Searched hist:2012 (Results 501 - 525 of 1124) sorted by relevance

<<21222324252627282930>>

/gem5/src/dev/x86/
H A DSouthBridge.pydiff 9338:97b4a2be1e5b Fri Nov 02 12:32:00 EDT 2012 Andreas Sandberg <Andreas.Sandberg@arm.com> sim: Include object header files in SWIG interfaces

When casting objects in the generated SWIG interfaces, SWIG uses
classical C-style casts ( (Foo *)bar; ). In some cases, this can
degenerate into the equivalent of a reinterpret_cast (mainly if only a
forward declaration of the type is available). This usually works for
most compilers, but it is known to break if multiple inheritance is
used anywhere in the object hierarchy.

This patch introduces the cxx_header attribute to Python SimObject
definitions, which should be used to specify a header to include in
the SWIG interface. The header should include the declaration of the
wrapped object. We currently don't enforce header the use of the
header attribute, but a warning will be generated for objects that do
not use it.
diff 9162:019047ead23b Tue Aug 21 05:50:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Device: Remove overloaded pio_latency parameter

This patch removes the overloading of the parameter, which seems both
redundant, and possibly incorrect.

The PciConfigAll now also uses a Param.Latency rather than a
Param.Tick. For backwards compatibility it still sets the pio_latency
to 1 tick. All the comments have also been updated to not state that
it is in simticks when it is not necessarily the case.
diff 8929:4148f9af0b70 Thu Apr 05 12:09:00 EDT 2012 Nilay Vaish <nilay@cs.wisc.edu> Config: corrects the way Ruby attaches to the DMA ports
With recent changes to the memory system, a port cannot be assigned a peer
port twice. While making use of the Ruby memory system in FS mode, DMA
ports were assigned peer twice, once for the classic memory system
and once for the Ruby memory system. This patch removes this double
assignment of peer ports.
diff 8839:eeb293859255 Mon Feb 13 06:43:00 EST 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Introduce the master/slave port roles in the Python classes

This patch classifies all ports in Python as either Master or Slave
and enforces a binding of master to slave. Conceptually, a master (such
as a CPU or DMA port) issues requests, and receives responses, and
conversely, a slave (such as a memory or a PIO device) receives
requests and sends back responses. Currently there is no
differentiation between coherent and non-coherent masters and slaves.

The classification as master/slave also involves splitting the dual
role port of the bus into a master and slave port and updating all the
system assembly scripts to use the appropriate port. Similarly, the
interrupt devices have to have their int_port split into a master and
slave port. The intdev and its children have minimal changes to
facilitate the extra port.

Note that this patch does not enforce any port typing in the C++
world, it merely ensures that the Python objects have a notion of the
port roles and are connected in an appropriate manner. This check is
carried when two ports are connected, e.g. bus.master =
memory.port. The following patches will make use of the
classifications and specialise the C++ ports into masters and slaves.
diff 8714:cd48e2802644 Tue Jan 17 01:55:00 EST 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Removing the default port peer from Python ports

In preparation for the introduction of Master and Slave ports, this
patch removes the default port parameter in the Python port and thus
forces the argument list of the Port to contain only the
description. The drawback at this point is that the config port and
dma port of PCI and DMA devices have to be connected explicitly. This
is key for future diversification as the pio and config port are
slaves, but the dma port is a master.
/gem5/tests/configs/
H A Dsimple-timing.pydiff 9321:7f0464326b2b Tue Oct 30 07:44:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> config: Unify caches used in regressions and adjust L2 MSHRs

This patch unified the L1 and L2 caches used throughout the
regressions instead of declaring different, but very similar,
configurations in the different scripts.

The patch also changes the default L2 configuration to match what it
used to be for the fs and se scripts (until the last patch that
updated the regressions to also make use of the cache config). The
MSHRs and targets per MSHR are now set to a more realistic default of
20 and 12, respectively.

As a result of both the aforementioned changes, many of the regression
stats are changed. A follow-on patch will bump the stats.
diff 9288:3d6da8559605 Mon Oct 15 08:10:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Mem: Use cycles to express cache-related latencies

This patch changes the cache-related latencies from an absolute time
expressed in Ticks, to a number of cycles that can be scaled with the
clock period of the caches. Ultimately this patch serves to enable
future work that involves dynamic frequency scaling. As an immediate
benefit it also makes it more convenient to specify cache performance
without implicitly assuming a specific CPU core operating frequency.

The stat blocked_cycles that actually counter in ticks is now updated
to count in cycles.

As the timing is now rounded to the clock edges of the cache, there
are some regressions that change. Plenty of them have very minor
changes, whereas some regressions with a short run-time are perturbed
quite significantly. A follow-on patch updates all the statistics for
the regressions.
diff 9263:066099902102 Tue Sep 25 12:49:00 EDT 2012 Mrinmoy Ghosh <mrinmoy.ghosh@arm.com> Cache: add a response latency to the caches

In the current caches the hit latency is paid twice on a miss. This patch lets
a configurable response latency be set of the cache for the backward path.
diff 9036:6385cf85bf12 Thu May 31 13:30:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Bus: Split the bus into a non-coherent and coherent bus

This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.

A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.

A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.

The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.

A bit of minor tidying up has also been done.
diff 8931:7a1dfb191e3f Fri Apr 06 13:46:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Enable multiple distributed generalized memories

This patch removes the assumption on having on single instance of
PhysicalMemory, and enables a distributed memory where the individual
memories in the system are each responsible for a single contiguous
address range.

All memories inherit from an AbstractMemory that encompasses the basic
behaviuor of a random access memory, and provides untimed access
methods. What was previously called PhysicalMemory is now
SimpleMemory, and a subclass of AbstractMemory. All future types of
memory controllers should inherit from AbstractMemory.

To enable e.g. the atomic CPU and RubyPort to access the now
distributed memory, the system has a wrapper class, called
PhysicalMemory that is aware of all the memories in the system and
their associated address ranges. This class thus acts as an
infinitely-fast bus and performs address decoding for these "shortcut"
accesses. Each memory can specify that it should not be part of the
global address map (used e.g. by the functional memories by some
testers). Moreover, each memory can be configured to be reported to
the OS configuration table, useful for populating ATAG structures, and
any potential ACPI tables.

Checkpointing support currently assumes that all memories have the
same size and organisation when creating and resuming from the
checkpoint. A future patch will enable a more flexible
re-organisation.
diff 8876:44f8e7bb7fdf Fri Mar 02 09:21:00 EST 2012 Andreas Hansson <andreas.hansson@arm.com> CPU: Check that the interrupt controller is created when needed

This patch adds a creation-time check to the CPU to ensure that the
interrupt controller is created for the cases where it is needed,
i.e. if the CPU is not being switched in later and not a checker CPU.

The patch also adds the "createInterruptController" call to a number
of the regression scripts.
diff 8839:eeb293859255 Mon Feb 13 06:43:00 EST 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Introduce the master/slave port roles in the Python classes

This patch classifies all ports in Python as either Master or Slave
and enforces a binding of master to slave. Conceptually, a master (such
as a CPU or DMA port) issues requests, and receives responses, and
conversely, a slave (such as a memory or a PIO device) receives
requests and sends back responses. Currently there is no
differentiation between coherent and non-coherent masters and slaves.

The classification as master/slave also involves splitting the dual
role port of the bus into a master and slave port and updating all the
system assembly scripts to use the appropriate port. Similarly, the
interrupt devices have to have their int_port split into a master and
slave port. The intdev and its children have minimal changes to
facilitate the extra port.

Note that this patch does not enforce any port typing in the C++
world, it merely ensures that the Python objects have a notion of the
port roles and are connected in an appropriate manner. This check is
carried when two ports are connected, e.g. bus.master =
memory.port. The following patches will make use of the
classifications and specialise the C++ ports into masters and slaves.
diff 8801:1a84c6a81299 Sat Jan 28 10:24:00 EST 2012 Gabe Black <gblack@eecs.umich.edu> SE/FS: Make SE vs. FS mode a runtime parameter.
diff 8706:b1838faf3bcc Tue Jan 17 01:55:00 EST 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Add port proxies instead of non-structural ports

Port proxies are used to replace non-structural ports, and thus enable
all ports in the system to correspond to a structural entity. This has
the advantage of accessing memory through the normal memory subsystem
and thus allowing any constellation of distributed memories, address
maps, etc. Most accesses are done through the "system port" that is
used for loading binaries, debugging etc. For the entities that belong
to the CPU, e.g. threads and thread contexts, they wrap the CPU data
port in a port proxy.

The following replacements are made:
FunctionalPort > PortProxy
TranslatingPort > SETranslatingPortProxy
VirtualPort > FSTranslatingPortProxy
H A Dsimple-timing-mp-ruby.pydiff 9113:9a72589ce4fd Wed Jul 11 01:51:00 EDT 2012 Brad Beckmann <Brad.Beckmann@amd.com> regress: ruby stat additions and config changes
diff 9067:d0d9d10b3930 Mon Jun 11 03:16:00 EDT 2012 Marc Orr <marc.orr@gmail.com> Regression: Fix some bugs in simple-timing-mp-ruby.py.
diff 8931:7a1dfb191e3f Fri Apr 06 13:46:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Enable multiple distributed generalized memories

This patch removes the assumption on having on single instance of
PhysicalMemory, and enables a distributed memory where the individual
memories in the system are each responsible for a single contiguous
address range.

All memories inherit from an AbstractMemory that encompasses the basic
behaviuor of a random access memory, and provides untimed access
methods. What was previously called PhysicalMemory is now
SimpleMemory, and a subclass of AbstractMemory. All future types of
memory controllers should inherit from AbstractMemory.

To enable e.g. the atomic CPU and RubyPort to access the now
distributed memory, the system has a wrapper class, called
PhysicalMemory that is aware of all the memories in the system and
their associated address ranges. This class thus acts as an
infinitely-fast bus and performs address decoding for these "shortcut"
accesses. Each memory can specify that it should not be part of the
global address map (used e.g. by the functional memories by some
testers). Moreover, each memory can be configured to be reported to
the OS configuration table, useful for populating ATAG structures, and
any potential ACPI tables.

Checkpointing support currently assumes that all memories have the
same size and organisation when creating and resuming from the
checkpoint. A future patch will enable a more flexible
re-organisation.
diff 8920:99083b5b7ed4 Wed Mar 28 12:01:00 EDT 2012 Nilay Vaish <nilay@cs.wisc.edu> Config: Change the way options are added
I am not too happy with the way options are added in files se.py and fs.py
currently. This patch moves all the options to the file Options.py, functions
from which are called when required.
diff 8808:8af87554ad7e Tue Jan 31 00:07:00 EST 2012 Gabe Black <gblack@eecs.umich.edu> Merge with main repository.
diff 8802:ef66a9083bc4 Sat Jan 28 10:24:00 EST 2012 Gabe Black <gblack@eecs.umich.edu> SE/FS: Make both SE and FS tests available all the time.
diff 8801:1a84c6a81299 Sat Jan 28 10:24:00 EST 2012 Gabe Black <gblack@eecs.umich.edu> SE/FS: Make SE vs. FS mode a runtime parameter.
diff 8732:fd510b6e124d Mon Jan 30 09:37:00 EST 2012 Andreas Hansson <andreas.hansson@arm.com> Ruby: Connect system port in Ruby network test

This patch moves the connection of the system port to create_system in
Ruby.py. Thereby it allows the failing Ruby test (and other Ruby
systems) to run again.
diff 8706:b1838faf3bcc Tue Jan 17 01:55:00 EST 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Add port proxies instead of non-structural ports

Port proxies are used to replace non-structural ports, and thus enable
all ports in the system to correspond to a structural entity. This has
the advantage of accessing memory through the normal memory subsystem
and thus allowing any constellation of distributed memories, address
maps, etc. Most accesses are done through the "system port" that is
used for loading binaries, debugging etc. For the entities that belong
to the CPU, e.g. threads and thread contexts, they wrap the CPU data
port in a port proxy.

The following replacements are made:
FunctionalPort > PortProxy
TranslatingPort > SETranslatingPortProxy
VirtualPort > FSTranslatingPortProxy
H A Dsimple-atomic.pydiff 9036:6385cf85bf12 Thu May 31 13:30:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Bus: Split the bus into a non-coherent and coherent bus

This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.

A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.

A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.

The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.

A bit of minor tidying up has also been done.
diff 8931:7a1dfb191e3f Fri Apr 06 13:46:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Enable multiple distributed generalized memories

This patch removes the assumption on having on single instance of
PhysicalMemory, and enables a distributed memory where the individual
memories in the system are each responsible for a single contiguous
address range.

All memories inherit from an AbstractMemory that encompasses the basic
behaviuor of a random access memory, and provides untimed access
methods. What was previously called PhysicalMemory is now
SimpleMemory, and a subclass of AbstractMemory. All future types of
memory controllers should inherit from AbstractMemory.

To enable e.g. the atomic CPU and RubyPort to access the now
distributed memory, the system has a wrapper class, called
PhysicalMemory that is aware of all the memories in the system and
their associated address ranges. This class thus acts as an
infinitely-fast bus and performs address decoding for these "shortcut"
accesses. Each memory can specify that it should not be part of the
global address map (used e.g. by the functional memories by some
testers). Moreover, each memory can be configured to be reported to
the OS configuration table, useful for populating ATAG structures, and
any potential ACPI tables.

Checkpointing support currently assumes that all memories have the
same size and organisation when creating and resuming from the
checkpoint. A future patch will enable a more flexible
re-organisation.
diff 8876:44f8e7bb7fdf Fri Mar 02 09:21:00 EST 2012 Andreas Hansson <andreas.hansson@arm.com> CPU: Check that the interrupt controller is created when needed

This patch adds a creation-time check to the CPU to ensure that the
interrupt controller is created for the cases where it is needed,
i.e. if the CPU is not being switched in later and not a checker CPU.

The patch also adds the "createInterruptController" call to a number
of the regression scripts.
diff 8839:eeb293859255 Mon Feb 13 06:43:00 EST 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Introduce the master/slave port roles in the Python classes

This patch classifies all ports in Python as either Master or Slave
and enforces a binding of master to slave. Conceptually, a master (such
as a CPU or DMA port) issues requests, and receives responses, and
conversely, a slave (such as a memory or a PIO device) receives
requests and sends back responses. Currently there is no
differentiation between coherent and non-coherent masters and slaves.

The classification as master/slave also involves splitting the dual
role port of the bus into a master and slave port and updating all the
system assembly scripts to use the appropriate port. Similarly, the
interrupt devices have to have their int_port split into a master and
slave port. The intdev and its children have minimal changes to
facilitate the extra port.

Note that this patch does not enforce any port typing in the C++
world, it merely ensures that the Python objects have a notion of the
port roles and are connected in an appropriate manner. This check is
carried when two ports are connected, e.g. bus.master =
memory.port. The following patches will make use of the
classifications and specialise the C++ ports into masters and slaves.
diff 8801:1a84c6a81299 Sat Jan 28 10:24:00 EST 2012 Gabe Black <gblack@eecs.umich.edu> SE/FS: Make SE vs. FS mode a runtime parameter.
diff 8706:b1838faf3bcc Tue Jan 17 01:55:00 EST 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Add port proxies instead of non-structural ports

Port proxies are used to replace non-structural ports, and thus enable
all ports in the system to correspond to a structural entity. This has
the advantage of accessing memory through the normal memory subsystem
and thus allowing any constellation of distributed memories, address
maps, etc. Most accesses are done through the "system port" that is
used for loading binaries, debugging etc. For the entities that belong
to the CPU, e.g. threads and thread contexts, they wrap the CPU data
port in a port proxy.

The following replacements are made:
FunctionalPort > PortProxy
TranslatingPort > SETranslatingPortProxy
VirtualPort > FSTranslatingPortProxy
H A Dtwosys-tsunami-simple-atomic.pydiff 9246:ab0f995552fc Mon Sep 24 18:03:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Regression: Set the clock for twosys-tsunami CPUs

This patch merely adds a clock other than the default 1 Tick for the
CPUs of both the test system and drive system for the twosys-tsunami
regression.

The CPU frequency of the driver system is choosed to be twice that of
the test system to ensure it is not the bottleneck (although in this
case it mostly serves as a demonstration of a two-system setup),
diff 9164:d112473185ea Wed Aug 22 11:39:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Bridge: Remove NACKs in the bridge and unify with packet queue

This patch removes the NACKing in the bridge, as the split
request/response busses now ensure that protocol deadlocks do not
occur, i.e. the message-dependency chain is broken by always allowing
responses to make progress without being stalled by requests. The
NACKs had limited support in the system with most components ignoring
their use (with a suitable call to panic), and as the NACKs are no
longer needed to avoid protocol deadlocks, the cleanest way is to
simply remove them.

The bridge is the starting point as this is the only place where the
NACKs are created. A follow-up patch will remove the code that deals
with NACKs in the endpoints, e.g. the X86 table walker and DMA
port. Ultimately the type of packet can be complete removed (until
someone sees a need for modelling more complex protocols, which can
now be done in parts of the system since the port and interface is
split).

As a consequence of the NACK removal, the bridge now has to send a
retry to a master if the request or response queue was full on the
first attempt. This change also makes the bridge ports very similar to
QueuedPorts, and a later patch will change the bridge to use these. A
first step in this direction is taken by aligning the name of the
member functions, as done by this patch.

A bit of tidying up has also been done as part of the simplifications.

Surprisingly, this patch has no impact on any of the
regressions. Hence, there was never any NACKs issued. In a follow-up
patch I would suggest changing the size of the bridge buffers set in
FSConfig.py to also test the situation where the bridge fills up.
diff 8876:44f8e7bb7fdf Fri Mar 02 09:21:00 EST 2012 Andreas Hansson <andreas.hansson@arm.com> CPU: Check that the interrupt controller is created when needed

This patch adds a creation-time check to the CPU to ensure that the
interrupt controller is created for the cases where it is needed,
i.e. if the CPU is not being switched in later and not a checker CPU.

The patch also adds the "createInterruptController" call to a number
of the regression scripts.
diff 8839:eeb293859255 Mon Feb 13 06:43:00 EST 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Introduce the master/slave port roles in the Python classes

This patch classifies all ports in Python as either Master or Slave
and enforces a binding of master to slave. Conceptually, a master (such
as a CPU or DMA port) issues requests, and receives responses, and
conversely, a slave (such as a memory or a PIO device) receives
requests and sends back responses. Currently there is no
differentiation between coherent and non-coherent masters and slaves.

The classification as master/slave also involves splitting the dual
role port of the bus into a master and slave port and updating all the
system assembly scripts to use the appropriate port. Similarly, the
interrupt devices have to have their int_port split into a master and
slave port. The intdev and its children have minimal changes to
facilitate the extra port.

Note that this patch does not enforce any port typing in the C++
world, it merely ensures that the Python objects have a notion of the
port roles and are connected in an appropriate manner. This check is
carried when two ports are connected, e.g. bus.master =
memory.port. The following patches will make use of the
classifications and specialise the C++ ports into masters and slaves.
diff 8801:1a84c6a81299 Sat Jan 28 10:24:00 EST 2012 Gabe Black <gblack@eecs.umich.edu> SE/FS: Make SE vs. FS mode a runtime parameter.
diff 8713:2f1a3e335255 Tue Jan 17 01:55:00 EST 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Make the bus bridge unidirectional and fixed address range

This patch makes the bus bridge uni-directional and specialises the
bus ports to be a master port and a slave port. This greatly
simplifies the assumptions on both sides as either port only has to
deal with requests or responses. The following patches introduce the
notion of master and slave ports, and would not be possible without
this split of responsibilities.

In making the bridge unidirectional, the address range mechanism of
the bridge is also changed. For the cases where communication is
taking place both ways, an additional bridge is needed. This causes
issues with the existing mechanism, as the busses cannot determine
when to stop iterating the address updates from the two bridges. To
avoid this issue, and also greatly simplify the specification, the
bridge now has a fixed set of address ranges, specified at creation
time.
/gem5/configs/example/
H A Druby_mem_test.pydiff 9302:c2e70a9bc340 Mon Oct 15 18:51:00 EDT 2012 Nilay Vaish <nilay@cs.wisc.edu> ruby: improved support for functional accesses
This patch adds support to different entities in the ruby memory system
for more reliable functional read/write accesses. Only the simple network
has been augmented as of now. Later on Garnet will also support functional
accesses.
The patch adds functional access code to all the different types of messages
that protocols can send around. These messages are functionally accessed
by going through the buffers maintained by the network entities.
The patch also rectifies some of the bugs found in coherence protocols while
testing the patch.

With this patch applied, functional writes always succeed. But functional
reads can still fail.
diff 9120:48eeef8a0997 Thu Jul 12 00:56:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Mem: Make SimpleMemory single ported

This patch changes the simple memory to have a single slave port
rather than a vector port. The simple memory makes no attempts at
modelling the contention between multiple ports, and any such
multiplexing and demultiplexing could be done in a bus (or crossbar)
outside the memory controller. This scenario also matches with the
ongoing work on a SimpleDRAM model, which will be a single-ported
single-channel controller that can be used in conjunction with a bus
(or crossbar) to create a multi-port multi-channel controller.

There are only very few regressions that make use of the vector port,
and these are all for functional accesses only. To facilitate these
cases, memtest and memtest-ruby have been updated to also have a
"functional" bus to perform the (de)multiplexing of the functional
memory accesses.
diff 9100:3caf131d7a95 Wed Jul 11 01:51:00 EDT 2012 Brad Beckmann <Brad.Beckmann@amd.com> ruby: changes how Topologies are created

Instead of just passing a list of controllers to the makeTopology function
in src/mem/ruby/network/topologies/<Topo>.py we pass in a function pointer
which knows how to make the topology, possibly with some extra state set
in the configs/ruby/<protocol>.py file. Thus, we can move all of the files
from network/topologies to configs/topologies. A new class BaseTopology
is added which all topologies in configs/topologies must inheirit from and
follow its API.
diff 8931:7a1dfb191e3f Fri Apr 06 13:46:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Enable multiple distributed generalized memories

This patch removes the assumption on having on single instance of
PhysicalMemory, and enables a distributed memory where the individual
memories in the system are each responsible for a single contiguous
address range.

All memories inherit from an AbstractMemory that encompasses the basic
behaviuor of a random access memory, and provides untimed access
methods. What was previously called PhysicalMemory is now
SimpleMemory, and a subclass of AbstractMemory. All future types of
memory controllers should inherit from AbstractMemory.

To enable e.g. the atomic CPU and RubyPort to access the now
distributed memory, the system has a wrapper class, called
PhysicalMemory that is aware of all the memories in the system and
their associated address ranges. This class thus acts as an
infinitely-fast bus and performs address decoding for these "shortcut"
accesses. Each memory can specify that it should not be part of the
global address map (used e.g. by the functional memories by some
testers). Moreover, each memory can be configured to be reported to
the OS configuration table, useful for populating ATAG structures, and
any potential ACPI tables.

Checkpointing support currently assumes that all memories have the
same size and organisation when creating and resuming from the
checkpoint. A future patch will enable a more flexible
re-organisation.
diff 8929:4148f9af0b70 Thu Apr 05 12:09:00 EDT 2012 Nilay Vaish <nilay@cs.wisc.edu> Config: corrects the way Ruby attaches to the DMA ports
With recent changes to the memory system, a port cannot be assigned a peer
port twice. While making use of the Ruby memory system in FS mode, DMA
ports were assigned peer twice, once for the classic memory system
and once for the Ruby memory system. This patch removes this double
assignment of peer ports.
diff 8928:051bc173ea72 Thu Apr 05 10:45:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Ruby: Fix the example configurations option parsing

This patch fixes the, currently broken, Ruby example scripts to
reflect the changes in the parsing of command-line options.
diff 8845:a230379caf65 Tue Feb 14 03:41:00 EST 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Fix master/slave ports in Ruby and non-regression scripts

This patch brings the Ruby and other scripts up to date with the
introduction of the master/slave ports.
diff 8803:f6c5785bc8fd Sat Jan 28 10:24:00 EST 2012 Gabe Black <gblack@eecs.umich.edu> SE/FS: Get rid of FULL_SYSTEM in the configs directory
diff 8801:1a84c6a81299 Sat Jan 28 10:24:00 EST 2012 Gabe Black <gblack@eecs.umich.edu> SE/FS: Make SE vs. FS mode a runtime parameter.
H A Druby_random_test.pydiff 9108:ad76a669e9d9 Wed Jul 11 01:51:00 EDT 2012 Brad Beckmann <Brad.Beckmann@amd.com> ruby: remove the cpu assumptions for the random tester
diff 9100:3caf131d7a95 Wed Jul 11 01:51:00 EDT 2012 Brad Beckmann <Brad.Beckmann@amd.com> ruby: changes how Topologies are created

Instead of just passing a list of controllers to the makeTopology function
in src/mem/ruby/network/topologies/<Topo>.py we pass in a function pointer
which knows how to make the topology, possibly with some extra state set
in the configs/ruby/<protocol>.py file. Thus, we can move all of the files
from network/topologies to configs/topologies. A new class BaseTopology
is added which all topologies in configs/topologies must inheirit from and
follow its API.
diff 8932:1b2c17565ac8 Fri Apr 06 16:47:00 EDT 2012 Brad Beckmann <Brad.Beckmann@amd.com> rubytest: seperated read and write ports.

This patch allows the ruby tester to support protocols where the i-cache and d-cache
are managed by seperate controllers.
diff 8931:7a1dfb191e3f Fri Apr 06 13:46:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Enable multiple distributed generalized memories

This patch removes the assumption on having on single instance of
PhysicalMemory, and enables a distributed memory where the individual
memories in the system are each responsible for a single contiguous
address range.

All memories inherit from an AbstractMemory that encompasses the basic
behaviuor of a random access memory, and provides untimed access
methods. What was previously called PhysicalMemory is now
SimpleMemory, and a subclass of AbstractMemory. All future types of
memory controllers should inherit from AbstractMemory.

To enable e.g. the atomic CPU and RubyPort to access the now
distributed memory, the system has a wrapper class, called
PhysicalMemory that is aware of all the memories in the system and
their associated address ranges. This class thus acts as an
infinitely-fast bus and performs address decoding for these "shortcut"
accesses. Each memory can specify that it should not be part of the
global address map (used e.g. by the functional memories by some
testers). Moreover, each memory can be configured to be reported to
the OS configuration table, useful for populating ATAG structures, and
any potential ACPI tables.

Checkpointing support currently assumes that all memories have the
same size and organisation when creating and resuming from the
checkpoint. A future patch will enable a more flexible
re-organisation.
diff 8928:051bc173ea72 Thu Apr 05 10:45:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Ruby: Fix the example configurations option parsing

This patch fixes the, currently broken, Ruby example scripts to
reflect the changes in the parsing of command-line options.
diff 8845:a230379caf65 Tue Feb 14 03:41:00 EST 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Fix master/slave ports in Ruby and non-regression scripts

This patch brings the Ruby and other scripts up to date with the
introduction of the master/slave ports.
diff 8803:f6c5785bc8fd Sat Jan 28 10:24:00 EST 2012 Gabe Black <gblack@eecs.umich.edu> SE/FS: Get rid of FULL_SYSTEM in the configs directory
diff 8801:1a84c6a81299 Sat Jan 28 10:24:00 EST 2012 Gabe Black <gblack@eecs.umich.edu> SE/FS: Make SE vs. FS mode a runtime parameter.
/gem5/src/cpu/testers/directedtest/
H A DRubyDirectedTester.hhdiff 9294:8fb03b13de02 Mon Oct 15 08:12:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Port: Add protocol-agnostic ports in the port hierarchy

This patch adds an additional level of ports in the inheritance
hierarchy, separating out the protocol-specific and protocl-agnostic
parts. All the functionality related to the binding of ports is now
confined to use BaseMaster/BaseSlavePorts, and all the
protocol-specific parts stay in the Master/SlavePort. In the future it
will be possible to add other protocol-specific implementations.

The functions used in the binding of ports, i.e. getMaster/SlavePort
now use the base classes, and the index parameter is updated to use
the PortID typedef with the symbolic InvalidPortID as the default.
diff 9031:32ecc0217c5e Wed May 30 05:29:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Packet: Unify the use of PortID in packet and port

This patch removes the Packet::NodeID typedef and unifies it with the
Port::PortId. The src and dest fields in the packet are used to hold a
port id (e.g. in the bus), and thus the two should actually be the
same.

The typedef PortID is now global (in base/types.hh) and aligned with
the ThreadID in terms of capitalisation and naming of the
InvalidPortID constant.

Before this patch, two flags were used for valid destination and
source, rather than relying on a named value (InvalidPortID), and
this is now redundant, as the src and dest field themselves are
sufficient to tell whether the current value is a valid port
identifier or not. Consequently, the VALID_SRC and VALID_DST are
removed.

As part of the cleaning up, a number of int parameters and local
variables are updated to use PortID.

Note that Ruby still has its own NodeID typedef. Furthermore, the
MemObject getMaster/SlavePort still has an int idx parameter with a
default value of -1 which should eventually change to PortID idx =
InvalidPortID.
diff 8975:7f36d4436074 Tue May 01 13:40:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Separate requests and responses for timing accesses

This patch moves send/recvTiming and send/recvTimingSnoop from the
Port base class to the MasterPort and SlavePort, and also splits them
into separate member functions for requests and responses:
send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq,
send/recvTimingSnoopResp. A master port sends requests and receives
responses, and also receives snoop requests and sends snoop
responses. A slave port has the reciprocal behaviour as it receives
requests and sends responses, and sends snoop requests and receives
snoop responses.

For all MemObjects that have only master ports or slave ports (but not
both), e.g. a CPU, or a PIO device, this patch merely adds more
clarity to what kind of access is taking place. For example, a CPU
port used to call sendTiming, and will now call
sendTimingReq. Similarly, a response previously came back through
recvTiming, which is now recvTimingResp. For the modules that have
both master and slave ports, e.g. the bus, the behaviour was
previously relying on branches based on pkt->isRequest(), and this is
now replaced with a direct call to the apprioriate member function
depending on the type of access. Please note that send/recvRetry is
still shared by all the timing accessors and remains in the Port base
class for now (to maintain the current bus functionality and avoid
changing the statistics of all regressions).

The packet queue is split into a MasterPort and SlavePort version to
facilitate the use of the new timing accessors. All uses of the
PacketQueue are updated accordingly.

With this patch, the type of packet (request or response) is now well
defined for each type of access, and asserts on pkt->isRequest() and
pkt->isResponse() are now moved to the appropriate send member
functions. It is also worth noting that sendTimingSnoopReq no longer
returns a boolean, as the semantics do not alow snoop requests to be
rejected or stalled. All these assumptions are now excplicitly part of
the port interface itself.
diff 8965:1ebd7c856abc Wed Apr 25 10:41:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Add the PortId type and a corresponding id field to Port

This patch introduces the PortId type, moves the definition of
INVALID_PORT_ID to the Port class, and also gives every port an id to
reflect the fact that each element in a vector port has an
identifier/index.

Previously the bus and Ruby testers (and potentially other users of
the vector ports) added the id field in their port subclasses, and now
this functionality is always present as it is moved to the base class.
diff 8950:a6830d615eff Sat Apr 14 05:46:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Ruby: Use MasterPort base-class pointers where possible

This patch simplifies future patches by changing the pointer type used
in a number of the Ruby testers to use MasterPort instead of using a
derived CpuPort class. There is no reason for using the more
specialised pointers, and there is no longer a need to do any casting.

With the latest changes to the tester, organising ports as readers and
writes, things got a bit more complicated, and the "type" now had to
be removed to be able to fall back to using MasterPort rather than
CpuPort.
diff 8948:e95ee70f876c Sat Apr 14 05:45:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Separate snoops and normal memory requests/responses

This patch introduces port access methods that separates snoop
request/responses from normal memory request/responses. The
differentiation is made for functional, atomic and timing accesses and
builds on the introduction of master and slave ports.

Before the introduction of this patch, the packets belonging to the
different phases of the protocol (request -> [forwarded snoop request
-> snoop response]* -> response) all use the same port access
functions, even though the snoop packets flow in the opposite
direction to the normal packet. That is, a coherent master sends
normal request and receives responses, but receives snoop requests and
sends snoop responses (vice versa for the slave). These two distinct
phases now use different access functions, as described below.

Starting with the functional access, a master sends a request to a
slave through sendFunctional, and the request packet is turned into a
response before the call returns. In a system without cache coherence,
this is all that is needed from the functional interface. For the
cache-coherent scenario, a slave also sends snoop requests to coherent
masters through sendFunctionalSnoop, with responses returned within
the same packet pointer. This is currently used by the bus and caches,
and the LSQ of the O3 CPU. The send/recvFunctional and
send/recvFunctionalSnoop are moved from the Port super class to the
appropriate subclass.

Atomic accesses follow the same flow as functional accesses, with
request being sent from master to slave through sendAtomic. In the
case of cache-coherent ports, a slave can send snoop requests to a
master through sendAtomicSnoop. Just as for the functional access
methods, the atomic send and receive member functions are moved to the
appropriate subclasses.

The timing access methods are different from the functional and atomic
in that requests and responses are separated in time and
send/recvTiming are used for both directions. Hence, a master uses
sendTiming to send a request to a slave, and a slave uses sendTiming
to send a response back to a master, at a later point in time. Snoop
requests and responses travel in the opposite direction, similar to
what happens in functional and atomic accesses. With the introduction
of this patch, it is possible to determine the direction of packets in
the bus, and no longer necessary to look for both a master and a slave
port with the requested port id.

In contrast to the normal recvFunctional, recvAtomic and recvTiming
that are pure virtual functions, the recvFunctionalSnoop,
recvAtomicSnoop and recvTimingSnoop have a default implementation that
calls panic. This is to allow non-coherent master and slave ports to
not implement these functions.
diff 8922:17f037ad8918 Fri Mar 30 09:40:00 EDT 2012 William Wang <william.wang@arm.com> MEM: Introduce the master/slave port sub-classes in C++

This patch introduces the notion of a master and slave port in the C++
code, thus bringing the previous classification from the Python
classes into the corresponding simulation objects and memory objects.

The patch enables us to classify behaviours into the two bins and add
assumptions and enfore compliance, also simplifying the two
interfaces. As a starting point, isSnooping is confined to a master
port, and getAddrRanges to slave ports. More of these specilisations
are to come in later patches.

The getPort function is not getMasterPort and getSlavePort, and
returns a port reference rather than a pointer as NULL would never be
a valid return value. The default implementation of these two
functions is placed in MemObject, and calls fatal.

The one drawback with this specific patch is that it requires some
code duplication, e.g. QueuedPort becomes QueuedMasterPort and
QueuedSlavePort, and BusPort becomes BusMasterPort and BusSlavePort
(avoiding multiple inheritance). With the later introduction of the
port interfaces, moving the functionality outside the port itself, a
lot of the duplicated code will disappear again.
diff 8854:04d1736a5098 Fri Feb 24 11:48:00 EST 2012 Andreas Hansson <andreas.hansson@arm.com> Ruby: Simplify tester ports by not using SimpleTimingPort

This patch simplfies the master ports used by RubyDirectedTester and
RubyTester by avoiding the use of SimpleTimingPort. Neither tester
made any use of the functionality offered by SimpleTimingPort besides
a trivial implementation of recvFunctional (only snoops) and
recvRangeChange (not relevant since there is only one master).

The patch does not change or add any functionality, it merely makes
the introduction of a master/slave port easier (in a future patch).
diff 8655:e4001326a5ba Mon Jan 09 19:08:00 EST 2012 Andreas Hansson <andreas.hansson@arm.com> MAC: Make gem5 compile and run on MacOSX 10.7.2

Adaptations to make gem5 compile and run on OSX 10.7.2, with a stock
gcc 4.2.1 and the remaining dependencies from macports, i.e. python
2.7,.2 swig 2.0.4, mercurial 2.0. The changes include an adaptation of
the SConstruct to handle non-library linker flags, and Darwin-specific
code to find the memory usage of gem5. A number of Ruby files relied
on ambigious uint (without the 32 suffix) which caused compilation
errors.
/gem5/src/arch/x86/
H A Dpagetable_walker.hhdiff 9294:8fb03b13de02 Mon Oct 15 08:12:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Port: Add protocol-agnostic ports in the port hierarchy

This patch adds an additional level of ports in the inheritance
hierarchy, separating out the protocol-specific and protocl-agnostic
parts. All the functionality related to the binding of ports is now
confined to use BaseMaster/BaseSlavePorts, and all the
protocol-specific parts stay in the Master/SlavePort. In the future it
will be possible to add other protocol-specific implementations.

The functions used in the binding of ports, i.e. getMaster/SlavePort
now use the base classes, and the index parameter is updated to use
the PortID typedef with the symbolic InvalidPortID as the default.
diff 9044:904ddeecc653 Tue Jun 05 01:23:00 EDT 2012 Ali Saidi <Ali.Saidi@ARM.com> sim: Remove FastAlloc

While FastAlloc provides a small performance increase (~1.5%) over regular malloc it isn't thread safe.
After removing FastAlloc and using tcmalloc I've seen a performance increase of 12% over libc malloc
when running twolf for ARM.
diff 8975:7f36d4436074 Tue May 01 13:40:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Separate requests and responses for timing accesses

This patch moves send/recvTiming and send/recvTimingSnoop from the
Port base class to the MasterPort and SlavePort, and also splits them
into separate member functions for requests and responses:
send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq,
send/recvTimingSnoopResp. A master port sends requests and receives
responses, and also receives snoop requests and sends snoop
responses. A slave port has the reciprocal behaviour as it receives
requests and sends responses, and sends snoop requests and receives
snoop responses.

For all MemObjects that have only master ports or slave ports (but not
both), e.g. a CPU, or a PIO device, this patch merely adds more
clarity to what kind of access is taking place. For example, a CPU
port used to call sendTiming, and will now call
sendTimingReq. Similarly, a response previously came back through
recvTiming, which is now recvTimingResp. For the modules that have
both master and slave ports, e.g. the bus, the behaviour was
previously relying on branches based on pkt->isRequest(), and this is
now replaced with a direct call to the apprioriate member function
depending on the type of access. Please note that send/recvRetry is
still shared by all the timing accessors and remains in the Port base
class for now (to maintain the current bus functionality and avoid
changing the statistics of all regressions).

The packet queue is split into a MasterPort and SlavePort version to
facilitate the use of the new timing accessors. All uses of the
PacketQueue are updated accordingly.

With this patch, the type of packet (request or response) is now well
defined for each type of access, and asserts on pkt->isRequest() and
pkt->isResponse() are now moved to the appropriate send member
functions. It is also worth noting that sendTimingSnoopReq no longer
returns a boolean, as the semantics do not alow snoop requests to be
rejected or stalled. All these assumptions are now excplicitly part of
the port interface itself.
diff 8953:488d45aeb672 Sun Apr 15 02:24:00 EDT 2012 Gabe Black <gblack@eecs.umich.edu> X86: Use the AddrTrie class to implement the TLB.

This change also adjusts the TlbEntry class so that it stores the number of
address bits wide a page is rather than its size in bytes. In other words,
instead of storing 4K for a 4K page, it stores 12. 12 is easy to turn into 4K,
but it's a little harder going the other way.
diff 8948:e95ee70f876c Sat Apr 14 05:45:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Separate snoops and normal memory requests/responses

This patch introduces port access methods that separates snoop
request/responses from normal memory request/responses. The
differentiation is made for functional, atomic and timing accesses and
builds on the introduction of master and slave ports.

Before the introduction of this patch, the packets belonging to the
different phases of the protocol (request -> [forwarded snoop request
-> snoop response]* -> response) all use the same port access
functions, even though the snoop packets flow in the opposite
direction to the normal packet. That is, a coherent master sends
normal request and receives responses, but receives snoop requests and
sends snoop responses (vice versa for the slave). These two distinct
phases now use different access functions, as described below.

Starting with the functional access, a master sends a request to a
slave through sendFunctional, and the request packet is turned into a
response before the call returns. In a system without cache coherence,
this is all that is needed from the functional interface. For the
cache-coherent scenario, a slave also sends snoop requests to coherent
masters through sendFunctionalSnoop, with responses returned within
the same packet pointer. This is currently used by the bus and caches,
and the LSQ of the O3 CPU. The send/recvFunctional and
send/recvFunctionalSnoop are moved from the Port super class to the
appropriate subclass.

Atomic accesses follow the same flow as functional accesses, with
request being sent from master to slave through sendAtomic. In the
case of cache-coherent ports, a slave can send snoop requests to a
master through sendAtomicSnoop. Just as for the functional access
methods, the atomic send and receive member functions are moved to the
appropriate subclasses.

The timing access methods are different from the functional and atomic
in that requests and responses are separated in time and
send/recvTiming are used for both directions. Hence, a master uses
sendTiming to send a request to a slave, and a slave uses sendTiming
to send a response back to a master, at a later point in time. Snoop
requests and responses travel in the opposite direction, similar to
what happens in functional and atomic accesses. With the introduction
of this patch, it is possible to determine the direction of packets in
the bus, and no longer necessary to look for both a master and a slave
port with the requested port id.

In contrast to the normal recvFunctional, recvAtomic and recvTiming
that are pure virtual functions, the recvFunctionalSnoop,
recvAtomicSnoop and recvTimingSnoop have a default implementation that
calls panic. This is to allow non-coherent master and slave ports to
not implement these functions.
diff 8922:17f037ad8918 Fri Mar 30 09:40:00 EDT 2012 William Wang <william.wang@arm.com> MEM: Introduce the master/slave port sub-classes in C++

This patch introduces the notion of a master and slave port in the C++
code, thus bringing the previous classification from the Python
classes into the corresponding simulation objects and memory objects.

The patch enables us to classify behaviours into the two bins and add
assumptions and enfore compliance, also simplifying the two
interfaces. As a starting point, isSnooping is confined to a master
port, and getAddrRanges to slave ports. More of these specilisations
are to come in later patches.

The getPort function is not getMasterPort and getSlavePort, and
returns a port reference rather than a pointer as NULL would never be
a valid return value. The default implementation of these two
functions is placed in MemObject, and calls fatal.

The one drawback with this specific patch is that it requires some
code duplication, e.g. QueuedPort becomes QueuedMasterPort and
QueuedSlavePort, and BusPort becomes BusMasterPort and BusSlavePort
(avoiding multiple inheritance). With the later introduction of the
port interfaces, moving the functionality outside the port itself, a
lot of the duplicated code will disappear again.
diff 8864:fe907afe14a3 Thu Mar 01 12:37:00 EST 2012 Nilay Vaish <nilay@cs.wisc.edu> x86: Fix x86 TLB and Walker
This patch adds a function to X86 tlb that returns the
walker port. This port is required for correctly connecting
the walker ports for the cpu just switched in
diff 8832:247fee427324 Sun Feb 12 17:07:00 EST 2012 Ali Saidi <Ali.Saidi@ARM.com> mem: Add a master ID to each request object.

This change adds a master id to each request object which can be
used identify every device in the system that is capable of issuing a request.
This is part of the way to removing the numCpus+1 stats in the cache and
replacing them with the master ids. This is one of a series of changes
that make way for the stats output to be changed to python.
diff 8711:c7e14f52c682 Tue Jan 17 01:55:00 EST 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Separate queries for snooping and address ranges

This patch simplifies the address-range determination mechanism and
also unifies the naming across ports and devices. It further splits
the queries for determining if a port is snooping and what address
ranges it responds to (aiming towards a separation of
cache-maintenance ports and pure memory-mapped ports). Default
behaviours are such that most ports do not have to define isSnooping,
and master ports need not implement getAddrRanges.
H A Dpagetable.ccdiff 9111:f133ba654050 Wed Jul 11 01:51:00 EDT 2012 Brad Beckmann <Brad.Beckmann@amd.com> x86: logSize and lruSeq are now optional ckpt params
diff 8953:488d45aeb672 Sun Apr 15 02:24:00 EDT 2012 Gabe Black <gblack@eecs.umich.edu> X86: Use the AddrTrie class to implement the TLB.

This change also adjusts the TlbEntry class so that it stores the number of
address bits wide a page is rather than its size in bytes. In other words,
instead of storing 4K for a 4K page, it stores 12. 12 is easy to turn into 4K,
but it's a little harder going the other way.
H A Dintmessage.hhdiff 8949:3fa1ee293096 Sat Apr 14 05:45:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Remove the Broadcast destination from the packet

This patch simplifies the packet by removing the broadcast flag and
instead more firmly relying on (and enforcing) the semantics of
transactions in the classic memory system, i.e. request packets are
routed from a master to a slave based on the address, and when they
are created they have neither a valid source, nor destination. On
their way to the slave, the request packet is updated with a source
field for all modules that multiplex packets from multiple master
(e.g. a bus). When a request packet is turned into a response packet
(at the final slave), it moves the potentially populated source field
to the destination field, and the response packet is routed through
any multiplexing components back to the master based on the
destination field.

Modules that connect multiplexing components, such as caches and
bridges store any existing source and destination field in the sender
state as a stack (just as before).

The packet constructor is simplified in that there is no longer a need
to pass the Packet::Broadcast as the destination (this was always the
case for the classic memory system). In the case of Ruby, rather than
using the parameter to the constructor we now rely on setDest, as
there is already another three-argument constructor in the packet
class.

In many places where the packet information was printed as part of
DPRINTFs, request packets would be printed with a numeric "dest" that
would always be -1 (Broadcast) and that field is now removed from the
printing.
diff 8832:247fee427324 Sun Feb 12 17:07:00 EST 2012 Ali Saidi <Ali.Saidi@ARM.com> mem: Add a master ID to each request object.

This change adds a master id to each request object which can be
used identify every device in the system that is capable of issuing a request.
This is part of the way to removing the numCpus+1 stats in the cache and
replacing them with the master ids. This is one of a series of changes
that make way for the stats output to be changed to python.
/gem5/src/mem/
H A DSConscriptdiff 9363:e2616dc035ce Tue Dec 11 11:05:00 EST 2012 Nilay Vaish <nilay@cs.wisc.edu> ruby: add a prefetcher
This patch adds a prefetcher for the ruby memory system. The prefetcher
is based on a prefetcher implemented by others (well, I don't know
who wrote the original). The prefetcher does stride-based prefetching,
both unit and non-unit. It obseves the misses in the cache and trains on
these. After the training period is over, the prefetcher starts issuing
prefetch requests to the controller.
diff 9259:fc28f3ca5b21 Tue Sep 25 12:49:00 EDT 2012 Ali Saidi <Ali.Saidi@ARM.com> mem: Add a gasket that allows memory ranges to be re-mapped.

For example if DRAM is at two locations and mirrored this patch allows the
mirroring to occur.
diff 9243:9b6ff962d62f Fri Sep 21 11:48:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> DRAM: Introduce SimpleDRAM to capture a high-level controller

This patch introduces a high-level model of a DRAM controller, with a
basic read/write buffer structure, a selectable and customisable
arbiter, a few address mapping options, and the basic DRAM timing
constraints. The parameters make it possible to turn this model into
any desired DDRx/LPDDRx/WideIOx memory controller.

The intention is not to be cycle accurate or capture every aspect of a
DDR DRAM interface, but rather to enable exploring of the high-level
knobs with a good simulation speed. Thus, contrary to e.g. DRAMSim
this module emphasizes simulation speed with a good-enough accuracy.

This module is merely a starting point, and there are plenty additions
and improvements to come. A notable addition is the support for
address-striping in the bus to enable a multi-channel DRAM
controller. Also note that there are still a few "todo's" in the code
base that will be addressed as we go along.

A follow-up patch will add basic performance regressions that use the
traffic generator to exercise a few well-defined corner cases.
diff 9164:d112473185ea Wed Aug 22 11:39:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Bridge: Remove NACKs in the bridge and unify with packet queue

This patch removes the NACKing in the bridge, as the split
request/response busses now ensure that protocol deadlocks do not
occur, i.e. the message-dependency chain is broken by always allowing
responses to make progress without being stalled by requests. The
NACKs had limited support in the system with most components ignoring
their use (with a suitable call to panic), and as the NACKs are no
longer needed to avoid protocol deadlocks, the cleanest way is to
simply remove them.

The bridge is the starting point as this is the only place where the
NACKs are created. A follow-up patch will remove the code that deals
with NACKs in the endpoints, e.g. the X86 table walker and DMA
port. Ultimately the type of packet can be complete removed (until
someone sees a need for modelling more complex protocols, which can
now be done in parts of the system since the port and interface is
split).

As a consequence of the NACK removal, the bridge now has to send a
retry to a master if the request or response queue was full on the
first attempt. This change also makes the bridge ports very similar to
QueuedPorts, and a later patch will change the bridge to use these. A
first step in this direction is taken by aligning the name of the
member functions, as done by this patch.

A bit of tidying up has also been done as part of the simplifications.

Surprisingly, this patch has no impact on any of the
regressions. Hence, there was never any NACKs issued. In a follow-up
patch I would suggest changing the size of the bridge buffers set in
FSConfig.py to also test the situation where the bridge fills up.
diff 9105:b576c490e7d1 Wed Jul 11 01:51:00 EDT 2012 Brad Beckmann <Brad.Beckmann@amd.com> ruby: banked cache array resource model

This patch models a cache as separate tag and data arrays. The patch exposes
the banked array as another resource that is checked by SLICC before a
transition is allowed to execute. This is similar to how TBE entries and slots
in output ports are modeled.
diff 9104:27d56b644e78 Wed Jul 11 01:51:00 EDT 2012 Joel Hestness <hestness@cs.utexas.edu> ruby: tag and data cache access support

Updates to Ruby to support statistics counting of cache accesses. This feature
serves multiple purposes beyond simple stats collection. It provides the
foundation for ruby to model the cache tag and data arrays as physical
resources, as well as provide the necessary input data for McPAT power
modeling.
diff 9036:6385cf85bf12 Thu May 31 13:30:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Bus: Split the bus into a non-coherent and coherent bus

This patch introduces a class hierarchy of buses, a non-coherent one,
and a coherent one, splitting the existing bus functionality. By doing
so it also enables further specialisation of the two types of buses.

A non-coherent bus connects a number of non-snooping masters and
slaves, and routes the request and response packets based on the
address. The request packets issued by the master connected to a
non-coherent bus could still snoop in caches attached to a coherent
bus, as is the case with the I/O bus and memory bus in most system
configurations. No snoops will, however, reach any master on the
non-coherent bus itself. The non-coherent bus can be used as a
template for modelling PCI, PCIe, and non-coherent AMBA and OCP buses,
and is typically used for the I/O buses.

A coherent bus connects a number of (potentially) snooping masters and
slaves, and routes the request and response packets based on the
address, and also forwards all requests to the snoopers and deals with
the snoop responses. The coherent bus can be used as a template for
modelling QPI, HyperTransport, ACE and coherent OCP buses, and is
typically used for the L1-to-L2 buses and as the main system
interconnect.

The configuration scripts are updated to use a NoncoherentBus for all
peripheral and I/O buses.

A bit of minor tidying up has also been done.
diff 8981:6f4ec692716f Wed May 09 04:37:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Add the communication monitor

This patch adds a communication monitor MemObject that can be inserted
between a master and slave port to provide a range of statistics about
the communication passing through it. The communication monitor is
non-invasive and does not change any properties or timing of the
packets, with the exception of adding a sender state to be able to
track latency. The statistics are only collected in timing mode (not
atomic) to avoid slowing down any fast forwarding.

An example of the statistics captured by the monitor are: read/write
burst lengths, bandwidth, request-response latency, outstanding
transactions, inter transaction time, transaction count, and address
distribution. The monitor can be used in combination with periodic
resetting and dumping of stats (through schedStatEvent) to study the
behaviour over time.

In future patches, a selection of convenience scripts will be added to
aid in visualising the statistics collected by the monitor.
diff 8931:7a1dfb191e3f Fri Apr 06 13:46:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Enable multiple distributed generalized memories

This patch removes the assumption on having on single instance of
PhysicalMemory, and enables a distributed memory where the individual
memories in the system are each responsible for a single contiguous
address range.

All memories inherit from an AbstractMemory that encompasses the basic
behaviuor of a random access memory, and provides untimed access
methods. What was previously called PhysicalMemory is now
SimpleMemory, and a subclass of AbstractMemory. All future types of
memory controllers should inherit from AbstractMemory.

To enable e.g. the atomic CPU and RubyPort to access the now
distributed memory, the system has a wrapper class, called
PhysicalMemory that is aware of all the memories in the system and
their associated address ranges. This class thus acts as an
infinitely-fast bus and performs address decoding for these "shortcut"
accesses. Each memory can specify that it should not be part of the
global address map (used e.g. by the functional memories by some
testers). Moreover, each memory can be configured to be reported to
the OS configuration table, useful for populating ATAG structures, and
any potential ACPI tables.

Checkpointing support currently assumes that all memories have the
same size and organisation when creating and resuming from the
checkpoint. A future patch will enable a more flexible
re-organisation.
diff 8924:5f6cfd09fdaf Fri Mar 30 00:57:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Remove legacy DRAM in preparation for memory updates

This patch removes the DRAM memory class in preparation for updates to
the memory system, with the first one introducing an abstract memory
class, and removing the assumption of a single physical memory.
/gem5/src/mem/ruby/system/
H A DRubyPort.hhdiff 9342:6fec8f26e56d Fri Nov 02 12:32:00 EDT 2012 Andreas Sandberg <Andreas.Sandberg@arm.com> sim: Move the draining interface into a separate base class

This patch moves the draining interface from SimObject to a separate
class that can be used by any object needing draining. However,
objects not visible to the Python code (i.e., objects not deriving
from SimObject) still depend on their parents informing them when to
drain. This patch also gets rid of the CountedDrainEvent (which isn't
really an event) and replaces it with a DrainManager.
diff 9294:8fb03b13de02 Mon Oct 15 08:12:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Port: Add protocol-agnostic ports in the port hierarchy

This patch adds an additional level of ports in the inheritance
hierarchy, separating out the protocol-specific and protocl-agnostic
parts. All the functionality related to the binding of ports is now
confined to use BaseMaster/BaseSlavePorts, and all the
protocol-specific parts stay in the Master/SlavePort. In the future it
will be possible to add other protocol-specific implementations.

The functions used in the binding of ports, i.e. getMaster/SlavePort
now use the base classes, and the index parameter is updated to use
the PortID typedef with the symbolic InvalidPortID as the default.
diff 9270:92aad0e984ff Tue Oct 02 15:35:00 EDT 2012 Nilay Vaish <nilay@cs.wisc.edu> ruby: move functional access to ruby system
This patch moves the code for functional accesses to ruby system. This is
because the subsequent patches add support for making functional accesses
to the messages in the interconnect. Making those accesses from the ruby port
would be cumbersome.
diff 9245:e215ee9db617 Sun Sep 23 14:57:00 EDT 2012 Joel Hestness <hestness@cs.wisc.edu> RubyPort and Sequencer: Fix draining

Fix the drain functionality of the RubyPort to only call drain on child ports
during a system-wide drain process, instead of calling each time that a
ruby_hit_callback is executed.

This fixes the issue of the RubyPort ports being reawakened during the drain
simulation, possibly with work they didn't previously have to complete. If
they have new work, they may call process on the drain event that they had
not registered work for, causing an assertion failure when completing the
drain event.

Also, in RubyPort, set the drainEvent to NULL when there are no events
to be drained. If not set to NULL, the drain loop can result in stale
drainEvents used.
diff 9163:3b5e13ac1940 Wed Aug 22 11:39:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Port: Extend the QueuedPort interface and use where appropriate

This patch extends the queued port interfaces with methods for
scheduling the transmission of a timing request/response. The methods
are named similar to the corresponding sendTiming(Snoop)Req/Resp,
replacing the "send" with "sched". As the queues are currently
unbounded, the methods always succeed and hence do not return a value.

This functionality was previously provided in the subclasses by
calling PacketQueue::schedSendTiming with the appropriate
parameters. With this change, there is no need to introduce these
extra methods in the subclasses, and the use of the queued interface
is more uniform and explicit.
diff 9090:e4e22240398f Mon Jul 09 00:35:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Port: Make getAddrRanges const

This patch makes getAddrRanges const throughout the code base. There
is no reason why it should not be, and making it const prevents adding
any unintentional side-effects.
diff 8975:7f36d4436074 Tue May 01 13:40:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Separate requests and responses for timing accesses

This patch moves send/recvTiming and send/recvTimingSnoop from the
Port base class to the MasterPort and SlavePort, and also splits them
into separate member functions for requests and responses:
send/recvTimingReq, send/recvTimingResp, and send/recvTimingSnoopReq,
send/recvTimingSnoopResp. A master port sends requests and receives
responses, and also receives snoop requests and sends snoop
responses. A slave port has the reciprocal behaviour as it receives
requests and sends responses, and sends snoop requests and receives
snoop responses.

For all MemObjects that have only master ports or slave ports (but not
both), e.g. a CPU, or a PIO device, this patch merely adds more
clarity to what kind of access is taking place. For example, a CPU
port used to call sendTiming, and will now call
sendTimingReq. Similarly, a response previously came back through
recvTiming, which is now recvTimingResp. For the modules that have
both master and slave ports, e.g. the bus, the behaviour was
previously relying on branches based on pkt->isRequest(), and this is
now replaced with a direct call to the apprioriate member function
depending on the type of access. Please note that send/recvRetry is
still shared by all the timing accessors and remains in the Port base
class for now (to maintain the current bus functionality and avoid
changing the statistics of all regressions).

The packet queue is split into a MasterPort and SlavePort version to
facilitate the use of the new timing accessors. All uses of the
PacketQueue are updated accordingly.

With this patch, the type of packet (request or response) is now well
defined for each type of access, and asserts on pkt->isRequest() and
pkt->isResponse() are now moved to the appropriate send member
functions. It is also worth noting that sendTimingSnoopReq no longer
returns a boolean, as the semantics do not alow snoop requests to be
rejected or stalled. All these assumptions are now excplicitly part of
the port interface itself.
diff 8948:e95ee70f876c Sat Apr 14 05:45:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Separate snoops and normal memory requests/responses

This patch introduces port access methods that separates snoop
request/responses from normal memory request/responses. The
differentiation is made for functional, atomic and timing accesses and
builds on the introduction of master and slave ports.

Before the introduction of this patch, the packets belonging to the
different phases of the protocol (request -> [forwarded snoop request
-> snoop response]* -> response) all use the same port access
functions, even though the snoop packets flow in the opposite
direction to the normal packet. That is, a coherent master sends
normal request and receives responses, but receives snoop requests and
sends snoop responses (vice versa for the slave). These two distinct
phases now use different access functions, as described below.

Starting with the functional access, a master sends a request to a
slave through sendFunctional, and the request packet is turned into a
response before the call returns. In a system without cache coherence,
this is all that is needed from the functional interface. For the
cache-coherent scenario, a slave also sends snoop requests to coherent
masters through sendFunctionalSnoop, with responses returned within
the same packet pointer. This is currently used by the bus and caches,
and the LSQ of the O3 CPU. The send/recvFunctional and
send/recvFunctionalSnoop are moved from the Port super class to the
appropriate subclass.

Atomic accesses follow the same flow as functional accesses, with
request being sent from master to slave through sendAtomic. In the
case of cache-coherent ports, a slave can send snoop requests to a
master through sendAtomicSnoop. Just as for the functional access
methods, the atomic send and receive member functions are moved to the
appropriate subclasses.

The timing access methods are different from the functional and atomic
in that requests and responses are separated in time and
send/recvTiming are used for both directions. Hence, a master uses
sendTiming to send a request to a slave, and a slave uses sendTiming
to send a response back to a master, at a later point in time. Snoop
requests and responses travel in the opposite direction, similar to
what happens in functional and atomic accesses. With the introduction
of this patch, it is possible to determine the direction of packets in
the bus, and no longer necessary to look for both a master and a slave
port with the requested port id.

In contrast to the normal recvFunctional, recvAtomic and recvTiming
that are pure virtual functions, the recvFunctionalSnoop,
recvAtomicSnoop and recvTimingSnoop have a default implementation that
calls panic. This is to allow non-coherent master and slave ports to
not implement these functions.
diff 8923:820111f58fbb Fri Mar 30 09:42:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Ruby: Remove the physMemPort and instead access memory directly

This patch removes the physMemPort from the RubySequencer and instead
uses the system pointer to access the physmem. The system already
keeps track of the physmem and the valid memory address ranges, and
with this patch we merely make use of that existing functionality. The
memory is modified so that it is possible to call the access functions
(atomic and functional) without going through the port, and the memory
is allowed to be unconnected, i.e. have no ports (since Ruby does not
attach it like the conventional memory system).
diff 8922:17f037ad8918 Fri Mar 30 09:40:00 EDT 2012 William Wang <william.wang@arm.com> MEM: Introduce the master/slave port sub-classes in C++

This patch introduces the notion of a master and slave port in the C++
code, thus bringing the previous classification from the Python
classes into the corresponding simulation objects and memory objects.

The patch enables us to classify behaviours into the two bins and add
assumptions and enfore compliance, also simplifying the two
interfaces. As a starting point, isSnooping is confined to a master
port, and getAddrRanges to slave ports. More of these specilisations
are to come in later patches.

The getPort function is not getMasterPort and getSlavePort, and
returns a port reference rather than a pointer as NULL would never be
a valid return value. The default implementation of these two
functions is placed in MemObject, and calls fatal.

The one drawback with this specific patch is that it requires some
code duplication, e.g. QueuedPort becomes QueuedMasterPort and
QueuedSlavePort, and BusPort becomes BusMasterPort and BusSlavePort
(avoiding multiple inheritance). With the later introduction of the
port interfaces, moving the functionality outside the port itself, a
lot of the duplicated code will disappear again.
/gem5/src/mem/ruby/common/
H A DDataBlock.ccdiff 9208:2451e60d4555 Tue Sep 11 10:23:00 EDT 2012 Nilay Vaish <nilay@cs.wisc.edu> Ruby: Use uint8_t instead of uint8 everywhere
diff 9181:42807286d6cb Tue Aug 28 18:57:00 EDT 2012 Jason Power <power.jg@gmail.com> Ruby: Correct DataBlock =operator
The =operator for the DataBlock class was incorrectly interpreting the class
member m_alloc. This variable stands for whether the assigned memory for the
data block needs to be freed or not by the class itself. It seems that the
=operator interpreted the variable as whether the memory is assigned to the
data block. This wrong interpretation was causing values not to propagate
to RubySystem::m_mem_vec_ptr. This caused major issues with restoring from
checkpoints when using a protocol which verified that the cache data was
consistent with the backing store (i.e. MOESI-hammer).
/gem5/src/arch/mips/
H A Dsystem.ccdiff 9292:e57c7d9736a5 Mon Oct 15 08:12:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Checkpoint: Make system serialize call children

This patch changes how the serialization of the system works. The base
class had a non-virtual serialize and unserialize, that was hidden by
a function with the same name for a number of subclasses (most likely
not intentional as the base class should have been virtual). A few of
the derived systems had no specialization at all (e.g. Power and x86
that simply called the System::serialize), but MIPS and Alpha adds
additional symbol table entries to the checkpoint.

Instead of overriding the virtual function, the additional entries are
now printed through a virtual function (un)serializeSymtab. The reason
for not calling System::serialize from the two related systems is that
a follow up patch will require the system to also serialize the
PhysicalMemory, and if this is done in the base class if ends up being
between the general parts and the specialized symbol table.

With this patch, the checkpoint is not modified, as the order of the
segments is unchanged.
diff 8799:dac1e33e07b0 Sat Jan 28 10:24:00 EST 2012 Gabe Black <gblack@eecs.umich.edu> Merge with the main repo.
/gem5/src/cpu/testers/rubytest/
H A DCheckTable.ccdiff 9108:ad76a669e9d9 Wed Jul 11 01:51:00 EDT 2012 Brad Beckmann <Brad.Beckmann@amd.com> ruby: remove the cpu assumptions for the random tester
diff 8932:1b2c17565ac8 Fri Apr 06 16:47:00 EDT 2012 Brad Beckmann <Brad.Beckmann@amd.com> rubytest: seperated read and write ports.

This patch allows the ruby tester to support protocols where the i-cache and d-cache
are managed by seperate controllers.
/gem5/src/kern/solaris/
H A Dsolaris.hhdiff 8808:8af87554ad7e Tue Jan 31 00:07:00 EST 2012 Gabe Black <gblack@eecs.umich.edu> Merge with main repository.
diff 8730:0a742249f76b Mon Jan 30 03:44:00 EST 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Clean-up of Functional/Virtual/TranslatingPort remnants

This patch cleans up forward declarations and a member-function
prototype that still referred to the old FunctionalPort, VirtualPort
and TranslatingPort. There is no change in functionality.
/gem5/src/dev/arm/
H A Drtc_pl031.hhdiff 9235:5aa4896ed55a Wed Sep 19 06:15:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> AddrRange: Transition from Range<T> to AddrRange

This patch takes the final plunge and transitions from the templated
Range class to the more specific AddrRange. In doing so it changes the
obvious Range<Addr> to AddrRange, and also bumps the range_map to be
AddrRangeMap.

In addition to the obvious changes, including the removal of redundant
includes, this patch also does some house keeping in preparing for the
introduction of address interleaving support in the ranges. The Range
class is also stripped of all the functionality that is never used.
8869:fa8dcdd7e26c Thu Mar 01 18:26:00 EST 2012 Ali Saidi <Ali.Saidi@ARM.com> ARM: Add RTC device for ARM platforms.

This change implements a PL031 real time clock.
H A Dpl111.hhdiff 9525:0587c8983d47 Thu Oct 25 09:05:00 EDT 2012 Andreas Sandberg <Andreas.Sandberg@ARM.com> arm: Create a GIC base class and make the PL390 derive from it

This patch moves the GIC interface to a separate base class and makes
all interrupt devices use that base class instead of a pointer to the
PL390 implementation. This allows us to have multiple GIC
implementations. Future implementations will allow in-kernel GIC
implementations when using hardware virtualization.
diff 9330:4a3269a11230 Fri Nov 02 12:32:00 EDT 2012 Chander Sudanthi <chander.sudanthi@arm.com> base: split out the VncServer into a VncInput and Server classes

This patch adds a VncInput base class which VncServer inherits from.
Another class can implement the same interface and be used instead
of the VncServer, for example a class that replays Vnc traffic.
diff 9235:5aa4896ed55a Wed Sep 19 06:15:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> AddrRange: Transition from Range<T> to AddrRange

This patch takes the final plunge and transitions from the templated
Range class to the more specific AddrRange. In doing so it changes the
obvious Range<Addr> to AddrRange, and also bumps the range_map to be
AddrRangeMap.

In addition to the obvious changes, including the removal of redundant
includes, this patch also does some house keeping in preparing for the
introduction of address interleaving support in the ranges. The Range
class is also stripped of all the functionality that is never used.
diff 9157:e0bad9d7bbd6 Tue Aug 21 05:49:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Clock: Move the clock and related functions to ClockedObject

This patch moves the clock of the CPU, bus, and numerous devices to
the new class ClockedObject, that sits in between the SimObject and
MemObject in the class hierarchy. Although there are currently a fair
amount of MemObjects that do not make use of the clock, they
potentially should do so, e.g. the caches should at some point have
the same clock as the CPU, potentially with a 1:n ratio. This patch
does not introduce any new clock objects or object hierarchies
(clusters, clock domains etc), but is still a step in the direction of
having a more structured approach clock domains.

The most contentious part of this patch is the serialisation of clocks
that some of the modules (but not all) did previously. This
serialisation should not be needed as the clock is set through the
parameters even when restoring from the checkpoint. In other words,
the state is "stored" in the Python code that creates the modules.

The nextCycle methods are also simplified and the clock phase
parameter of the CPU is removed (this could be part of a clock object
once they are introduced).
diff 9090:e4e22240398f Mon Jul 09 00:35:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Port: Make getAddrRanges const

This patch makes getAddrRanges const throughout the code base. There
is no reason why it should not be, and making it const prevents adding
any unintentional side-effects.
diff 9086:496304c8017d Mon Jul 09 00:35:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Fix: Address a few benign memory leaks

This patch is the result of static analysis identifying a number of
memory leaks. The leaks are all benign as they are a result of not
deallocating memory in the desctructor. The fix still has value as it
removes false positives in the static analysis.
diff 8737:770ccf3af571 Tue Jan 31 00:05:00 EST 2012 Koan-Sin Tan <koansin.tan@gmail.com> clang: Enable compiling gem5 using clang 2.9 and 3.0

This patch adds the necessary flags to the SConstruct and SConscript
files for compiling using clang 2.9 and later (on Ubuntu et al and OSX
XCode 4.2), and also cleans up a bunch of compiler warnings found by
clang. Most of the warnings are related to hidden virtual functions,
comparisons with unsigneds >= 0, and if-statements with empty
bodies. A number of mismatches between struct and class are also
fixed. clang 2.8 is not working as it has problems with class names
that occur in multiple namespaces (e.g. Statistics in
kernel_stats.hh).

clang has a bug (http://llvm.org/bugs/show_bug.cgi?id=7247) which
causes confusion between the container std::set and the function
Packet::set, and this is currently addressed by not including the
entire namespace std, but rather selecting e.g. "using std::vector" in
the appropriate places.
diff 8711:c7e14f52c682 Tue Jan 17 01:55:00 EST 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Separate queries for snooping and address ranges

This patch simplifies the address-range determination mechanism and
also unifies the naming across ports and devices. It further splits
the queries for determining if a port is snooping and what address
ranges it responds to (aiming towards a separation of
cache-maintenance ports and pure memory-mapped ports). Default
behaviours are such that most ports do not have to define isSnooping,
and master ports need not implement getAddrRanges.
/gem5/util/m5/
H A Dm5op_arm.Sdiff 8987:a5add07e066c Thu May 10 19:04:00 EDT 2012 Ali Saidi <Ali.Saidi@ARM.com> ARM: Update m5op assembly for thumb compilation.
diff 8734:79592b2b1d55 Tue Jan 31 10:46:00 EST 2012 Dam Sunwoo <dam.sunwoo@arm.com> util: implements "writefile" gem5 op to export file from guest to host filesystem

Usage: m5 writefile <filename>

File will be created in the gem5 output folder with the identical filename.
Implementation is largely based on the existing "readfile" functionality.
Currently does not support exporting of folders.
/gem5/configs/topologies/
H A DPt2Pt.pydiff 9148:a7a72f42919e Fri Aug 10 14:50:00 EDT 2012 Jason Power <powerjg@cs.wisc.edu> Ruby: Clean up topology changes
This patch moves instantiateTopology into Ruby.py and removes the
mem/ruby/network/topologies directory. It also adds some extra inheritance to
the topologies to clean up some issues in the existing topologies.
9100:3caf131d7a95 Wed Jul 11 01:51:00 EDT 2012 Brad Beckmann <Brad.Beckmann@amd.com> ruby: changes how Topologies are created

Instead of just passing a list of controllers to the makeTopology function
in src/mem/ruby/network/topologies/<Topo>.py we pass in a function pointer
which knows how to make the topology, possibly with some extra state set
in the configs/ruby/<protocol>.py file. Thus, we can move all of the files
from network/topologies to configs/topologies. A new class BaseTopology
is added which all topologies in configs/topologies must inheirit from and
follow its API.
/gem5/src/arch/sparc/
H A DSparcSystem.pydiff 9338:97b4a2be1e5b Fri Nov 02 12:32:00 EDT 2012 Andreas Sandberg <Andreas.Sandberg@arm.com> sim: Include object header files in SWIG interfaces

When casting objects in the generated SWIG interfaces, SWIG uses
classical C-style casts ( (Foo *)bar; ). In some cases, this can
degenerate into the equivalent of a reinterpret_cast (mainly if only a
forward declaration of the type is available). This usually works for
most compilers, but it is known to break if multiple inheritance is
used anywhere in the object hierarchy.

This patch introduces the cxx_header attribute to Python SimObject
definitions, which should be used to specify a header to include in
the SWIG interface. The header should include the declaration of the
wrapped object. We currently don't enforce header the use of the
header attribute, but a warning will be generated for objects that do
not use it.
diff 8931:7a1dfb191e3f Fri Apr 06 13:46:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> MEM: Enable multiple distributed generalized memories

This patch removes the assumption on having on single instance of
PhysicalMemory, and enables a distributed memory where the individual
memories in the system are each responsible for a single contiguous
address range.

All memories inherit from an AbstractMemory that encompasses the basic
behaviuor of a random access memory, and provides untimed access
methods. What was previously called PhysicalMemory is now
SimpleMemory, and a subclass of AbstractMemory. All future types of
memory controllers should inherit from AbstractMemory.

To enable e.g. the atomic CPU and RubyPort to access the now
distributed memory, the system has a wrapper class, called
PhysicalMemory that is aware of all the memories in the system and
their associated address ranges. This class thus acts as an
infinitely-fast bus and performs address decoding for these "shortcut"
accesses. Each memory can specify that it should not be part of the
global address map (used e.g. by the functional memories by some
testers). Moreover, each memory can be configured to be reported to
the OS configuration table, useful for populating ATAG structures, and
any potential ACPI tables.

Checkpointing support currently assumes that all memories have the
same size and organisation when creating and resuming from the
checkpoint. A future patch will enable a more flexible
re-organisation.
/gem5/src/base/vnc/
H A DVnc.pydiff 9338:97b4a2be1e5b Fri Nov 02 12:32:00 EDT 2012 Andreas Sandberg <Andreas.Sandberg@arm.com> sim: Include object header files in SWIG interfaces

When casting objects in the generated SWIG interfaces, SWIG uses
classical C-style casts ( (Foo *)bar; ). In some cases, this can
degenerate into the equivalent of a reinterpret_cast (mainly if only a
forward declaration of the type is available). This usually works for
most compilers, but it is known to break if multiple inheritance is
used anywhere in the object hierarchy.

This patch introduces the cxx_header attribute to Python SimObject
definitions, which should be used to specify a header to include in
the SWIG interface. The header should include the declaration of the
wrapped object. We currently don't enforce header the use of the
header attribute, but a warning will be generated for objects that do
not use it.
9330:4a3269a11230 Fri Nov 02 12:32:00 EDT 2012 Chander Sudanthi <chander.sudanthi@arm.com> base: split out the VncServer into a VncInput and Server classes

This patch adds a VncInput base class which VncServer inherits from.
Another class can implement the same interface and be used instead
of the VncServer, for example a class that replays Vnc traffic.
/gem5/src/cpu/testers/traffic_gen/
H A DTrafficGen.pydiff 9338:97b4a2be1e5b Fri Nov 02 12:32:00 EDT 2012 Andreas Sandberg <Andreas.Sandberg@arm.com> sim: Include object header files in SWIG interfaces

When casting objects in the generated SWIG interfaces, SWIG uses
classical C-style casts ( (Foo *)bar; ). In some cases, this can
degenerate into the equivalent of a reinterpret_cast (mainly if only a
forward declaration of the type is available). This usually works for
most compilers, but it is known to break if multiple inheritance is
used anywhere in the object hierarchy.

This patch introduces the cxx_header attribute to Python SimObject
definitions, which should be used to specify a header to include in
the SWIG interface. The header should include the declaration of the
wrapped object. We currently don't enforce header the use of the
header attribute, but a warning will be generated for objects that do
not use it.
9241:6cfb9a7acb1b Fri Sep 21 11:48:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> TrafficGen: Add a basic traffic generator

This patch adds a traffic generator to the code base. The generator is
aimed to be used as a black box model to create appropriate use-cases
and benchmarks for the memory system, and in particular the
interconnect and the memory controller.

The traffic generator is a master module, where the actual behaviour
is captured in a state-transition graph where each state generates
some sort of traffic. By constructing a graph it is possible to create
very elaborate scenarios from basic generators. Currencly the set of
generators include idling, linear address sweeps, random address
sequences and playback of traces (recording will be done by the
Communication Monitor in a follow-up patch). At the moment the graph
and the states are described in an ad-hoc line-based format, and in
the future this should be aligned with our used of e.g. the Google
protobufs. Similarly for the traces, the format is currently a
simplistic ad-hoc line-based format that merely serves as a starting
point.

In addition to being used as a black-box model for system components,
the traffic generator is also useful for creating test cases and
regressions for the interconnect and memory system. In future patches
we will use the traffic generator to create DRAM test cases for the
controller model.

The patch following this one adds a basic regressions which also
contains an example configuration script and trace file for playback.
/gem5/src/mem/cache/prefetch/
H A Dtagged.hhdiff 9288:3d6da8559605 Mon Oct 15 08:10:00 EDT 2012 Andreas Hansson <andreas.hansson@arm.com> Mem: Use cycles to express cache-related latencies

This patch changes the cache-related latencies from an absolute time
expressed in Ticks, to a number of cycles that can be scaled with the
clock period of the caches. Ultimately this patch serves to enable
future work that involves dynamic frequency scaling. As an immediate
benefit it also makes it more convenient to specify cache performance
without implicitly assuming a specific CPU core operating frequency.

The stat blocked_cycles that actually counter in ticks is now updated
to count in cycles.

As the timing is now rounded to the clock edges of the cache, there
are some regressions that change. Plenty of them have very minor
changes, whereas some regressions with a short run-time are perturbed
quite significantly. A follow-on patch updates all the statistics for
the regressions.
diff 8831:6c08a877af8f Sun Feb 12 17:07:00 EST 2012 Mrinmoy Ghosh <mrinmoy.ghosh@arm.com> prefetcher: Make prefetcher a sim object instead of it being a parameter on cache

Completed in 152 milliseconds

<<21222324252627282930>>