Searched hist:2010 (Results 651 - 675 of 929) sorted by relevance

<<21222324252627282930>>

/gem5/configs/common/
H A Dcpu2000.pydiff 7416:e1a7a9f33a00 Wed Jun 02 01:58:00 EDT 2010 Ali Saidi <Ali.Saidi@ARM.com> ARM: fix sizes of structs for ARM Linux
/gem5/src/arch/alpha/
H A DAlphaSystem.pydiff 7580:6f77f379a594 Mon Aug 23 12:18:00 EDT 2010 Ali Saidi <Ali.Saidi@arm.com> Loader: Make the load address mask be a parameter of the system rather than a constant.

This allows one two different OS requirements for the same ISA to be handled.
Some OSes are compiled for a virtual address and need to be loaded into physical
memory that starts at address 0, while other bare metal tools generate
images that start at address 0.
/gem5/src/arch/arm/
H A Dinterrupts.hhdiff 7400:f6c9b27c4dbe Wed Jun 02 01:58:00 EDT 2010 Ali Saidi <Ali.Saidi@ARM.com> ARM: Implement ARM CPU interrupts
H A Dstacktrace.ccdiff 7723:ee4ac00d0774 Mon Nov 08 14:58:00 EST 2010 Ali Saidi <Ali.Saidi@ARM.com> sim: Use forward declarations for ports.

Virtual ports need TLB data which means anything touching a file in the arch
directory rebuilds any file that includes system.hh which in everything.
/gem5/src/arch/mips/
H A DMipsSystem.pydiff 7580:6f77f379a594 Mon Aug 23 12:18:00 EDT 2010 Ali Saidi <Ali.Saidi@arm.com> Loader: Make the load address mask be a parameter of the system rather than a constant.

This allows one two different OS requirements for the same ISA to be handled.
Some OSes are compiled for a virtual address and need to be loaded into physical
memory that starts at address 0, while other bare metal tools generate
images that start at address 0.
H A Dutility.ccdiff 7720:65d338a8dba4 Sun Oct 31 03:07:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.



This change is a low level and pervasive reorganization of how PCs are managed
in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about,
the PC and the NPC, and the lsb of the PC signaled whether or not you were in
PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next
micropc, x86 and ARM introduced variable length instruction sets, and ARM
started to keep track of mode bits in the PC. Each CPU model handled PCs in
its own custom way that needed to be updated individually to handle the new
dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack,
the complexity could be hidden in the ISA at the ISA implementation's expense.
Areas like the branch predictor hadn't been updated to handle branch delay
slots or micropcs, and it turns out that had introduced a significant (10s of
percent) performance bug in SPARC and to a lesser extend MIPS. Rather than
perpetuate the problem by reworking O3 again to handle the PC features needed
by x86, this change was introduced to rework PC handling in a more modular,
transparent, and hopefully efficient way.


PC type:

Rather than having the superset of all possible elements of PC state declared
in each of the CPU models, each ISA defines its own PCState type which has
exactly the elements it needs. A cross product of canned PCState classes are
defined in the new "generic" ISA directory for ISAs with/without delay slots
and microcode. These are either typedef-ed or subclassed by each ISA. To read
or write this structure through a *Context, you use the new pcState() accessor
which reads or writes depending on whether it has an argument. If you just
want the address of the current or next instruction or the current micro PC,
you can get those through read-only accessors on either the PCState type or
the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the
move away from readPC. That name is ambiguous since it's not clear whether or
not it should be the actual address to fetch from, or if it should have extra
bits in it like the PAL mode bit. Each class is free to define its own
functions to get at whatever values it needs however it needs to to be used in
ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the
PC and into a separate field like ARM.

These types can be reset to a particular pc (where npc = pc +
sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as
appropriate), printed, serialized, and compared. There is a branching()
function which encapsulates code in the CPU models that checked if an
instruction branched or not. Exactly what that means in the context of branch
delay slots which can skip an instruction when not taken is ambiguous, and
ideally this function and its uses can be eliminated. PCStates also generally
know how to advance themselves in various ways depending on if they point at
an instruction, a microop, or the last microop of a macroop. More on that
later.

Ideally, accessing all the PCs at once when setting them will improve
performance of M5 even though more data needs to be moved around. This is
because often all the PCs need to be manipulated together, and by getting them
all at once you avoid multiple function calls. Also, the PCs of a particular
thread will have spatial locality in the cache. Previously they were grouped
by element in arrays which spread out accesses.


Advancing the PC:

The PCs were previously managed entirely by the CPU which had to know about PC
semantics, try to figure out which dimension to increment the PC in, what to
set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction
with the PC type itself. Because most of the information about how to
increment the PC (mainly what type of instruction it refers to) is contained
in the instruction object, a new advancePC virtual function was added to the
StaticInst class. Subclasses provide an implementation that moves around the
right element of the PC with a minimal amount of decision making. In ISAs like
Alpha, the instructions always simply assign NPC to PC without having to worry
about micropcs, nnpcs, etc. The added cost of a virtual function call should
be outweighed by not having to figure out as much about what to do with the
PCs and mucking around with the extra elements.

One drawback of making the StaticInsts advance the PC is that you have to
actually have one to advance the PC. This would, superficially, seem to
require decoding an instruction before fetch could advance. This is, as far as
I can tell, realistic. fetch would advance through memory addresses, not PCs,
perhaps predicting new memory addresses using existing ones. More
sophisticated decisions about control flow would be made later on, after the
instruction was decoded, and handed back to fetch. If branching needs to
happen, some amount of decoding needs to happen to see that it's a branch,
what the target is, etc. This could get a little more complicated if that gets
done by the predecoder, but I'm choosing to ignore that for now.


Variable length instructions:

To handle variable length instructions in x86 and ARM, the predecoder now
takes in the current PC by reference to the getExtMachInst function. It can
modify the PC however it needs to (by setting NPC to be the PC + instruction
length, for instance). This could be improved since the CPU doesn't know if
the PC was modified and always has to write it back.


ISA parser:

To support the new API, all PC related operand types were removed from the
parser and replaced with a PCState type. There are two warts on this
implementation. First, as with all the other operand types, the PCState still
has to have a valid operand type even though it doesn't use it. Second, using
syntax like PCS.npc(target) doesn't work for two reasons, this looks like the
syntax for operand type overriding, and the parser can't figure out if you're
reading or writing. Instructions that use the PCS operand (which I've
consistently called it) need to first read it into a local variable,
manipulate it, and then write it back out.


Return address stack:

The return address stack needed a little extra help because, in the presence
of branch delay slots, it has to merge together elements of the return PC and
the call PC. To handle that, a buildRetPC utility function was added. There
are basically only two versions in all the ISAs, but it didn't seem short
enough to put into the generic ISA directory. Also, the branch predictor code
in O3 and InOrder were adjusted so that they always store the PC of the actual
call instruction in the RAS, not the next PC. If the call instruction is a
microop, the next PC refers to the next microop in the same macroop which is
probably not desirable. The buildRetPC function advances the PC intelligently
to the next macroop (in an ISA specific way) so that that case works.


Change in stats:

There were no change in stats except in MIPS and SPARC in the O3 model. MIPS
runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could
likely be improved further by setting call/return instruction flags and taking
advantage of the RAS.


TODO:

Add != operators to the PCState classes, defined trivially to be !(a==b).
Smooth out places where PCs are split apart, passed around, and put back
together later. I think this might happen in SPARC's fault code. Add ISA
specific constructors that allow setting PC elements without calling a bunch
of accessors. Try to eliminate the need for the branching() function. Factor
out Alpha's PAL mode pc bit into a separate flag field, and eliminate places
where it's blindly masked out or tested in the PC.
diff 7707:e5b6f1157be3 Sat Oct 16 02:57:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> GetArgument: Rework getArgument so that X86_FS compiles again.

When no size is specified for an argument, push the decision about what size
to use into the ISA by passing a size of -1.
diff 7693:f1db1000d957 Fri Oct 01 17:02:00 EDT 2010 Ali Saidi <Ali.Saidi@ARM.com> Debug: Implement getArgument() and function skipping for ARM.

In the process make add skipFuction() to handle isa specific function skipping
instead of ifdefs and other ugliness. For almost all ABIs, 64 bit arguments can
only start in even registers. Size is now passed to getArgument() so that 32
bit systems can make decisions about register selection for 64 bit arguments.
The number argument is now passed by reference because getArgument() will need
to change it based on the size of the argument and the current argument number.

For ARM, if the argument number is odd and a 64-bit register is requested the
number must first be incremented to because all 64 bit arguments are passed
in an even argument register. Then the number will be incremented again to
access both halves of the argument.
diff 7678:f19b6a3a8cec Mon Sep 13 22:26:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> Faults: Pass the StaticInst involved, if any, to a Fault's invoke method.

Also move the "Fault" reference counted pointer type into a separate file,
sim/fault.hh. It would be better to name this less similarly to sim/faults.hh
to reduce confusion, but fault.hh matches the name of the type. We could change
Fault to FaultPtr to match other pointer types, and then changing the name of
the file would make more sense.
/gem5/src/arch/power/
H A Dprocess.hhdiff 7532:3f6413fc37a2 Tue Aug 17 08:17:00 EDT 2010 Steve Reinhardt <steve.reinhardt@amd.com> sim: revamp unserialization procedure

Replace direct call to unserialize() on each SimObject with a pair of
calls for better control over initialization in both ckpt and non-ckpt
cases.

If restoring from a checkpoint, loadState(ckpt) is called on each
SimObject. The default implementation simply calls unserialize() if
there is a corresponding checkpoint section, so we get backward
compatibility for existing objects. However, objects can override
loadState() to get other behaviors, e.g., doing other programmed
initializations after unserialize(), or complaining if no checkpoint
section is found. (Note that the default warning for a missing
checkpoint section is now gone.)

If not restoring from a checkpoint, we call the new initState() method
on each SimObject instead. This provides a hook for state
initializations that are only required when *not* restoring from a
checkpoint.

Given this new framework, do some cleanup of LiveProcess subclasses
and X86System, which were (in some cases) emulating initState()
behavior in startup via a local flag or (in other cases) erroneously
doing initializations in startup() that clobbered state loaded earlier
by unserialize().
/gem5/src/base/
H A Drefcnt.hhdiff 7057:ca72ee5978ce Fri Apr 02 14:20:00 EDT 2010 Nathan Binkert <nate@binkert.org> refcnt: no default copy contructor or copy operator
We shouldn't allow these because the default versions will copy
the reference count which is definitely not what we want.
/gem5/src/cpu/
H A DFuncUnit.pydiff 7760:e93e7e0caae1 Mon Nov 15 15:04:00 EST 2010 Giacomo Gabrielli <Giacomo.Gabrielli@arm.com> CPU/ARM: Add SIMD op classes to CPU models and ARM ISA.
H A Dop_class.hhdiff 7760:e93e7e0caae1 Mon Nov 15 15:04:00 EST 2010 Giacomo Gabrielli <Giacomo.Gabrielli@arm.com> CPU/ARM: Add SIMD op classes to CPU models and ARM ISA.
H A Dbase_dyn_inst_impl.hhdiff 7725:00ea9430643b Mon Nov 08 14:58:00 EST 2010 Ali Saidi <Ali.Saidi@ARM.com> ARM/Alpha/Cpu: Change prefetchs to be more like normal loads.

This change modifies the way prefetches work. They are now like normal loads
that don't writeback a register. Previously prefetches were supposed to call
prefetch() on the exection context, so they executed with execute() methods
instead of initiateAcc() completeAcc(). The prefetch() methods for all the CPUs
are blank, meaning that they get executed, but don't actually do anything.

On Alpha dead cache copy code was removed and prefetches are now normal ops.
They count as executed operations, but still don't do anything and IsMemRef is
not longer set on them.

On ARM IsDataPrefetch or IsInstructionPreftech is now set on all prefetch
instructions. The timing simple CPU doesn't try to do anything special for
prefetches now and they execute with the normal memory code path.
diff 7720:65d338a8dba4 Sun Oct 31 03:07:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.



This change is a low level and pervasive reorganization of how PCs are managed
in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about,
the PC and the NPC, and the lsb of the PC signaled whether or not you were in
PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next
micropc, x86 and ARM introduced variable length instruction sets, and ARM
started to keep track of mode bits in the PC. Each CPU model handled PCs in
its own custom way that needed to be updated individually to handle the new
dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack,
the complexity could be hidden in the ISA at the ISA implementation's expense.
Areas like the branch predictor hadn't been updated to handle branch delay
slots or micropcs, and it turns out that had introduced a significant (10s of
percent) performance bug in SPARC and to a lesser extend MIPS. Rather than
perpetuate the problem by reworking O3 again to handle the PC features needed
by x86, this change was introduced to rework PC handling in a more modular,
transparent, and hopefully efficient way.


PC type:

Rather than having the superset of all possible elements of PC state declared
in each of the CPU models, each ISA defines its own PCState type which has
exactly the elements it needs. A cross product of canned PCState classes are
defined in the new "generic" ISA directory for ISAs with/without delay slots
and microcode. These are either typedef-ed or subclassed by each ISA. To read
or write this structure through a *Context, you use the new pcState() accessor
which reads or writes depending on whether it has an argument. If you just
want the address of the current or next instruction or the current micro PC,
you can get those through read-only accessors on either the PCState type or
the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the
move away from readPC. That name is ambiguous since it's not clear whether or
not it should be the actual address to fetch from, or if it should have extra
bits in it like the PAL mode bit. Each class is free to define its own
functions to get at whatever values it needs however it needs to to be used in
ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the
PC and into a separate field like ARM.

These types can be reset to a particular pc (where npc = pc +
sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as
appropriate), printed, serialized, and compared. There is a branching()
function which encapsulates code in the CPU models that checked if an
instruction branched or not. Exactly what that means in the context of branch
delay slots which can skip an instruction when not taken is ambiguous, and
ideally this function and its uses can be eliminated. PCStates also generally
know how to advance themselves in various ways depending on if they point at
an instruction, a microop, or the last microop of a macroop. More on that
later.

Ideally, accessing all the PCs at once when setting them will improve
performance of M5 even though more data needs to be moved around. This is
because often all the PCs need to be manipulated together, and by getting them
all at once you avoid multiple function calls. Also, the PCs of a particular
thread will have spatial locality in the cache. Previously they were grouped
by element in arrays which spread out accesses.


Advancing the PC:

The PCs were previously managed entirely by the CPU which had to know about PC
semantics, try to figure out which dimension to increment the PC in, what to
set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction
with the PC type itself. Because most of the information about how to
increment the PC (mainly what type of instruction it refers to) is contained
in the instruction object, a new advancePC virtual function was added to the
StaticInst class. Subclasses provide an implementation that moves around the
right element of the PC with a minimal amount of decision making. In ISAs like
Alpha, the instructions always simply assign NPC to PC without having to worry
about micropcs, nnpcs, etc. The added cost of a virtual function call should
be outweighed by not having to figure out as much about what to do with the
PCs and mucking around with the extra elements.

One drawback of making the StaticInsts advance the PC is that you have to
actually have one to advance the PC. This would, superficially, seem to
require decoding an instruction before fetch could advance. This is, as far as
I can tell, realistic. fetch would advance through memory addresses, not PCs,
perhaps predicting new memory addresses using existing ones. More
sophisticated decisions about control flow would be made later on, after the
instruction was decoded, and handed back to fetch. If branching needs to
happen, some amount of decoding needs to happen to see that it's a branch,
what the target is, etc. This could get a little more complicated if that gets
done by the predecoder, but I'm choosing to ignore that for now.


Variable length instructions:

To handle variable length instructions in x86 and ARM, the predecoder now
takes in the current PC by reference to the getExtMachInst function. It can
modify the PC however it needs to (by setting NPC to be the PC + instruction
length, for instance). This could be improved since the CPU doesn't know if
the PC was modified and always has to write it back.


ISA parser:

To support the new API, all PC related operand types were removed from the
parser and replaced with a PCState type. There are two warts on this
implementation. First, as with all the other operand types, the PCState still
has to have a valid operand type even though it doesn't use it. Second, using
syntax like PCS.npc(target) doesn't work for two reasons, this looks like the
syntax for operand type overriding, and the parser can't figure out if you're
reading or writing. Instructions that use the PCS operand (which I've
consistently called it) need to first read it into a local variable,
manipulate it, and then write it back out.


Return address stack:

The return address stack needed a little extra help because, in the presence
of branch delay slots, it has to merge together elements of the return PC and
the call PC. To handle that, a buildRetPC utility function was added. There
are basically only two versions in all the ISAs, but it didn't seem short
enough to put into the generic ISA directory. Also, the branch predictor code
in O3 and InOrder were adjusted so that they always store the PC of the actual
call instruction in the RAS, not the next PC. If the call instruction is a
microop, the next PC refers to the next microop in the same macroop which is
probably not desirable. The buildRetPC function advances the PC intelligently
to the next macroop (in an ISA specific way) so that that case works.


Change in stats:

There were no change in stats except in MIPS and SPARC in the O3 model. MIPS
runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could
likely be improved further by setting call/return instruction flags and taking
advantage of the RAS.


TODO:

Add != operators to the PCState classes, defined trivially to be !(a==b).
Smooth out places where PCs are split apart, passed around, and put back
together later. I think this might happen in SPARC's fault code. Add ISA
specific constructors that allow setting PC elements without calling a bunch
of accessors. Try to eliminate the need for the branching() function. Factor
out Alpha's PAL mode pc bit into a separate flag field, and eliminate places
where it's blindly masked out or tested in the PC.
diff 7599:f6bbf266f2c8 Mon Aug 23 12:18:00 EDT 2010 Min Kyu Jeong <minkyu.jeong@arm.com> ARM: mark msr/mrs instructions as SerializeBefore/After
Since miscellaneous registers bypass wakeup logic, force serialization
to resolve data dependencies through them
* * *
ARM: adding non-speculative/serialize flags for instructions change CPSR
diff 7597:063f160e8b50 Mon Aug 23 12:18:00 EDT 2010 Min Kyu Jeong <minkyu.jeong@arm.com> ARM/O3: store the result of the predicate evaluation in DynInst or Threadstate.
THis allows the CPU to handle predicated-false instructions accordingly.
This particular patch makes loads that are predicated-false to be sent
straight to the commit stage directly, not waiting for return of the data
that was never requested since it was predicated-false.
/gem5/src/dev/alpha/
H A DTsunami.pydiff 7523:9c8fdcdae976 Tue Aug 17 08:06:00 EDT 2010 Steve Reinhardt <steve.reinhardt@amd.com> bus: clean up default responder code.
Clean up some minor things left over from the default responder
change in rev 9af6fb59752f. Mostly renaming the 'responder_set'
param to 'use_default_range' to actually reflect what it does...
old name wasn't that descriptive in the first place, but now
it really doesn't make sense at all.

Also got rid of the bogus obsolete assignment to 'bus.responder'
which used to be a parameter but now is interpreted as an
implicit child assignment, and which was giving me problems in
the config restructuring to come. (A good argument for not
allowing implicit child assignments, IMO, but that's water under
the bridge, I'm afraid.)

Also moved the Bus constructor to the .cc file since that's
where it should have been all along.
/gem5/src/arch/x86/bios/
H A Dintelmp.ccdiff 7087:fb8d5786ff30 Mon May 24 01:44:00 EDT 2010 Nathan Binkert <nate@binkert.org> copyright: Change HP copyright on x86 code to be more friendly
/gem5/src/arch/x86/
H A DX86TLB.pydiff 7087:fb8d5786ff30 Mon May 24 01:44:00 EDT 2010 Nathan Binkert <nate@binkert.org> copyright: Change HP copyright on x86 code to be more friendly
H A Dstacktrace.ccdiff 7737:f4362ffd810f Mon Nov 08 03:43:00 EST 2010 Gabe Black <gblack@eecs.umich.edu> X86: Fix X86_FS compilation.
H A Dcpuid.ccdiff 7072:d9823ce926fa Sun May 02 03:40:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> X86: Sometimes CPUID depends on ecx, so pass that in.
/gem5/src/cpu/pred/
H A D2bit_local.ccdiff 9480:d059f8a95a42 Thu Jan 24 01:28:00 EST 2013 Nilay Vaish <nilay@cs.wisc.edu>, Timothy Jones <timothy.jones@cl.cam.ac.uk> branch predictor: move out of o3 and inorder cpus
This patch moves the branch predictor files in the o3 and inorder directories
to src/cpu/pred. This allows sharing the branch predictor across different
cpu models.

This patch was originally posted by Timothy Jones in July 2010
but never made it to the repository.
H A D2bit_local.hhdiff 9480:d059f8a95a42 Thu Jan 24 01:28:00 EST 2013 Nilay Vaish <nilay@cs.wisc.edu>, Timothy Jones <timothy.jones@cl.cam.ac.uk> branch predictor: move out of o3 and inorder cpus
This patch moves the branch predictor files in the o3 and inorder directories
to src/cpu/pred. This allows sharing the branch predictor across different
cpu models.

This patch was originally posted by Timothy Jones in July 2010
but never made it to the repository.
/gem5/src/base/loader/
H A Delf_object.ccdiff 7676:92274350b953 Fri Sep 10 17:58:00 EDT 2010 Nathan Binkert <nate@binkert.org> style: fix sorting of includes and whitespace in some files
diff 7589:361b287b94b6 Mon Aug 23 12:18:00 EDT 2010 Ali Saidi <Ali.Saidi@arm.com> Loader: Don't insert symbols into the symbol table that begin wiht '$'.
diff 7581:692cdb71febd Mon Aug 23 12:18:00 EDT 2010 Ali Saidi <Ali.Saidi@arm.com> Loader: Use address mask provided to load*Symbols when loading the symbols from the symbol table.
diff 7095:f7bb2d93cc49 Wed Jun 02 01:58:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> ARM: Detect thumb mode elf images.
/gem5/src/cpu/testers/memtest/
H A DMemTest.py7632:acf43d6bbc18 Tue Aug 24 03:07:00 EDT 2010 Brad Beckmann <Brad.Beckmann@amd.com> testers: move testers to a new directory

This patch moves the testers to a new subdirectory under src/cpu and includes
the necessary fixes to work with latest m5 initialization patches.
/gem5/src/cpu/testers/rubytest/
H A DRubyTester.py7632:acf43d6bbc18 Tue Aug 24 03:07:00 EDT 2010 Brad Beckmann <Brad.Beckmann@amd.com> testers: move testers to a new directory

This patch moves the testers to a new subdirectory under src/cpu and includes
the necessary fixes to work with latest m5 initialization patches.
/gem5/src/mem/cache/prefetch/
H A Dqueued.hhdiff 13667:e3ae3619b9ab Tue Feb 05 17:31:00 EST 2019 Javier Bueno <javier.bueno@metempsy.com> mem-cache: Added the Delta Correlating Prediction Tables Prefetcher

Reference:
Multi-level hardware prefetching using low complexity delta correlating
prediction tables with partial matching.
Marius Grannaes, Magnus Jahre, and Lasse Natvig. 2010.
In Proceedings of the 5th international conference on High Performance
Embedded Architectures and Compilers (HiPEAC'10)
Change-Id: I7b5d7ede9284862a427cfd5693a47652a69ed49d
Reviewed-on: https://gem5-review.googlesource.com/c/16062
Reviewed-by: Daniel Carvalho <odanrc@yahoo.com.br>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
/gem5/src/sim/
H A Dprocess_impl.hhdiff 7678:f19b6a3a8cec Mon Sep 13 22:26:00 EDT 2010 Gabe Black <gblack@eecs.umich.edu> Faults: Pass the StaticInst involved, if any, to a Fault's invoke method.

Also move the "Fault" reference counted pointer type into a separate file,
sim/fault.hh. It would be better to name this less similarly to sim/faults.hh
to reduce confusion, but fault.hh matches the name of the type. We could change
Fault to FaultPtr to match other pointer types, and then changing the name of
the file would make more sense.
/gem5/src/base/stats/
H A Dtext.ccdiff 7505:7772a8bf76ee Wed Jul 21 21:54:00 EDT 2010 Nathan Binkert <nate@binkert.org> stats: unify the two stats distribution type better
diff 7504:ad631c296c9b Wed Jul 21 18:53:00 EDT 2010 Nathan Binkert <nate@binkert.org> stats: cleanup a few small problems in stats
diff 7462:0c61c3cf7639 Tue Jun 15 11:34:00 EDT 2010 Nathan Binkert <nate@binkert.org> stats: rename print to display so it work in python
diff 7444:669c1d2df752 Thu Jun 03 14:06:00 EDT 2010 Lisa Hsu <Lisa.Hsu@amd.com> Stats: fix dist stat and enable VectorDistStat
H A Dtext.hhdiff 7460:41550bb10e08 Tue Jun 15 02:24:00 EDT 2010 Nathan Binkert <nate@binkert.org> stats: get rid of the never-really-used event stuff

Completed in 135 milliseconds

<<21222324252627282930>>