History log of /gem5/src/arch/x86/isa/microops/seqop.isa
Revision Date Author Comments
# 12236:126ac9da6050 04-Nov-2017 Gabe Black <gabeblack@google.com>

alpha,arm,mips,power,riscv,sparc,x86: Merge exec decl templates.

In the ISA instruction definitions, some classes were declared with
execute, etc., functions outside of the main template because they
had CPU specific signatures and would need to be duplicated with
each CPU plugged into them. Now that the instructions always just
use an ExecContext, there's no reason for those templates to be
separate. This change folds those templates together.

Change-Id: I13bda247d3d1cc07c0ea06968e48aa5b4aace7fa
Reviewed-on: https://gem5-review.googlesource.com/5401
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Alec Roelke <ar4jc@virginia.edu>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>


# 12234:78ece221f9f5 02-Nov-2017 Gabe Black <gabeblack@google.com>

alpha,arm,mips,power,riscv,sparc,x86,isa: De-specialize ExecContexts.

The ISA parser used to generate different copies of exec functions
for each exec context class a particular CPU wanted to use. That's
since been changed so that those functions take a pointer to the base
ExecContext, so the code which would generate those extra functions
can be removed, and some functions which used to be templated on an
ExecContext subclass can be untemplated, or minimally less templated.

Now that some functions aren't going to be instantiated multiple times
with different signatures, there are also opportunities to collapse
templates and make many instruction definitions simpler within the
parser. Since those changes will be less mechanical, they're left for
later changes and will probably be done in smaller increments.

Change-Id: I0015307bb02dfb9c60380b56d2a820f12169ebea
Reviewed-on: https://gem5-review.googlesource.com/5381
Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com>
Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>


# 10196:be0e1724eb39 09-May-2014 Curtis Dunham <Curtis.Dunham@arm.com>

arch: teach ISA parser how to split code across files

This patch encompasses several interrelated and interdependent changes
to the ISA generation step. The end goal is to reduce the size of the
generated compilation units for instruction execution and decoding so
that batch compilation can proceed with all CPUs active without
exhausting physical memory.

The ISA parser (src/arch/isa_parser.py) has been improved so that it can
accept 'split [output_type];' directives at the top level of the grammar
and 'split(output_type)' python calls within 'exec {{ ... }}' blocks.
This has the effect of "splitting" the files into smaller compilation
units. I use air-quotes around "splitting" because the files themselves
are not split, but preprocessing directives are inserted to have the same
effect.

Architecturally, the ISA parser has had some changes in how it works.
In general, it emits code sooner. It doesn't generate per-CPU files,
and instead defers to the C preprocessor to create the duplicate copies
for each CPU type. Likewise there are more files emitted and the C
preprocessor does more substitution that used to be done by the ISA parser.

Finally, the build system (SCons) needs to be able to cope with a
dynamic list of source files coming out of the ISA parser. The changes
to the SCons{cript,truct} files support this. In broad strokes, the
targets requested on the command line are hidden from SCons until all
the build dependencies are determined, otherwise it would try, realize
it can't reach the goal, and terminate in failure. Since build steps
(i.e. running the ISA parser) must be taken to determine the file list,
several new build stages have been inserted at the very start of the
build. First, the build dependencies from the ISA parser will be emitted
to arch/$ISA/generated/inc.d, which is then read by a new SCons builder
to finalize the dependencies. (Once inc.d exists, the ISA parser will not
need to be run to complete this step.) Once the dependencies are known,
the 'Environments' are made by the makeEnv() function. This function used
to be called before the build began but now happens during the build.
It is easy to see that this step is quite slow; this is a known issue
and it's important to realize that it was already slow, but there was
no obvious cause to attribute it to since nothing was displayed to the
terminal. Since new steps that used to be performed serially are now in a
potentially-parallel build phase, the pathname handling in the SCons scripts
has been tightened up to deal with chdir() race conditions. In general,
pathnames are computed earlier and more likely to be stored, passed around,
and processed as absolute paths rather than relative paths. In the end,
some of these issues had to be fixed by inserting serializing dependencies
in the build.

Minor note:
For the null ISA, we just provide a dummy inc.d so SCons is never
compelled to try to generate it. While it seems slightly wrong to have
anything in src/arch/*/generated (i.e. a non-generated 'generated' file),
it's by far the simplest solution.


# 10184:bbfa3152bdea 09-May-2014 Curtis Dunham <Curtis.Dunham@arm.com>

arch: remove inline specifiers on all inst constrs, all ISAs

With (upcoming) separate compilation, they are useless. Only
link-time optimization could re-inline them, but ideally
feedback-directed optimization would choose to do so only for
profitable (i.e. common) instructions.


# 9211:46c3a74952ec 11-Sep-2012 Nilay Vaish <nilay@cs.wisc.edu>

x86: Add a separate register for D flag bit
The D flag bit is part of the cc flag bit register currently. But since it
is not being used any where in the implementation, it creates an unnecessary
dependency. Hence, it is being moved to a separate register.


# 9010:7891b96e1526 22-May-2012 Nilay Vaish <nilay@cs.wisc.edu>

X86: Split Condition Code register
This patch moves the ECF and EZF bits to individual registers (ecfBit and
ezfBit) and the CF and OF bits to cfofFlag registers. This is being done
so as to lower the read after write dependencies on the the condition code
register. Ultimately we will have the following registers [ZAPS], [OF],
[CF], [ECF], [EZF] and [DF]. Note that this is only one part of the
solution for lowering the dependencies. The other part will check whether
or not the condition code register needs to be actually read. This would
be done through a separate patch.


# 7894:48d31b577847 07-Feb-2011 Brad Beckmann <Brad.Beckmann@amd.com>

x86: set IsCondControl flag for the appropriate microops


# 7789:f455790bcd47 08-Dec-2010 Gabe Black <gblack@eecs.umich.edu>

X86: Take advantage of new PCState syntax.


# 7720:65d338a8dba4 31-Oct-2010 Gabe Black <gblack@eecs.umich.edu>

ISA,CPU,etc: Create an ISA defined PC type that abstracts out ISA behaviors.



This change is a low level and pervasive reorganization of how PCs are managed
in M5. Back when Alpha was the only ISA, there were only 2 PCs to worry about,
the PC and the NPC, and the lsb of the PC signaled whether or not you were in
PAL mode. As other ISAs were added, we had to add an NNPC, micro PC and next
micropc, x86 and ARM introduced variable length instruction sets, and ARM
started to keep track of mode bits in the PC. Each CPU model handled PCs in
its own custom way that needed to be updated individually to handle the new
dimensions of variability, or, in the case of ARMs mode-bit-in-the-pc hack,
the complexity could be hidden in the ISA at the ISA implementation's expense.
Areas like the branch predictor hadn't been updated to handle branch delay
slots or micropcs, and it turns out that had introduced a significant (10s of
percent) performance bug in SPARC and to a lesser extend MIPS. Rather than
perpetuate the problem by reworking O3 again to handle the PC features needed
by x86, this change was introduced to rework PC handling in a more modular,
transparent, and hopefully efficient way.


PC type:

Rather than having the superset of all possible elements of PC state declared
in each of the CPU models, each ISA defines its own PCState type which has
exactly the elements it needs. A cross product of canned PCState classes are
defined in the new "generic" ISA directory for ISAs with/without delay slots
and microcode. These are either typedef-ed or subclassed by each ISA. To read
or write this structure through a *Context, you use the new pcState() accessor
which reads or writes depending on whether it has an argument. If you just
want the address of the current or next instruction or the current micro PC,
you can get those through read-only accessors on either the PCState type or
the *Contexts. These are instAddr(), nextInstAddr(), and microPC(). Note the
move away from readPC. That name is ambiguous since it's not clear whether or
not it should be the actual address to fetch from, or if it should have extra
bits in it like the PAL mode bit. Each class is free to define its own
functions to get at whatever values it needs however it needs to to be used in
ISA specific code. Eventually Alpha's PAL mode bit could be moved out of the
PC and into a separate field like ARM.

These types can be reset to a particular pc (where npc = pc +
sizeof(MachInst), nnpc = npc + sizeof(MachInst), upc = 0, nupc = 1 as
appropriate), printed, serialized, and compared. There is a branching()
function which encapsulates code in the CPU models that checked if an
instruction branched or not. Exactly what that means in the context of branch
delay slots which can skip an instruction when not taken is ambiguous, and
ideally this function and its uses can be eliminated. PCStates also generally
know how to advance themselves in various ways depending on if they point at
an instruction, a microop, or the last microop of a macroop. More on that
later.

Ideally, accessing all the PCs at once when setting them will improve
performance of M5 even though more data needs to be moved around. This is
because often all the PCs need to be manipulated together, and by getting them
all at once you avoid multiple function calls. Also, the PCs of a particular
thread will have spatial locality in the cache. Previously they were grouped
by element in arrays which spread out accesses.


Advancing the PC:

The PCs were previously managed entirely by the CPU which had to know about PC
semantics, try to figure out which dimension to increment the PC in, what to
set NPC/NNPC, etc. These decisions are best left to the ISA in conjunction
with the PC type itself. Because most of the information about how to
increment the PC (mainly what type of instruction it refers to) is contained
in the instruction object, a new advancePC virtual function was added to the
StaticInst class. Subclasses provide an implementation that moves around the
right element of the PC with a minimal amount of decision making. In ISAs like
Alpha, the instructions always simply assign NPC to PC without having to worry
about micropcs, nnpcs, etc. The added cost of a virtual function call should
be outweighed by not having to figure out as much about what to do with the
PCs and mucking around with the extra elements.

One drawback of making the StaticInsts advance the PC is that you have to
actually have one to advance the PC. This would, superficially, seem to
require decoding an instruction before fetch could advance. This is, as far as
I can tell, realistic. fetch would advance through memory addresses, not PCs,
perhaps predicting new memory addresses using existing ones. More
sophisticated decisions about control flow would be made later on, after the
instruction was decoded, and handed back to fetch. If branching needs to
happen, some amount of decoding needs to happen to see that it's a branch,
what the target is, etc. This could get a little more complicated if that gets
done by the predecoder, but I'm choosing to ignore that for now.


Variable length instructions:

To handle variable length instructions in x86 and ARM, the predecoder now
takes in the current PC by reference to the getExtMachInst function. It can
modify the PC however it needs to (by setting NPC to be the PC + instruction
length, for instance). This could be improved since the CPU doesn't know if
the PC was modified and always has to write it back.


ISA parser:

To support the new API, all PC related operand types were removed from the
parser and replaced with a PCState type. There are two warts on this
implementation. First, as with all the other operand types, the PCState still
has to have a valid operand type even though it doesn't use it. Second, using
syntax like PCS.npc(target) doesn't work for two reasons, this looks like the
syntax for operand type overriding, and the parser can't figure out if you're
reading or writing. Instructions that use the PCS operand (which I've
consistently called it) need to first read it into a local variable,
manipulate it, and then write it back out.


Return address stack:

The return address stack needed a little extra help because, in the presence
of branch delay slots, it has to merge together elements of the return PC and
the call PC. To handle that, a buildRetPC utility function was added. There
are basically only two versions in all the ISAs, but it didn't seem short
enough to put into the generic ISA directory. Also, the branch predictor code
in O3 and InOrder were adjusted so that they always store the PC of the actual
call instruction in the RAS, not the next PC. If the call instruction is a
microop, the next PC refers to the next microop in the same macroop which is
probably not desirable. The buildRetPC function advances the PC intelligently
to the next macroop (in an ISA specific way) so that that case works.


Change in stats:

There were no change in stats except in MIPS and SPARC in the O3 model. MIPS
runs in about 9% fewer ticks. SPARC runs with 30%-50% fewer ticks, which could
likely be improved further by setting call/return instruction flags and taking
advantage of the RAS.


TODO:

Add != operators to the PCState classes, defined trivially to be !(a==b).
Smooth out places where PCs are split apart, passed around, and put back
together later. I think this might happen in SPARC's fault code. Add ISA
specific constructors that allow setting PC elements without calling a bunch
of accessors. Try to eliminate the need for the branching() function. Factor
out Alpha's PAL mode pc bit into a separate flag field, and eliminate places
where it's blindly masked out or tested in the PC.


# 7626:bdd926760470 23-Aug-2010 Gabe Black <gblack@eecs.umich.edu>

X86: Get rid of the flagless microop constructor.

This will reduce clutter in the source and hopefully speed up compilation.


# 7620:3d8a23caa1ef 23-Aug-2010 Gabe Black <gblack@eecs.umich.edu>

X86: Consolidate extra microop flags into one parameter.

This single parameter replaces the collection of bools that set up various
flavors of microops. A flag parameter also allows other flags to be set like
the serialize before/after flags, etc., without having to change the
constructor.


# 7087:fb8d5786ff30 24-May-2010 Nathan Binkert <nate@binkert.org>

copyright: Change HP copyright on x86 code to be more friendly


# 5788:6d4161a36ca1 07-Jan-2009 Gabe Black <gblack@eecs.umich.edu>

X86: Autogenerate macroop generateDisassemble function.


# 5692:0d6addcde185 13-Oct-2008 Gabe Black <gblack@eecs.umich.edu>

X86: Set the delayed commit flag in x86 microops appropriately.


# 5663:be5cb9485aed 12-Oct-2008 Gabe Black <gblack@eecs.umich.edu>

X86: Create an eret microop which returns from ROM to combinational decoding.


# 5662:4f3371a1c58c 12-Oct-2008 Gabe Black <gblack@eecs.umich.edu>

X86: Make Br never report itself as the last microop.


# 5661:443e6f925027 12-Oct-2008 Gabe Black <gblack@eecs.umich.edu>

X86: Create a SeqOp class of microops and make Br one of them.