Searched hist:2015 (Results 1201 - 1225 of 1505) sorted by relevance

<<41424344454647484950>>

/gem5/src/mem/
H A Dbridge.cc11284:b3926db25371 Thu Dec 31 09:32:00 EST 2015 Andreas Hansson <andreas.hansson@arm.com> mem: Make cache terminology easier to understand

This patch changes the name of a bunch of packet flags and MSHR member
functions and variables to make the coherency protocol easier to
understand. In addition the patch adds and updates lots of
descriptions, explicitly spelling out assumptions.

The following name changes are made:

* the packet memInhibit flag is renamed to cacheResponding

* the packet sharedAsserted flag is renamed to hasSharers

* the packet NeedsExclusive attribute is renamed to NeedsWritable

* the packet isSupplyExclusive is renamed responderHadWritable

* the MSHR pendingDirty is renamed to pendingModified

The cache states, Modified, Owned, Exclusive, Shared are also called
out in the cache and MSHR code to make it easier to understand.
11193:564e2e7e86f4 Fri Nov 06 03:26:00 EST 2015 Andreas Hansson <andreas.hansson@arm.com> mem: Use the packet delays and do not just zero them out

This patch updates the I/O devices, bridge and simple memory to take
the packet header and payload delay into account in their latency
calculations. In all cases we add the header delay, i.e. the
accumulated pipeline delay of any crossbars, and the payload delay
needed for deserialisation of any payload.

Due to the additional unknown latency contribution, the packet queue
of the simple memory is changed to use insertion sorting based on the
time stamp. Moreover, since the memory hands out exclusive (non
shared) responses, we also need to ensure ordering for reads to the
same address.
11192:4c28abcf8249 Fri Nov 06 03:26:00 EST 2015 Andreas Hansson <andreas.hansson@arm.com> mem: Align rules for sinking inhibited packets at the slave

This patch aligns how the memory-system slaves, i.e. the various
memory controllers and the bridge, identify and deal with sinking of
inhibited packets that are only useful within the coherent part of the
memory system.

In the future we could shift the onus to the crossbar, and add a
parameter "is_point_of_coherence" that would allow it to sink the
aforementioned packets.
10922:5ee72f4b2931 Mon Jul 13 08:46:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> mem: Fix (ab)use of emplace to avoid temporary object creation
10745:791e4619919d Thu Mar 19 04:06:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> mem: Use emplace front/back for deferred packets

Embrace C++11 for the deferred packets as we actually store the
objects in the data structure, and not just pointers.
10713:eddb533708cb Mon Mar 02 04:00:00 EST 2015 Andreas Hansson <andreas.hansson@arm.com> mem: Split port retry for all different packet classes

This patch fixes a long-standing isue with the port flow
control. Before this patch the retry mechanism was shared between all
different packet classes. As a result, a snoop response could get
stuck behind a request waiting for a retry, even if the send/recv
functions were split. This caused message-dependent deadlocks in
stress-test scenarios.

The patch splits the retry into one per packet (message) class. Thus,
sendTimingReq has a corresponding recvReqRetry, sendTimingResp has
recvRespRetry etc. Most of the changes to the code involve simply
clarifying what type of request a specific object was accepting.

The biggest change in functionality is in the cache downstream packet
queue, facing the memory. This queue was shared by requests and snoop
responses, and it is now split into two queues, each with their own
flow control, but the same physical MasterPort. These changes fixes
the previously seen deadlocks.
10694:1a6785e37d81 Wed Feb 11 10:23:00 EST 2015 Marco Balboni <Marco.Balboni@ARM.com> mem: Clarification of packet crossbar timings

This patch clarifies the packet timings annotated
when going through a crossbar.

The old 'firstWordDelay' is replaced by 'headerDelay' that represents
the delay associated to the delivery of the header of the packet.

The old 'lastWordDelay' is replaced by 'payloadDelay' that represents
the delay needed to processing the payload of the packet.

For now the uses and values remain identical. However, going forward
the payloadDelay will be additive, and not include the
headerDelay. Follow-on patches will make the headerDelay capture the
pipeline latency incurred in the crossbar, whereas the payloadDelay
will capture the additional serialisation delay.
10658:1de300588c4f Thu Jan 22 05:01:00 EST 2015 Andreas Hansson <andreas.hansson@arm.com> mem: Remove unused RequestState in the bridge

This patch removes the bridge sender state as the Crossbar now takes
care of remembering its own routing decisions.
/gem5/src/arch/generic/
H A Dtypes.hh11168:f98eb2da15a4 Mon Oct 12 04:07:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> misc: Remove redundant compiler-specific defines

This patch moves away from using M5_ATTR_OVERRIDE and the m5::hashmap
(and similar) abstractions, as these are no longer needed with gcc 4.7
and clang 3.1 as minimum compiler versions.
10905:a6ca6831e775 Tue Jul 07 04:51:00 EDT 2015 Andreas Sandberg <andreas.sandberg@arm.com> sim: Refactor the serialization base class

Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:

* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.

* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.

* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).

* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.

* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.
/gem5/src/dev/x86/
H A Di8042.cc11007:179bc8ca2d8c Fri Aug 07 04:59:00 EDT 2015 Andreas Sandberg <andreas.sandberg@arm.com> dev, x86: Fix serialization bug in the i8042 device

The i8042 device drops the contents of a PS2 device's buffer when
serializing, which results in corrupted PS2 state when continuing
simulation after a checkpoint. This changeset fixes this bug and
transitions the i8042 model to use the new serialization API that
requires the serialize() method to be const.
10905:a6ca6831e775 Tue Jul 07 04:51:00 EDT 2015 Andreas Sandberg <andreas.sandberg@arm.com> sim: Refactor the serialization base class

Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:

* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.

* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.

* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).

* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.

* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.
H A Dintdev.hh11144:90eeefe7e341 Tue Sep 29 10:28:00 EDT 2015 Joel Hestness <jthestness@gmail.com> arch, x86: Delete packet in IntDevice::recvResponse

IntDevice::recvResponse is called from two places in current mainline: (1) the
short circuit path of X86ISA::IntDevice::IntMasterPort::sendMessage for atomic
mode, and (2) the full request->response path to and from the x86 interrupts
device (finally called from MessageMasterPort::recvTimingResp). In the former
case, the packet was deleted correctly, but in the latter case, the packet and
request leak. To fix the leak, move request and packet deletion into IntDevice
inherited class implementations of recvResponse.
10694:1a6785e37d81 Wed Feb 11 10:23:00 EST 2015 Marco Balboni <Marco.Balboni@ARM.com> mem: Clarification of packet crossbar timings

This patch clarifies the packet timings annotated
when going through a crossbar.

The old 'firstWordDelay' is replaced by 'headerDelay' that represents
the delay associated to the delivery of the header of the packet.

The old 'lastWordDelay' is replaced by 'payloadDelay' that represents
the delay needed to processing the payload of the packet.

For now the uses and values remain identical. However, going forward
the payloadDelay will be additive, and not include the
headerDelay. Follow-on patches will make the headerDelay capture the
pipeline latency incurred in the crossbar, whereas the payloadDelay
will capture the additional serialisation delay.
/gem5/src/dev/arm/
H A Drealview.hh11244:a2af58a06c4e Fri Dec 04 19:11:00 EST 2015 Andreas Sandberg <andreas.sandberg@arm.com> dev: Rewrite PCI host functionality

The gem5's current PCI host functionality is very ad hoc. The current
implementations require PCI devices to be hooked up to the
configuration space via a separate configuration port. Devices query
the platform to get their config-space address range. Un-mapped parts
of the config space are intercepted using the XBar's default port
mechanism and a magic catch-all device (PciConfigAll).

This changeset redesigns the PCI host functionality to improve code
reuse and make config-space and interrupt mapping more
transparent. Existing platform code has been updated to use the new
PCI host and configured to stay backwards compatible (i.e., no
guest-side visible changes). The current implementation does not
expose any new functionality, but it can easily be extended with
features such as automatic interrupt mapping.

PCI devices now register themselves with a PCI host controller. The
host controller interface is defined in the abstract base class
PciHost. Registration is done by PciHost::registerDevice() which takes
the device, its bus position (bus/dev/func tuple), and its interrupt
pin (INTA-INTC) as a parameter. The registration interface returns a
PciHost::DeviceInterface that the PCI device can use to query memory
mappings and signal interrupts.

The host device manages the entire PCI configuration space. Accesses
to devices decoded into the devices bus position and then forwarded to
the correct device.

Basic PCI host functionality is implemented in the GenericPciHost base
class. Most platforms can use this class as a basic PCI controller. It
provides the following functionality:

* Configurable configuration space decoding. The number of bits
dedicated to a device is a prameter, making it possible to support
both CAM, ECAM, and legacy mappings.

* Basic interrupt mapping using the interruptLine value from a
device's configuration space. This behavior is the same as in the
old implementation. More advanced controllers can override the
interrupt mapping method to dynamically assign host interrupts to
PCI devices.

* Simple (base + addr) remapping from the PCI bus's address space to
physical addresses for PIO, memory, and DMA.
/gem5/src/base/
H A Dinet.hh11263:8dcc6b40f164 Thu Dec 10 05:35:00 EST 2015 Andreas Sandberg <andreas.sandberg@arm.com> dev: Move network devices to src/dev/net/
/gem5/src/kern/
H A DSConscript10810:683ab55819fd Wed Apr 29 23:35:00 EDT 2015 Ruslan Bukin <br@bsdpad.com> arch, base, dev, kern, sym: FreeBSD support

This adds support for FreeBSD/aarch64 FS and SE mode (basic set of syscalls only)

Committed by: Nilay Vaish <nilay@cs.wisc.edu>
/gem5/src/base/loader/
H A Draw_object.cc10880:61a56f76222b Fri Jul 03 10:14:00 EDT 2015 Curtis Dunham <Curtis.Dunham@arm.com> base: remove fd from object loaders

All the object loaders directly examine the (already completely loaded
by object_file.cc) memory image. There is no current motivation to
keep the fd around.
H A Daout_object.cc10880:61a56f76222b Fri Jul 03 10:14:00 EDT 2015 Curtis Dunham <Curtis.Dunham@arm.com> base: remove fd from object loaders

All the object loaders directly examine the (already completely loaded
by object_file.cc) memory image. There is no current motivation to
keep the fd around.
/gem5/src/sim/
H A Dvoltage_domain.cc10905:a6ca6831e775 Tue Jul 07 04:51:00 EDT 2015 Andreas Sandberg <andreas.sandberg@arm.com> sim: Refactor the serialization base class

Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:

* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.

* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.

* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).

* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.

* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.
H A Dticked_object.cc10905:a6ca6831e775 Tue Jul 07 04:51:00 EDT 2015 Andreas Sandberg <andreas.sandberg@arm.com> sim: Refactor the serialization base class

Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:

* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.

* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.

* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).

* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.

* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.
/gem5/tests/long/fs/80.solaris-boot/ref/sparc/solaris/t1000-simple-atomic/
H A Dconfig.ini10900:ac6617bf9967 Sat Jul 04 11:43:00 EDT 2015 Nilay Vaish <nilay@cs.wisc.edu> stats: update stale config.ini files, eio and few other stats.
H A Dsimout11245:1c5102c0a7a9 Fri Dec 04 19:11:00 EST 2015 Andreas Sandberg <andreas.sandberg@arm.com> stats: Update to reflect changes to PCI handling
/gem5/tests/long/se/20.parser/ref/arm/linux/o3-timing/
H A Dsimout10798:74e3c7359393 Wed Apr 22 23:22:00 EDT 2015 Steve Reinhardt <steve.reinhardt@amd.com> stats: update for previous changeset

Very small differences in IQ-specific O3 stats.
/gem5/tests/long/se/20.parser/ref/x86/linux/simple-atomic/
H A Dstats.txt10827:7f5467f2f8b8 Tue May 05 03:22:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> stats: Update stats to reflect cache changes
/gem5/tests/long/se/40.perlbmk/ref/arm/linux/o3-timing/
H A Dsimout10798:74e3c7359393 Wed Apr 22 23:22:00 EDT 2015 Steve Reinhardt <steve.reinhardt@amd.com> stats: update for previous changeset

Very small differences in IQ-specific O3 stats.
/gem5/tests/long/se/60.bzip2/ref/arm/linux/o3-timing/
H A Dsimout10798:74e3c7359393 Wed Apr 22 23:22:00 EDT 2015 Steve Reinhardt <steve.reinhardt@amd.com> stats: update for previous changeset

Very small differences in IQ-specific O3 stats.
/gem5/tests/long/se/50.vortex/ref/arm/linux/o3-timing/
H A Dsimout10798:74e3c7359393 Wed Apr 22 23:22:00 EDT 2015 Steve Reinhardt <steve.reinhardt@amd.com> stats: update for previous changeset

Very small differences in IQ-specific O3 stats.
/gem5/tests/long/se/60.bzip2/ref/x86/linux/simple-atomic/
H A Dstats.txt10827:7f5467f2f8b8 Tue May 05 03:22:00 EDT 2015 Andreas Hansson <andreas.hansson@arm.com> stats: Update stats to reflect cache changes
/gem5/tests/long/se/70.twolf/ref/arm/linux/o3-timing/
H A Dsimout10798:74e3c7359393 Wed Apr 22 23:22:00 EDT 2015 Steve Reinhardt <steve.reinhardt@amd.com> stats: update for previous changeset

Very small differences in IQ-specific O3 stats.
/gem5/tests/quick/se/00.hello/ref/alpha/linux/simple-atomic/
H A Dstats.txt11268:8b4b55d79ddd Sat Dec 12 17:27:00 EST 2015 Anthony Gutierrez <atgutier@umich.edu> stats: bump stats to reflect ruby tester changes
/gem5/tests/quick/se/00.hello/ref/mips/linux/simple-atomic/
H A Dstats.txt11268:8b4b55d79ddd Sat Dec 12 17:27:00 EST 2015 Anthony Gutierrez <atgutier@umich.edu> stats: bump stats to reflect ruby tester changes
/gem5/tests/quick/se/00.hello/ref/power/linux/simple-atomic/
H A Dstats.txt11268:8b4b55d79ddd Sat Dec 12 17:27:00 EST 2015 Anthony Gutierrez <atgutier@umich.edu> stats: bump stats to reflect ruby tester changes
/gem5/tests/quick/se/00.hello/ref/sparc/linux/simple-atomic/
H A Dstats.txt11268:8b4b55d79ddd Sat Dec 12 17:27:00 EST 2015 Anthony Gutierrez <atgutier@umich.edu> stats: bump stats to reflect ruby tester changes
/gem5/tests/quick/se/02.insttest/ref/sparc/linux/simple-atomic/
H A Dstats.txt11268:8b4b55d79ddd Sat Dec 12 17:27:00 EST 2015 Anthony Gutierrez <atgutier@umich.edu> stats: bump stats to reflect ruby tester changes

Completed in 157 milliseconds

<<41424344454647484950>>