulates the set of Drainable objects since SimObjects
in different threads may create Drainable objects
dynamically. Similarly, the drain counter is now an atomic_uint, which
ensures that it is manipulated correctly when objects signal that they
are done draining.

A nice side effect of these changes is that it makes the drain state
changes stricter, which the simulation scripts can exploit to avoid
redundant drains.
10910:32f3d1c454ec Tue Jul 07 04:51:00 EDT 2015 Andreas Sandberg <andreas.sandberg@arm.com> sim: Make the drain state a global typed enum

The drain state enum is currently a part of the Drainable
interface. The same state machine will be used by the DrainManager to
identify the global state of the simulator. Make the drain state a
global typed enum to better cater for this usage scenario.
/gem5/src/dev/x86/
H A Di8259.hh11175:2324ed5fa9f4 Fri Oct 23 09:51:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> x86: Add missing explicit overrides for X86 devices

Make clang >= 3.5 happy when compiling build/X86/gem5.opt on OSX.
11168:f98eb2da15a4 Mon Oct 12 04:07:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> misc: Remove redundant compiler-specific defines

This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap
(and similar) abstractions, as these are no longer needed with gcc 4.7
and clang 3.1 as minimum compiler versions.
10905:a6ca6831e775 Tue Jul 07 04:51:00 EDT 2015 Andreas Sandberg <andreas.sandberg@arm.com> sim: Refactor the serialization base class

Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:

* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.

* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.

* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).

* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.

* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.

Completed in 129 milliseconds

<<31323334353637383940>>