History log of /gem5/src/cpu/thread_context.cc
Revision Date Author Comments
# 13905:5cf30883255c 27-Apr-2019 Gabe Black <gabeblack@google.com>

arch: cpu: Track kernel stats using the base ISA agnostic type.

Then cast to the ISA specific type when necessary. This removes
(mostly) an ISA specific aspect to some of the interfaces. The ISA
specific version of the kernel stats still needs to be constructed and
stored in a few places which means that kernel_stats.hh still needs to
be a switching arch header, for instance.

In the future, I'd like to make the kernel its own object like the
Process objects in SE mode, and then it would be able to instantiate
and maintain its own stats.

Change-Id: I8309d49019124f6bea1482aaea5b5b34e8c97433
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/18429
Tested-by: kokoro <noreply+kokoro@google.com>
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>


# 13865:cca49fc49c57 13-Apr-2019 Gabe Black <gabeblack@google.com>

cpu: Eliminate the ProxyThreadContext class.

Replace it with direct inheritance from the ThreadContext class in the
SimpleThread class which was the only place it was used.

Also take the opportunity to use some specialized types instead of
ints, etc., add some consts, and fix some style issues.

Change-Id: I5d2cfa87b20dc43615e33e6755c9d016564e9c0e
Reviewed-on: https://gem5-review.googlesource.com/c/public/gem5/+/18048
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Reviewed-by: Anthony Gutierrez <anthony.gutierrez@amd.com>
Maintainer: Gabe Black <gabeblack@google.com>
Tested-by: kokoro <noreply+kokoro@google.com>


# 13622:ba31c2a23eca 21-Nov-2018 Gabe Black <gabeblack@google.com>

cpu, arch: Replace the CCReg type with RegVal.

Most architectures weren't using the CCReg type, and in x86 and arm
it was already a uint64_t.

Change-Id: I0b3d5e690e6b31db6f2627f449c89bde0f6750a6
Reviewed-on: https://gem5-review.googlesource.com/c/14515
Reviewed-by: Gabe Black <gabeblack@google.com>
Maintainer: Gabe Black <gabeblack@google.com>


# 13611:c8b7847b4171 19-Nov-2018 Gabe Black <gabeblack@google.com>

arch: cpu: Rename *FloatRegBits* to *FloatReg*.

Now that there's no plain FloatReg, there's no reason to distinguish
FloatRegBits with a special suffix since it's the only way to read or
write FP registers.

Change-Id: I3a60168c1d4302aed55223ea8e37b421f21efded
Reviewed-on: https://gem5-review.googlesource.com/c/14460
Reviewed-by: Brandon Potter <Brandon.Potter@amd.com>
Reviewed-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Maintainer: Gabe Black <gabeblack@google.com>


# 13610:5d5404ac6288 16-Oct-2018 Giacomo Gabrielli <giacomo.gabrielli@arm.com>

arch,cpu: Add vector predicate registers

Latest-gen. vector/SIMD extensions, including the Arm Scalable Vector
Extension (SVE), introduce the notion of a predicate register file.
This changeset adds this feature across architectures and CPU models.

Change-Id: Iebcadbad89c0a582ff8b1b70de353305db603946
Signed-off-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/c/13715
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>


# 13557:fc33e6048b25 13-Oct-2018 Gabe Black <gabeblack@google.com>

cpu: dev: sim: gpu-compute: Banish some ISA specific register types.

These types are IntReg, FloatReg, FloatRegBits, and MiscReg. There are
some remaining types, specifically the vector registers and the CCReg.
I'm less familiar with these new types of registers, and so will look
at getting rid of them at some later time.

Change-Id: Ide8f76b15c531286f61427330053b44074b8ac9b
Reviewed-on: https://gem5-review.googlesource.com/c/13624
Reviewed-by: Gabe Black <gabeblack@google.com>
Maintainer: Gabe Black <gabeblack@google.com>


# 12334:e0ab29a34764 30-Nov-2017 Gabe Black <gabeblack@google.com>

misc: Rename misc.(hh|cc) to logging.(hh|cc)

These files aren't a collection of miscellaneous stuff, they're the
definition of the Logger interface, and a few utility macros for
calling into that interface (panic, warn, etc.).

Change-Id: I84267ac3f45896a83c0ef027f8f19c5e9a5667d1
Reviewed-on: https://gem5-review.googlesource.com/6226
Reviewed-by: Brandon Potter <Brandon.Potter@amd.com>
Maintainer: Gabe Black <gabeblack@google.com>


# 12109:f29e9c5418aa 05-Apr-2017 Rekai Gonzalez-Alberquilla <Rekai.GonzalezAlberquilla@arm.com>

cpu: Added interface for vector reg file

This patch adds some more functionality to the cpu model and the arch to
interface with the vector register file.

This change consists mainly of augmenting ThreadContexts and ExecContexts
with calls to get/set full vectors, underlying microarchitectural elements
or lanes. Those are meant to interface with the vector register file. All
classes that implement this interface also get an appropriate implementation.

This requires implementing the vector register file for the different
models using the VecRegContainer class.

This change set also updates the Result abstraction to contemplate the
possibility of having a vector as result.

The changes also affect how the remote_gdb connection works.

There are some (nasty) side effects, such as the need to define dummy
numPhysVecRegs parameter values for architectures that do not implement
vector extensions.

Nathanael Premillieu's work with an increasing number of fixes and
improvements of mine.

Change-Id: Iee65f4e8b03abfe1e94e6940a51b68d0977fd5bb
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
[ Fix RISCV build issues and CC reg free list initialisation ]
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2705


# 11793:ef606668d247 09-Nov-2016 Brandon Potter <brandon.potter@amd.com>

style: [patch 1/22] use /r/3648/ to reorganize includes


# 11627:fe32a5238754 13-Sep-2016 Michael LeBeane <michael.lebeane@amd.com>

sim: Refactor quiesce and remove FS asserts
The quiesce family of magic ops can be simplified by the inclusion of
quiesceTick() and quiesce() functions on ThreadContext. This patch also
gets rid of the FS guards, since suspending a CPU is also a valid
operation for SE mode.


# 11005:e7f403b6b76f 07-Aug-2015 Andreas Sandberg <andreas.sandberg@arm.com>

base: Declare a type for context IDs

Context IDs used to be declared as ad hoc (usually as int). This
changeset introduces a typedef for ContextIDs and a constant for
invalid context IDs.


# 10935:acd48ddd725f 28-Jul-2015 Nilay Vaish <nilay@cs.wisc.edu>

revert 5af8f40d8f2c


# 10934:5af8f40d8f2c 26-Jul-2015 Nilay Vaish <nilay@cs.wisc.edu>

cpu: implements vector registers

This adds a vector register type. The type is defined as a std::array of a
fixed number of uint64_ts. The isa_parser.py has been modified to parse vector
register operands and generate the required code. Different cpus have vector
register files now.


# 10905:a6ca6831e775 07-Jul-2015 Andreas Sandberg <andreas.sandberg@arm.com>

sim: Refactor the serialization base class

Objects that are can be serialized are supposed to inherit from the
Serializable class. This class is meant to provide a unified API for
such objects. However, so far it has mainly been used by SimObjects
due to some fundamental design limitations. This changeset redesigns
to the serialization interface to make it more generic and hide the
underlying checkpoint storage. Specifically:

* Add a set of APIs to serialize into a subsection of the current
object. Previously, objects that needed this functionality would
use ad-hoc solutions using nameOut() and section name
generation. In the new world, an object that implements the
interface has the methods serializeSection() and
unserializeSection() that serialize into a named /subsection/ of
the current object. Calling serialize() serializes an object into
the current section.

* Move the name() method from Serializable to SimObject as it is no
longer needed for serialization. The fully qualified section name
is generated by the main serialization code on the fly as objects
serialize sub-objects.

* Add a scoped ScopedCheckpointSection helper class. Some objects
need to serialize data structures, that are not deriving from
Serializable, into subsections. Previously, this was done using
nameOut() and manual section name generation. To simplify this,
this changeset introduces a ScopedCheckpointSection() helper
class. When this class is instantiated, it adds a new /subsection/
and subsequent serialization calls during the lifetime of this
helper class happen inside this section (or a subsection in case
of nested sections).

* The serialize() call is now const which prevents accidental state
manipulation during serialization. Objects that rely on modifying
state can use the serializeOld() call instead. The default
implementation simply calls serialize(). Note: The old-style calls
need to be explicitly called using the
serializeOld()/serializeSectionOld() style APIs. These are used by
default when serializing SimObjects.

* Both the input and output checkpoints now use their own named
types. This hides underlying checkpoint implementation from
objects that need checkpointing and makes it easier to change the
underlying checkpoint storage code.


# 9920:028e4da64b42 15-Oct-2013 Yasuko Eckert <yasuko.eckert@amd.com>

cpu: add a condition-code register class

Add a third register class for condition codes,
in parallel with the integer and FP classes.
No ISAs use the CC class at this point though.


# 9441:1133617844c8 07-Jan-2013 Andreas Sandberg <Andreas.Sandberg@ARM.com>

cpu: Fix broken thread context handover

The thread context handover code used to break when multiple handovers
were performed during the same quiesce period. Previously, the thread
contexts would assign the TC pointer in the old quiesce event to the
new TC. This obviously broke in cases where multiple switches were
performed within the same quiesce period, in which case the TC pointer
in the quiesce event would point to an old CPU.

The new implementation deschedules pending quiesce events in the old
TC and schedules a new quiesce event in the new TC. The code has been
refactored to remove most of the code duplication.


# 9428:029dfe6324d3 07-Jan-2013 Andreas Sandberg <Andreas.Sandberg@ARM.com>

cpu: Unify SimpleCPU and O3 CPU serialization code

The O3 CPU used to copy its thread context to a SimpleThread in order
to do serialization. This was a bit of a hack involving two static
SimpleThread instances and a magic constructor that was only used by
the O3 CPU.

This patch moves the ThreadContext serialization code into two global
procedures that, in addition to the normal serialization parameters,
take a ThreadContext reference as a parameter. This allows us to reuse
the serialization code in all ThreadContext implementations.


# 8777:dd43f1c9fa0a 31-Oct-2011 Gabe Black <gblack@eecs.umich.edu>

SE/FS: Make the functions available from the TC consistent between SE and FS.


# 8232:b28d06a175be 15-Apr-2011 Nathan Binkert <nate@binkert.org>

trace: reimplement the DTRACE function so it doesn't use a vector
At the same time, rename the trace flags to debug flags since they
have broader usage than simply tracing. This means that
--trace-flags is now --debug-flags and --trace-help is now --debug-help


# 7720:65d338a8dba4 31-Oct-2010 Gabe Black <gblack@eecs.umich.edu>

ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.



This change is a low level and pervasive reorganization of how PCs are managed
in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about,
the PC and the NPC, and the lsb of the PC signaled whether or not you were in
PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next
micropc, x86 and ARM introduced variable length instruction sets, and ARM
started to keep track of mode bits in the PC. Each CPU model handled PCs in
its own custom way that needed to be updated individually to handle the new
dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack,
the complexity could be hidden in the ISA at the ISA implementation's expense.
Areas like the branch predictor hadn't been updated to handle branch delay
slots or micropcs, and it turns out that had introduced a significant (10s of
percent) performance bug in SPARC and to a lesser extend MIPS. Rather than
perpetuate the problem by reworking O3 again to handle the PC features needed
by x86, this change was introduced to rework PC handling in a more modular,
transparent, and hopefully efficient way.


PC type:

Rather than having the superset of all possible elements of PC state declared
in each of the CPU models, each ISA defines its own PCState type which has
exactly the elements it needs. A cross product of canned PCState classes are
defined in the new "generic" ISA directory for ISAs with/without delay slots
and microcode. These are either typedef-ed or subclassed by each ISA. To read
or write this structure through a *Context, you use the new pcState() accessor
which reads or writes depending on whether it has an argument. If you just
want the address of the current or next instruction or the current micro PC,
you can get those through read-only accessors on either the PCState type or
the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the
move away from readPC. That name is ambiguous since it's not clear whether or
not it should be the actual address to fetch from, or if it should have extra
bits in it like the PAL mode bit. Each class is free to define its own
functions to get at whatever values it needs however it needs to to be used in
ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the
PC and into a separate field like ARM.

These types can be reset to a particular pc (where npc = pc +
sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as
appropriate), printed, serialized, and compared. There is a branching()
function which encapsulates code in the CPU models that checked if an
instruction branched or not. Exactly what that means in the context of branch
delay slots which can skip an instruction when not taken is ambiguous, and
ideally this function and its uses can be eliminated. PCStates also generally
know how to advance themselves in various ways depending on if they point at
an instruction, a microop, or the last microop of a macroop. More on that
later.

Ideally, accessing all the PCs at once when setting them will improve
performance of M5 even though more data needs to be moved around. This is
because often all the PCs need to be manipulated together, and by getting them
all at once you avoid multiple function calls. Also, the PCs of a particular
thread will have spatial locality in the cache. Previously they were grouped
by element in arrays which spread out accesses.


Advancing the PC:

The PCs were previously managed entirely by the CPU which had to know about PC
semantics, try to figure out which dimension to increment the PC in, what to
set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction
with the PC type itself. Because most of the information about how to
increment the PC (mainly what type of instruction it refers to) is contained
in the instruction object, a new advancePC virtual function was added to the
StaticInst class. Subclasses provide an implementation that moves around the
right element of the PC with a minimal amount of decision making. In ISAs like
Alpha, the instructions always simply assign NPC to PC without having to worry
about micropcs, nnpcs, etc. The added cost of a virtual function call should
be outweighed by not having to figure out as much about what to do with the
PCs and mucking around with the extra elements.

One drawback of making the StaticInsts advance the PC is that you have to
actually have one to advance the PC. This would, superficially, seem to
require decoding an instruction before fetch could advance. This is, as far as
I can tell, realistic. fetch would advance through memory addresses, not PCs,
perhaps predicting new memory addresses using existing ones. More
sophisticated decisions about control flow would be made later on, after the
instruction was decoded, and handed back to fetch. If branching needs to
happen, some amount of decoding needs to happen to see that it's a branch,
what the target is, etc. This could get a little more complicated if that gets
done by the predecoder, but I'm choosing to ignore that for now.


Variable length instructions:

To handle variable length instructions in x86 and ARM, the predecoder now
takes in the current PC by reference to the getExtMachInst function. It can
modify the PC however it needs to (by setting NPC to be the PC + instruction
length, for instance). This could be improved since the CPU doesn't know if
the PC was modified and always has to write it back.


ISA parser:

To support the new API, all PC related operand types were removed from the
parser and replaced with a PCState type. There are two warts on this
implementation. First, as with all the other operand types, the PCState still
has to have a valid operand type even though it doesn't use it. Second, using
syntax like PCS.npc(target) doesn't work for two reasons, this looks like the
syntax for operand type overriding, and the parser can't figure out if you're
reading or writing. Instructions that use the PCS operand (which I've
consistently called it) need to first read it into a local variable,
manipulate it, and then write it back out.


Return address stack:

The return address stack needed a little extra help because, in the presence
of branch delay slots, it has to merge together elements of the return PC and
the call PC. To handle that, a buildRetPC utility function was added. There
are basically only two versions in all the ISAs, but it didn't seem short
enough to put into the generic ISA directory. Also, the branch predictor code
in O3 and InOrder were adjusted so that they always store the PC of the actual
call instruction in the RAS, not the next PC. If the call instruction is a
microop, the next PC refers to the next microop in the same macroop which is
probably not desirable. The buildRetPC function advances the PC intelligently
to the next macroop (in an ISA specific way) so that that case works.


Change in stats:

There were no change in stats except in MIPS and SPARC in the O3 model. MIPS
runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could
likely be improved further by setting call/return instruction flags and taking
advantage of the RAS.


TODO:

Add != operators to the PCState classes, defined trivially to be !(a==b).
Smooth out places where PCs are split apart, passed around, and put back
together later. I think this might happen in SPARC's fault code. Add ISA
specific constructors that allow setting PC elements without calling a bunch
of accessors. Try to eliminate the need for the branching() function. Factor
out Alpha's PAL mode pc bit into a separate flag field, and eliminate places
where it's blindly masked out or tested in the PC.


# 6658:f4de76601762 23-Sep-2009 Nathan Binkert <nate@binkert.org>

arch: nuke arch/isa_specific.hh and move stuff to generated config/the_isa.hh


# 5714:76abee886def 02-Nov-2008 Lisa Hsu <hsul@eecs.umich.edu>

Add in Context IDs to the simulator. From now on, cpuId is almost never used,
the primary identifier for a hardware context should be contextId(). The
concept of threads within a CPU remains, in the form of threadId() because
sometimes you need to know which context within a cpu to manipulate.


# 5712:199d31b47f7b 02-Nov-2008 Lisa Hsu <hsul@eecs.umich.edu>

make BaseCPU the provider of _cpuId, and cpuId() instead of being scattered
across the subclasses. generally make it so that member data is _cpuId and
accessor functions are cpuId(). The ID val comes from the python (default -1 if
none provided), and if it is -1, the index of cpuList will be given. this has
passed util/regress quick and se.py -n4 and fs.py -n4 as well as standard
switch.


# 5217:bb810bb8ca2d 08-Nov-2007 Ali Saidi <saidi@eecs.umich.edu>

CPU: Add function to explictly compare thread contexts after copying.