dram_ctrl.cc revision 9824
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Hansson
38 *          Ani Udipi
39 */
40
41#include "base/trace.hh"
42#include "debug/Drain.hh"
43#include "debug/DRAM.hh"
44#include "debug/DRAMWR.hh"
45#include "mem/simple_dram.hh"
46#include "sim/system.hh"
47
48using namespace std;
49
50SimpleDRAM::SimpleDRAM(const SimpleDRAMParams* p) :
51    AbstractMemory(p),
52    port(name() + ".port", *this),
53    retryRdReq(false), retryWrReq(false),
54    rowHitFlag(false), stopReads(false), actTicks(p->activation_limit, 0),
55    writeEvent(this), respondEvent(this),
56    refreshEvent(this), nextReqEvent(this), drainManager(NULL),
57    bytesPerCacheLine(0),
58    linesPerRowBuffer(p->lines_per_rowbuffer),
59    ranksPerChannel(p->ranks_per_channel),
60    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
61    readBufferSize(p->read_buffer_size),
62    writeBufferSize(p->write_buffer_size),
63    writeThresholdPerc(p->write_thresh_perc),
64    tWTR(p->tWTR), tBURST(p->tBURST),
65    tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP),
66    tRFC(p->tRFC), tREFI(p->tREFI),
67    tXAW(p->tXAW), activationLimit(p->activation_limit),
68    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
69    pageMgmt(p->page_policy),
70    frontendLatency(p->static_frontend_latency),
71    backendLatency(p->static_backend_latency),
72    busBusyUntil(0), writeStartTime(0),
73    prevArrival(0), numReqs(0)
74{
75    // create the bank states based on the dimensions of the ranks and
76    // banks
77    banks.resize(ranksPerChannel);
78    for (size_t c = 0; c < ranksPerChannel; ++c) {
79        banks[c].resize(banksPerRank);
80    }
81
82    // round the write threshold percent to a whole number of entries
83    // in the buffer
84    writeThreshold = writeBufferSize * writeThresholdPerc / 100.0;
85}
86
87void
88SimpleDRAM::init()
89{
90    if (!port.isConnected()) {
91        fatal("SimpleDRAM %s is unconnected!\n", name());
92    } else {
93        port.sendRangeChange();
94    }
95
96    // get the burst size from the connected port as it is currently
97    // assumed to be equal to the cache line size
98    bytesPerCacheLine = _system->cacheLineSize();
99
100    // we could deal with plenty options here, but for now do a quick
101    // sanity check
102    if (bytesPerCacheLine != 64 && bytesPerCacheLine != 32)
103        panic("Unexpected burst size %d", bytesPerCacheLine);
104
105    // determine the rows per bank by looking at the total capacity
106    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
107
108    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
109            AbstractMemory::size());
110    rowsPerBank = capacity / (bytesPerCacheLine * linesPerRowBuffer *
111                              banksPerRank * ranksPerChannel);
112
113    if (range.interleaved()) {
114        if (channels != range.stripes())
115            panic("%s has %d interleaved address stripes but %d channel(s)\n",
116                  name(), range.stripes(), channels);
117
118        if (addrMapping == Enums::RaBaChCo) {
119            if (bytesPerCacheLine * linesPerRowBuffer !=
120                range.granularity()) {
121                panic("Interleaving of %s doesn't match RaBaChCo address map\n",
122                      name());
123            }
124        } else if (addrMapping == Enums::RaBaCoCh) {
125            if (bytesPerCacheLine != range.granularity()) {
126                panic("Interleaving of %s doesn't match RaBaCoCh address map\n",
127                      name());
128            }
129        } else if (addrMapping == Enums::CoRaBaCh) {
130            if (bytesPerCacheLine != range.granularity())
131                panic("Interleaving of %s doesn't match CoRaBaCh address map\n",
132                      name());
133        }
134    }
135}
136
137void
138SimpleDRAM::startup()
139{
140    // print the configuration of the controller
141    printParams();
142
143    // kick off the refresh
144    schedule(refreshEvent, curTick() + tREFI);
145}
146
147Tick
148SimpleDRAM::recvAtomic(PacketPtr pkt)
149{
150    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
151
152    // do the actual memory access and turn the packet into a response
153    access(pkt);
154
155    Tick latency = 0;
156    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
157        // this value is not supposed to be accurate, just enough to
158        // keep things going, mimic a closed page
159        latency = tRP + tRCD + tCL;
160    }
161    return latency;
162}
163
164bool
165SimpleDRAM::readQueueFull() const
166{
167    DPRINTF(DRAM, "Read queue limit %d current size %d\n",
168            readBufferSize, readQueue.size() + respQueue.size());
169
170    return (readQueue.size() + respQueue.size()) == readBufferSize;
171}
172
173bool
174SimpleDRAM::writeQueueFull() const
175{
176    DPRINTF(DRAM, "Write queue limit %d current size %d\n",
177            writeBufferSize, writeQueue.size());
178    return writeQueue.size() == writeBufferSize;
179}
180
181SimpleDRAM::DRAMPacket*
182SimpleDRAM::decodeAddr(PacketPtr pkt)
183{
184    // decode the address based on the address mapping scheme, with
185    // Ra, Co, Ba and Ch denoting rank, column, bank and channel,
186    // respectively
187    uint8_t rank;
188    uint16_t bank;
189    uint16_t row;
190
191    Addr addr = pkt->getAddr();
192
193    // truncate the address to the access granularity
194    addr = addr / bytesPerCacheLine;
195
196    // we have removed the lowest order address bits that denote the
197    // position within the cache line
198    if (addrMapping == Enums::RaBaChCo) {
199        // the lowest order bits denote the column to ensure that
200        // sequential cache lines occupy the same row
201        addr = addr / linesPerRowBuffer;
202
203        // take out the channel part of the address
204        addr = addr / channels;
205
206        // after the channel bits, get the bank bits to interleave
207        // over the banks
208        bank = addr % banksPerRank;
209        addr = addr / banksPerRank;
210
211        // after the bank, we get the rank bits which thus interleaves
212        // over the ranks
213        rank = addr % ranksPerChannel;
214        addr = addr / ranksPerChannel;
215
216        // lastly, get the row bits
217        row = addr % rowsPerBank;
218        addr = addr / rowsPerBank;
219    } else if (addrMapping == Enums::RaBaCoCh) {
220        // take out the channel part of the address
221        addr = addr / channels;
222
223        // next, the column
224        addr = addr / linesPerRowBuffer;
225
226        // after the column bits, we get the bank bits to interleave
227        // over the banks
228        bank = addr % banksPerRank;
229        addr = addr / banksPerRank;
230
231        // after the bank, we get the rank bits which thus interleaves
232        // over the ranks
233        rank = addr % ranksPerChannel;
234        addr = addr / ranksPerChannel;
235
236        // lastly, get the row bits
237        row = addr % rowsPerBank;
238        addr = addr / rowsPerBank;
239    } else if (addrMapping == Enums::CoRaBaCh) {
240        // optimise for closed page mode and utilise maximum
241        // parallelism of the DRAM (at the cost of power)
242
243        // take out the channel part of the address, not that this has
244        // to match with how accesses are interleaved between the
245        // controllers in the address mapping
246        addr = addr / channels;
247
248        // start with the bank bits, as this provides the maximum
249        // opportunity for parallelism between requests
250        bank = addr % banksPerRank;
251        addr = addr / banksPerRank;
252
253        // next get the rank bits
254        rank = addr % ranksPerChannel;
255        addr = addr / ranksPerChannel;
256
257        // next the column bits which we do not need to keep track of
258        // and simply skip past
259        addr = addr / linesPerRowBuffer;
260
261        // lastly, get the row bits
262        row = addr % rowsPerBank;
263        addr = addr / rowsPerBank;
264    } else
265        panic("Unknown address mapping policy chosen!");
266
267    assert(rank < ranksPerChannel);
268    assert(bank < banksPerRank);
269    assert(row < rowsPerBank);
270
271    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
272            pkt->getAddr(), rank, bank, row);
273
274    // create the corresponding DRAM packet with the entry time and
275    // ready time set to the current tick, the latter will be updated
276    // later
277    return new DRAMPacket(pkt, rank, bank, row, pkt->getAddr(),
278                          banks[rank][bank]);
279}
280
281void
282SimpleDRAM::addToReadQueue(PacketPtr pkt)
283{
284    // only add to the read queue here. whenever the request is
285    // eventually done, set the readyTime, and call schedule()
286    assert(!pkt->isWrite());
287
288    // First check write buffer to see if the data is already at
289    // the controller
290    list<DRAMPacket*>::const_iterator i;
291    Addr addr = pkt->getAddr();
292
293    // @todo: add size check
294    for (i = writeQueue.begin(); i != writeQueue.end(); ++i) {
295        if ((*i)->addr == addr){
296            servicedByWrQ++;
297            DPRINTF(DRAM, "Read to %lld serviced by write queue\n", addr);
298            bytesRead += bytesPerCacheLine;
299            bytesConsumedRd += pkt->getSize();
300            accessAndRespond(pkt, frontendLatency);
301            return;
302        }
303    }
304
305    DRAMPacket* dram_pkt = decodeAddr(pkt);
306
307    assert(readQueue.size() + respQueue.size() < readBufferSize);
308    rdQLenPdf[readQueue.size() + respQueue.size()]++;
309
310    DPRINTF(DRAM, "Adding to read queue\n");
311
312    readQueue.push_back(dram_pkt);
313
314    // Update stats
315    uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
316    assert(bank_id < ranksPerChannel * banksPerRank);
317    perBankRdReqs[bank_id]++;
318
319    avgRdQLen = readQueue.size() + respQueue.size();
320
321    // If we are not already scheduled to get the read request out of
322    // the queue, do so now
323    if (!nextReqEvent.scheduled() && !stopReads) {
324        DPRINTF(DRAM, "Request scheduled immediately\n");
325        schedule(nextReqEvent, curTick());
326    }
327}
328
329void
330SimpleDRAM::processWriteEvent()
331{
332    assert(!writeQueue.empty());
333    uint32_t numWritesThisTime = 0;
334
335    DPRINTF(DRAMWR, "Beginning DRAM Writes\n");
336    Tick temp1 M5_VAR_USED = std::max(curTick(), busBusyUntil);
337    Tick temp2 M5_VAR_USED = std::max(curTick(), maxBankFreeAt());
338
339    // @todo: are there any dangers with the untimed while loop?
340    while (!writeQueue.empty()) {
341        if (numWritesThisTime > writeThreshold) {
342            DPRINTF(DRAMWR, "Hit write threshold %d\n", writeThreshold);
343            break;
344        }
345
346        chooseNextWrite();
347        DRAMPacket* dram_pkt = writeQueue.front();
348        // What's the earliest the request can be put on the bus
349        Tick schedTime = std::max(curTick(), busBusyUntil);
350
351        DPRINTF(DRAMWR, "Asking for latency estimate at %lld\n",
352                schedTime + tBURST);
353
354        pair<Tick, Tick> lat = estimateLatency(dram_pkt, schedTime + tBURST);
355        Tick accessLat = lat.second;
356
357        // look at the rowHitFlag set by estimateLatency
358        if (rowHitFlag)
359            writeRowHits++;
360
361        Bank& bank = dram_pkt->bank_ref;
362
363        if (pageMgmt == Enums::open) {
364            bank.openRow = dram_pkt->row;
365            bank.freeAt = schedTime + tBURST + std::max(accessLat, tCL);
366            busBusyUntil = bank.freeAt - tCL;
367            bank.bytesAccessed += bytesPerCacheLine;
368
369            if (!rowHitFlag) {
370                bank.tRASDoneAt = bank.freeAt + tRP;
371                recordActivate(bank.freeAt - tCL - tRCD);
372                busBusyUntil = bank.freeAt - tCL - tRCD;
373
374                // sample the number of bytes accessed and reset it as
375                // we are now closing this row
376                bytesPerActivate.sample(bank.bytesAccessed);
377                bank.bytesAccessed = 0;
378            }
379        } else if (pageMgmt == Enums::close) {
380            bank.freeAt = schedTime + tBURST + accessLat + tRP + tRP;
381            // Work backwards from bank.freeAt to determine activate time
382            recordActivate(bank.freeAt - tRP - tRP - tCL - tRCD);
383            busBusyUntil = bank.freeAt - tRP - tRP - tCL - tRCD;
384            DPRINTF(DRAMWR, "processWriteEvent::bank.freeAt for "
385                    "banks_id %d is %lld\n",
386                    dram_pkt->rank * banksPerRank + dram_pkt->bank,
387                    bank.freeAt);
388            bytesPerActivate.sample(bytesPerCacheLine);
389        } else
390            panic("Unknown page management policy chosen\n");
391
392        DPRINTF(DRAMWR, "Done writing to address %lld\n", dram_pkt->addr);
393
394        DPRINTF(DRAMWR, "schedtime is %lld, tBURST is %lld, "
395                "busbusyuntil is %lld\n",
396                schedTime, tBURST, busBusyUntil);
397
398        writeQueue.pop_front();
399        delete dram_pkt;
400
401        numWritesThisTime++;
402    }
403
404    DPRINTF(DRAMWR, "Completed %d writes, bus busy for %lld ticks,"\
405            "banks busy for %lld ticks\n", numWritesThisTime,
406            busBusyUntil - temp1, maxBankFreeAt() - temp2);
407
408    // Update stats
409    avgWrQLen = writeQueue.size();
410
411    // turn the bus back around for reads again
412    busBusyUntil += tWTR;
413    stopReads = false;
414
415    if (retryWrReq) {
416        retryWrReq = false;
417        port.sendRetry();
418    }
419
420    // if there is nothing left in any queue, signal a drain
421    if (writeQueue.empty() && readQueue.empty() &&
422        respQueue.empty () && drainManager) {
423        drainManager->signalDrainDone();
424        drainManager = NULL;
425    }
426
427    // Once you're done emptying the write queue, check if there's
428    // anything in the read queue, and call schedule if required. The
429    // retry above could already have caused it to be scheduled, so
430    // first check
431    if (!nextReqEvent.scheduled())
432        schedule(nextReqEvent, busBusyUntil);
433}
434
435void
436SimpleDRAM::triggerWrites()
437{
438    DPRINTF(DRAM, "Writes triggered at %lld\n", curTick());
439    // Flag variable to stop any more read scheduling
440    stopReads = true;
441
442    writeStartTime = std::max(busBusyUntil, curTick()) + tWTR;
443
444    DPRINTF(DRAM, "Writes scheduled at %lld\n", writeStartTime);
445
446    assert(writeStartTime >= curTick());
447    assert(!writeEvent.scheduled());
448    schedule(writeEvent, writeStartTime);
449}
450
451void
452SimpleDRAM::addToWriteQueue(PacketPtr pkt)
453{
454    // only add to the write queue here. whenever the request is
455    // eventually done, set the readyTime, and call schedule()
456    assert(pkt->isWrite());
457
458    DRAMPacket* dram_pkt = decodeAddr(pkt);
459
460    assert(writeQueue.size() < writeBufferSize);
461    wrQLenPdf[writeQueue.size()]++;
462
463    DPRINTF(DRAM, "Adding to write queue\n");
464
465    writeQueue.push_back(dram_pkt);
466
467    // Update stats
468    uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
469    assert(bank_id < ranksPerChannel * banksPerRank);
470    perBankWrReqs[bank_id]++;
471
472    avgWrQLen = writeQueue.size();
473
474    // we do not wait for the writes to be send to the actual memory,
475    // but instead take responsibility for the consistency here and
476    // snoop the write queue for any upcoming reads
477
478    bytesConsumedWr += pkt->getSize();
479    bytesWritten += bytesPerCacheLine;
480    accessAndRespond(pkt, frontendLatency);
481
482    // If your write buffer is starting to fill up, drain it!
483    if (writeQueue.size() > writeThreshold && !stopReads){
484        triggerWrites();
485    }
486}
487
488void
489SimpleDRAM::printParams() const
490{
491    // Sanity check print of important parameters
492    DPRINTF(DRAM,
493            "Memory controller %s physical organization\n"      \
494            "Bytes per cacheline  %d\n"                         \
495            "Lines per row buffer %d\n"                         \
496            "Rows  per bank       %d\n"                         \
497            "Banks per rank       %d\n"                         \
498            "Ranks per channel    %d\n"                         \
499            "Total mem capacity   %u\n",
500            name(), bytesPerCacheLine, linesPerRowBuffer, rowsPerBank,
501            banksPerRank, ranksPerChannel, bytesPerCacheLine *
502            linesPerRowBuffer * rowsPerBank * banksPerRank * ranksPerChannel);
503
504    string scheduler =  memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
505    string address_mapping = addrMapping == Enums::RaBaChCo ? "RaBaChCo" :
506        (addrMapping == Enums::RaBaCoCh ? "RaBaCoCh" : "CoRaBaCh");
507    string page_policy = pageMgmt == Enums::open ? "OPEN" : "CLOSE";
508
509    DPRINTF(DRAM,
510            "Memory controller %s characteristics\n"    \
511            "Read buffer size     %d\n"                 \
512            "Write buffer size    %d\n"                 \
513            "Write buffer thresh  %d\n"                 \
514            "Scheduler            %s\n"                 \
515            "Address mapping      %s\n"                 \
516            "Page policy          %s\n",
517            name(), readBufferSize, writeBufferSize, writeThreshold,
518            scheduler, address_mapping, page_policy);
519
520    DPRINTF(DRAM, "Memory controller %s timing specs\n" \
521            "tRCD      %d ticks\n"                        \
522            "tCL       %d ticks\n"                        \
523            "tRP       %d ticks\n"                        \
524            "tBURST    %d ticks\n"                        \
525            "tRFC      %d ticks\n"                        \
526            "tREFI     %d ticks\n"                        \
527            "tWTR      %d ticks\n"                        \
528            "tXAW (%d) %d ticks\n",
529            name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR,
530            activationLimit, tXAW);
531}
532
533void
534SimpleDRAM::printQs() const {
535
536    list<DRAMPacket*>::const_iterator i;
537
538    DPRINTF(DRAM, "===READ QUEUE===\n\n");
539    for (i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
540        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
541    }
542    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
543    for (i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
544        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
545    }
546    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
547    for (i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
548        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
549    }
550}
551
552bool
553SimpleDRAM::recvTimingReq(PacketPtr pkt)
554{
555    /// @todo temporary hack to deal with memory corruption issues until
556    /// 4-phase transactions are complete
557    for (int x = 0; x < pendingDelete.size(); x++)
558        delete pendingDelete[x];
559    pendingDelete.clear();
560
561    // This is where we enter from the outside world
562    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
563            pkt->cmdString(),pkt->getAddr(), pkt->getSize());
564
565    // simply drop inhibited packets for now
566    if (pkt->memInhibitAsserted()) {
567        DPRINTF(DRAM,"Inhibited packet -- Dropping it now\n");
568        pendingDelete.push_back(pkt);
569        return true;
570    }
571
572   if (pkt->getSize() == bytesPerCacheLine)
573       cpuReqs++;
574
575   // Every million accesses, print the state of the queues
576   if (numReqs % 1000000 == 0)
577       printQs();
578
579    // Calc avg gap between requests
580    if (prevArrival != 0) {
581        totGap += curTick() - prevArrival;
582    }
583    prevArrival = curTick();
584
585    unsigned size = pkt->getSize();
586    if (size > bytesPerCacheLine)
587        panic("Request size %d is greater than burst size %d",
588              size, bytesPerCacheLine);
589
590    // check local buffers and do not accept if full
591    if (pkt->isRead()) {
592        assert(size != 0);
593        if (readQueueFull()) {
594            DPRINTF(DRAM, "Read queue full, not accepting\n");
595            // remember that we have to retry this port
596            retryRdReq = true;
597            numRdRetry++;
598            return false;
599        } else {
600            readPktSize[ceilLog2(size)]++;
601            addToReadQueue(pkt);
602            readReqs++;
603            numReqs++;
604        }
605    } else if (pkt->isWrite()) {
606        assert(size != 0);
607        if (writeQueueFull()) {
608            DPRINTF(DRAM, "Write queue full, not accepting\n");
609            // remember that we have to retry this port
610            retryWrReq = true;
611            numWrRetry++;
612            return false;
613        } else {
614            writePktSize[ceilLog2(size)]++;
615            addToWriteQueue(pkt);
616            writeReqs++;
617            numReqs++;
618        }
619    } else {
620        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
621        neitherReadNorWrite++;
622        accessAndRespond(pkt, 1);
623    }
624
625    retryRdReq = false;
626    retryWrReq = false;
627    return true;
628}
629
630void
631SimpleDRAM::processRespondEvent()
632{
633    DPRINTF(DRAM,
634            "processRespondEvent(): Some req has reached its readyTime\n");
635
636     PacketPtr pkt = respQueue.front()->pkt;
637
638     // Actually responds to the requestor
639     bytesConsumedRd += pkt->getSize();
640     bytesRead += bytesPerCacheLine;
641     accessAndRespond(pkt, frontendLatency + backendLatency);
642
643     delete respQueue.front();
644     respQueue.pop_front();
645
646     // Update stats
647     avgRdQLen = readQueue.size() + respQueue.size();
648
649     if (!respQueue.empty()) {
650         assert(respQueue.front()->readyTime >= curTick());
651         assert(!respondEvent.scheduled());
652         schedule(respondEvent, respQueue.front()->readyTime);
653     } else {
654         // if there is nothing left in any queue, signal a drain
655         if (writeQueue.empty() && readQueue.empty() &&
656             drainManager) {
657             drainManager->signalDrainDone();
658             drainManager = NULL;
659         }
660     }
661
662     // We have made a location in the queue available at this point,
663     // so if there is a read that was forced to wait, retry now
664     if (retryRdReq) {
665         retryRdReq = false;
666         port.sendRetry();
667     }
668}
669
670void
671SimpleDRAM::chooseNextWrite()
672{
673    // This method does the arbitration between write requests. The
674    // chosen packet is simply moved to the head of the write
675    // queue. The other methods know that this is the place to
676    // look. For example, with FCFS, this method does nothing
677    assert(!writeQueue.empty());
678
679    if (writeQueue.size() == 1) {
680        DPRINTF(DRAMWR, "Single write request, nothing to do\n");
681        return;
682    }
683
684    if (memSchedPolicy == Enums::fcfs) {
685        // Do nothing, since the correct request is already head
686    } else if (memSchedPolicy == Enums::frfcfs) {
687        list<DRAMPacket*>::iterator i = writeQueue.begin();
688        bool foundRowHit = false;
689        while (!foundRowHit && i != writeQueue.end()) {
690            DRAMPacket* dram_pkt = *i;
691            const Bank& bank = dram_pkt->bank_ref;
692            if (bank.openRow == dram_pkt->row) { //FR part
693                DPRINTF(DRAMWR, "Write row buffer hit\n");
694                writeQueue.erase(i);
695                writeQueue.push_front(dram_pkt);
696                foundRowHit = true;
697            } else { //FCFS part
698                ;
699            }
700            ++i;
701        }
702    } else
703        panic("No scheduling policy chosen\n");
704
705    DPRINTF(DRAMWR, "Selected next write request\n");
706}
707
708bool
709SimpleDRAM::chooseNextRead()
710{
711    // This method does the arbitration between read requests. The
712    // chosen packet is simply moved to the head of the queue. The
713    // other methods know that this is the place to look. For example,
714    // with FCFS, this method does nothing
715    if (readQueue.empty()) {
716        DPRINTF(DRAM, "No read request to select\n");
717        return false;
718    }
719
720    // If there is only one request then there is nothing left to do
721    if (readQueue.size() == 1)
722        return true;
723
724    if (memSchedPolicy == Enums::fcfs) {
725        // Do nothing, since the request to serve is already the first
726        // one in the read queue
727    } else if (memSchedPolicy == Enums::frfcfs) {
728        for (list<DRAMPacket*>::iterator i = readQueue.begin();
729             i != readQueue.end() ; ++i) {
730            DRAMPacket* dram_pkt = *i;
731            const Bank& bank = dram_pkt->bank_ref;
732            // Check if it is a row hit
733            if (bank.openRow == dram_pkt->row) { //FR part
734                DPRINTF(DRAM, "Row buffer hit\n");
735                readQueue.erase(i);
736                readQueue.push_front(dram_pkt);
737                break;
738            } else { //FCFS part
739                ;
740            }
741        }
742    } else
743        panic("No scheduling policy chosen!\n");
744
745    DPRINTF(DRAM, "Selected next read request\n");
746    return true;
747}
748
749void
750SimpleDRAM::accessAndRespond(PacketPtr pkt, Tick static_latency)
751{
752    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
753
754    bool needsResponse = pkt->needsResponse();
755    // do the actual memory access which also turns the packet into a
756    // response
757    access(pkt);
758
759    // turn packet around to go back to requester if response expected
760    if (needsResponse) {
761        // access already turned the packet into a response
762        assert(pkt->isResponse());
763
764        // @todo someone should pay for this
765        pkt->busFirstWordDelay = pkt->busLastWordDelay = 0;
766
767        // queue the packet in the response queue to be sent out after
768        // the static latency has passed
769        port.schedTimingResp(pkt, curTick() + static_latency);
770    } else {
771        // @todo the packet is going to be deleted, and the DRAMPacket
772        // is still having a pointer to it
773        pendingDelete.push_back(pkt);
774    }
775
776    DPRINTF(DRAM, "Done\n");
777
778    return;
779}
780
781pair<Tick, Tick>
782SimpleDRAM::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
783{
784    // If a request reaches a bank at tick 'inTime', how much time
785    // *after* that does it take to finish the request, depending
786    // on bank status and page open policy. Note that this method
787    // considers only the time taken for the actual read or write
788    // to complete, NOT any additional time thereafter for tRAS or
789    // tRP.
790    Tick accLat = 0;
791    Tick bankLat = 0;
792    rowHitFlag = false;
793
794    const Bank& bank = dram_pkt->bank_ref;
795    if (pageMgmt == Enums::open) { // open-page policy
796        if (bank.openRow == dram_pkt->row) {
797            // When we have a row-buffer hit,
798            // we don't care about tRAS having expired or not,
799            // but do care about bank being free for access
800            rowHitFlag = true;
801
802            if (bank.freeAt < inTime) {
803               // CAS latency only
804               accLat += tCL;
805               bankLat += tCL;
806            } else {
807                accLat += 0;
808                bankLat += 0;
809            }
810
811        } else {
812            // Row-buffer miss, need to close existing row
813            // once tRAS has expired, then open the new one,
814            // then add cas latency.
815            Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt);
816
817            if (freeTime > inTime)
818               accLat += freeTime - inTime;
819
820            accLat += tRP + tRCD + tCL;
821            bankLat += tRP + tRCD + tCL;
822        }
823    } else if (pageMgmt == Enums::close) {
824        // With a close page policy, no notion of
825        // bank.tRASDoneAt
826        if (bank.freeAt > inTime)
827            accLat += bank.freeAt - inTime;
828
829        // page already closed, simply open the row, and
830        // add cas latency
831        accLat += tRCD + tCL;
832        bankLat += tRCD + tCL;
833    } else
834        panic("No page management policy chosen\n");
835
836    DPRINTF(DRAM, "Returning < %lld, %lld > from estimateLatency()\n",
837            bankLat, accLat);
838
839    return make_pair(bankLat, accLat);
840}
841
842void
843SimpleDRAM::processNextReqEvent()
844{
845    scheduleNextReq();
846}
847
848void
849SimpleDRAM::recordActivate(Tick act_tick)
850{
851    assert(actTicks.size() == activationLimit);
852
853    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
854
855    // if the activation limit is disabled then we are done
856    if (actTicks.empty())
857        return;
858
859    // sanity check
860    if (actTicks.back() && (act_tick - actTicks.back()) < tXAW) {
861        panic("Got %d activates in window %d (%d - %d) which is smaller "
862              "than %d\n", activationLimit, act_tick - actTicks.back(),
863              act_tick, actTicks.back(), tXAW);
864    }
865
866    // shift the times used for the book keeping, the last element
867    // (highest index) is the oldest one and hence the lowest value
868    actTicks.pop_back();
869
870    // record an new activation (in the future)
871    actTicks.push_front(act_tick);
872
873    // cannot activate more than X times in time window tXAW, push the
874    // next one (the X + 1'st activate) to be tXAW away from the
875    // oldest in our window of X
876    if (actTicks.back() && (act_tick - actTicks.back()) < tXAW) {
877        DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
878                "than %d\n", activationLimit, actTicks.back() + tXAW);
879        for(int i = 0; i < ranksPerChannel; i++)
880            for(int j = 0; j < banksPerRank; j++)
881                // next activate must not happen before end of window
882                banks[i][j].freeAt = std::max(banks[i][j].freeAt,
883                                              actTicks.back() + tXAW);
884    }
885}
886
887void
888SimpleDRAM::doDRAMAccess(DRAMPacket* dram_pkt)
889{
890
891    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
892            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
893
894    // estimate the bank and access latency
895    pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());
896    Tick bankLat = lat.first;
897    Tick accessLat = lat.second;
898
899    // This request was woken up at this time based on a prior call
900    // to estimateLatency(). However, between then and now, both the
901    // accessLatency and/or busBusyUntil may have changed. We need
902    // to correct for that.
903
904    Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
905        busBusyUntil - (curTick() + accessLat) : 0;
906
907    Bank& bank = dram_pkt->bank_ref;
908
909    // Update bank state
910    if (pageMgmt == Enums::open) {
911        bank.openRow = dram_pkt->row;
912        bank.freeAt = curTick() + addDelay + accessLat;
913        bank.bytesAccessed += bytesPerCacheLine;
914
915        // If you activated a new row do to this access, the next access
916        // will have to respect tRAS for this bank. Assume tRAS ~= 3 * tRP.
917        // Also need to account for t_XAW
918        if (!rowHitFlag) {
919            bank.tRASDoneAt = bank.freeAt + tRP;
920            recordActivate(bank.freeAt - tCL - tRCD); //since this is open page,
921                                                      //no tRP by default
922            // sample the number of bytes accessed and reset it as
923            // we are now closing this row
924            bytesPerActivate.sample(bank.bytesAccessed);
925            bank.bytesAccessed = 0;
926        }
927    } else if (pageMgmt == Enums::close) { // accounting for tRAS also
928        // assuming that tRAS ~= 3 * tRP, and tRC ~= 4 * tRP, as is common
929        // (refer Jacob/Ng/Wang and Micron datasheets)
930        bank.freeAt = curTick() + addDelay + accessLat + tRP + tRP;
931        recordActivate(bank.freeAt - tRP - tRP - tCL - tRCD); //essentially (freeAt - tRC)
932        DPRINTF(DRAM,"doDRAMAccess::bank.freeAt is %lld\n",bank.freeAt);
933        bytesPerActivate.sample(bytesPerCacheLine);
934    } else
935        panic("No page management policy chosen\n");
936
937    // Update request parameters
938    dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
939
940
941    DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \
942                  "readytime is %lld busbusyuntil is %lld. " \
943                  "Scheduling at readyTime\n", dram_pkt->addr,
944                   curTick(), accessLat, dram_pkt->readyTime, busBusyUntil);
945
946    // Make sure requests are not overlapping on the databus
947    assert (dram_pkt->readyTime - busBusyUntil >= tBURST);
948
949    // Update bus state
950    busBusyUntil = dram_pkt->readyTime;
951
952    DPRINTF(DRAM,"Access time is %lld\n",
953            dram_pkt->readyTime - dram_pkt->entryTime);
954
955    // Update stats
956    totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
957    totBankLat += bankLat;
958    totBusLat += tBURST;
959    totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - tBURST;
960
961    if (rowHitFlag)
962        readRowHits++;
963
964    // At this point we're done dealing with the request
965    // It will be moved to a separate response queue with a
966    // correct readyTime, and eventually be sent back at that
967    //time
968    moveToRespQ();
969
970    // The absolute soonest you have to start thinking about the
971    // next request is the longest access time that can occur before
972    // busBusyUntil. Assuming you need to meet tRAS, then precharge,
973    // open a new row, and access, it is ~4*tRCD.
974
975
976    Tick newTime = (busBusyUntil > 4 * tRCD) ?
977                   std::max(busBusyUntil - 4 * tRCD, curTick()) :
978                   curTick();
979
980    if (!nextReqEvent.scheduled() && !stopReads){
981        schedule(nextReqEvent, newTime);
982    } else {
983        if (newTime < nextReqEvent.when())
984            reschedule(nextReqEvent, newTime);
985    }
986
987
988}
989
990void
991SimpleDRAM::moveToRespQ()
992{
993    // Remove from read queue
994    DRAMPacket* dram_pkt = readQueue.front();
995    readQueue.pop_front();
996
997    // Insert into response queue sorted by readyTime
998    // It will be sent back to the requestor at its
999    // readyTime
1000    if (respQueue.empty()) {
1001        respQueue.push_front(dram_pkt);
1002        assert(!respondEvent.scheduled());
1003        assert(dram_pkt->readyTime >= curTick());
1004        schedule(respondEvent, dram_pkt->readyTime);
1005    } else {
1006        bool done = false;
1007        list<DRAMPacket*>::iterator i = respQueue.begin();
1008        while (!done && i != respQueue.end()) {
1009            if ((*i)->readyTime > dram_pkt->readyTime) {
1010                respQueue.insert(i, dram_pkt);
1011                done = true;
1012            }
1013            ++i;
1014        }
1015
1016        if (!done)
1017            respQueue.push_back(dram_pkt);
1018
1019        assert(respondEvent.scheduled());
1020
1021        if (respQueue.front()->readyTime < respondEvent.when()) {
1022            assert(respQueue.front()->readyTime >= curTick());
1023            reschedule(respondEvent, respQueue.front()->readyTime);
1024        }
1025    }
1026}
1027
1028void
1029SimpleDRAM::scheduleNextReq()
1030{
1031    DPRINTF(DRAM, "Reached scheduleNextReq()\n");
1032
1033    // Figure out which read request goes next, and move it to the
1034    // front of the read queue
1035    if (!chooseNextRead()) {
1036        // In the case there is no read request to go next, see if we
1037        // are asked to drain, and if so trigger writes, this also
1038        // ensures that if we hit the write limit we will do this
1039        // multiple times until we are completely drained
1040        if (drainManager && !writeQueue.empty() && !writeEvent.scheduled())
1041            triggerWrites();
1042    } else {
1043        doDRAMAccess(readQueue.front());
1044    }
1045}
1046
1047Tick
1048SimpleDRAM::maxBankFreeAt() const
1049{
1050    Tick banksFree = 0;
1051
1052    for(int i = 0; i < ranksPerChannel; i++)
1053        for(int j = 0; j < banksPerRank; j++)
1054            banksFree = std::max(banks[i][j].freeAt, banksFree);
1055
1056    return banksFree;
1057}
1058
1059void
1060SimpleDRAM::processRefreshEvent()
1061{
1062    DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick());
1063
1064    Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC;
1065
1066    for(int i = 0; i < ranksPerChannel; i++)
1067        for(int j = 0; j < banksPerRank; j++)
1068            banks[i][j].freeAt = banksFree;
1069
1070    schedule(refreshEvent, curTick() + tREFI);
1071}
1072
1073void
1074SimpleDRAM::regStats()
1075{
1076    using namespace Stats;
1077
1078    AbstractMemory::regStats();
1079
1080    readReqs
1081        .name(name() + ".readReqs")
1082        .desc("Total number of read requests seen");
1083
1084    writeReqs
1085        .name(name() + ".writeReqs")
1086        .desc("Total number of write requests seen");
1087
1088    servicedByWrQ
1089        .name(name() + ".servicedByWrQ")
1090        .desc("Number of read reqs serviced by write Q");
1091
1092    cpuReqs
1093        .name(name() + ".cpureqs")
1094        .desc("Reqs generatd by CPU via cache - shady");
1095
1096    neitherReadNorWrite
1097        .name(name() + ".neitherReadNorWrite")
1098        .desc("Reqs where no action is needed");
1099
1100    perBankRdReqs
1101        .init(banksPerRank * ranksPerChannel)
1102        .name(name() + ".perBankRdReqs")
1103        .desc("Track reads on a per bank basis");
1104
1105    perBankWrReqs
1106        .init(banksPerRank * ranksPerChannel)
1107        .name(name() + ".perBankWrReqs")
1108        .desc("Track writes on a per bank basis");
1109
1110    avgRdQLen
1111        .name(name() + ".avgRdQLen")
1112        .desc("Average read queue length over time")
1113        .precision(2);
1114
1115    avgWrQLen
1116        .name(name() + ".avgWrQLen")
1117        .desc("Average write queue length over time")
1118        .precision(2);
1119
1120    totQLat
1121        .name(name() + ".totQLat")
1122        .desc("Total cycles spent in queuing delays");
1123
1124    totBankLat
1125        .name(name() + ".totBankLat")
1126        .desc("Total cycles spent in bank access");
1127
1128    totBusLat
1129        .name(name() + ".totBusLat")
1130        .desc("Total cycles spent in databus access");
1131
1132    totMemAccLat
1133        .name(name() + ".totMemAccLat")
1134        .desc("Sum of mem lat for all requests");
1135
1136    avgQLat
1137        .name(name() + ".avgQLat")
1138        .desc("Average queueing delay per request")
1139        .precision(2);
1140
1141    avgQLat = totQLat / (readReqs - servicedByWrQ);
1142
1143    avgBankLat
1144        .name(name() + ".avgBankLat")
1145        .desc("Average bank access latency per request")
1146        .precision(2);
1147
1148    avgBankLat = totBankLat / (readReqs - servicedByWrQ);
1149
1150    avgBusLat
1151        .name(name() + ".avgBusLat")
1152        .desc("Average bus latency per request")
1153        .precision(2);
1154
1155    avgBusLat = totBusLat / (readReqs - servicedByWrQ);
1156
1157    avgMemAccLat
1158        .name(name() + ".avgMemAccLat")
1159        .desc("Average memory access latency")
1160        .precision(2);
1161
1162    avgMemAccLat = totMemAccLat / (readReqs - servicedByWrQ);
1163
1164    numRdRetry
1165        .name(name() + ".numRdRetry")
1166        .desc("Number of times rd buffer was full causing retry");
1167
1168    numWrRetry
1169        .name(name() + ".numWrRetry")
1170        .desc("Number of times wr buffer was full causing retry");
1171
1172    readRowHits
1173        .name(name() + ".readRowHits")
1174        .desc("Number of row buffer hits during reads");
1175
1176    writeRowHits
1177        .name(name() + ".writeRowHits")
1178        .desc("Number of row buffer hits during writes");
1179
1180    readRowHitRate
1181        .name(name() + ".readRowHitRate")
1182        .desc("Row buffer hit rate for reads")
1183        .precision(2);
1184
1185    readRowHitRate = (readRowHits / (readReqs - servicedByWrQ)) * 100;
1186
1187    writeRowHitRate
1188        .name(name() + ".writeRowHitRate")
1189        .desc("Row buffer hit rate for writes")
1190        .precision(2);
1191
1192    writeRowHitRate = (writeRowHits / writeReqs) * 100;
1193
1194    readPktSize
1195        .init(ceilLog2(bytesPerCacheLine) + 1)
1196        .name(name() + ".readPktSize")
1197        .desc("Categorize read packet sizes");
1198
1199     writePktSize
1200        .init(ceilLog2(bytesPerCacheLine) + 1)
1201        .name(name() + ".writePktSize")
1202        .desc("Categorize write packet sizes");
1203
1204     rdQLenPdf
1205        .init(readBufferSize)
1206        .name(name() + ".rdQLenPdf")
1207        .desc("What read queue length does an incoming req see");
1208
1209     wrQLenPdf
1210        .init(writeBufferSize)
1211        .name(name() + ".wrQLenPdf")
1212        .desc("What write queue length does an incoming req see");
1213
1214     bytesPerActivate
1215         .init(bytesPerCacheLine * linesPerRowBuffer)
1216         .name(name() + ".bytesPerActivate")
1217         .desc("Bytes accessed per row activation")
1218         .flags(nozero);
1219
1220    bytesRead
1221        .name(name() + ".bytesRead")
1222        .desc("Total number of bytes read from memory");
1223
1224    bytesWritten
1225        .name(name() + ".bytesWritten")
1226        .desc("Total number of bytes written to memory");
1227
1228    bytesConsumedRd
1229        .name(name() + ".bytesConsumedRd")
1230        .desc("bytesRead derated as per pkt->getSize()");
1231
1232    bytesConsumedWr
1233        .name(name() + ".bytesConsumedWr")
1234        .desc("bytesWritten derated as per pkt->getSize()");
1235
1236    avgRdBW
1237        .name(name() + ".avgRdBW")
1238        .desc("Average achieved read bandwidth in MB/s")
1239        .precision(2);
1240
1241    avgRdBW = (bytesRead / 1000000) / simSeconds;
1242
1243    avgWrBW
1244        .name(name() + ".avgWrBW")
1245        .desc("Average achieved write bandwidth in MB/s")
1246        .precision(2);
1247
1248    avgWrBW = (bytesWritten / 1000000) / simSeconds;
1249
1250    avgConsumedRdBW
1251        .name(name() + ".avgConsumedRdBW")
1252        .desc("Average consumed read bandwidth in MB/s")
1253        .precision(2);
1254
1255    avgConsumedRdBW = (bytesConsumedRd / 1000000) / simSeconds;
1256
1257    avgConsumedWrBW
1258        .name(name() + ".avgConsumedWrBW")
1259        .desc("Average consumed write bandwidth in MB/s")
1260        .precision(2);
1261
1262    avgConsumedWrBW = (bytesConsumedWr / 1000000) / simSeconds;
1263
1264    peakBW
1265        .name(name() + ".peakBW")
1266        .desc("Theoretical peak bandwidth in MB/s")
1267        .precision(2);
1268
1269    peakBW = (SimClock::Frequency / tBURST) * bytesPerCacheLine / 1000000;
1270
1271    busUtil
1272        .name(name() + ".busUtil")
1273        .desc("Data bus utilization in percentage")
1274        .precision(2);
1275
1276    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1277
1278    totGap
1279        .name(name() + ".totGap")
1280        .desc("Total gap between requests");
1281
1282    avgGap
1283        .name(name() + ".avgGap")
1284        .desc("Average gap between requests")
1285        .precision(2);
1286
1287    avgGap = totGap / (readReqs + writeReqs);
1288}
1289
1290void
1291SimpleDRAM::recvFunctional(PacketPtr pkt)
1292{
1293    // rely on the abstract memory
1294    functionalAccess(pkt);
1295}
1296
1297BaseSlavePort&
1298SimpleDRAM::getSlavePort(const string &if_name, PortID idx)
1299{
1300    if (if_name != "port") {
1301        return MemObject::getSlavePort(if_name, idx);
1302    } else {
1303        return port;
1304    }
1305}
1306
1307unsigned int
1308SimpleDRAM::drain(DrainManager *dm)
1309{
1310    unsigned int count = port.drain(dm);
1311
1312    // if there is anything in any of our internal queues, keep track
1313    // of that as well
1314    if (!(writeQueue.empty() && readQueue.empty() &&
1315          respQueue.empty())) {
1316        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
1317                " resp: %d\n", writeQueue.size(), readQueue.size(),
1318                respQueue.size());
1319        ++count;
1320        drainManager = dm;
1321        // the only part that is not drained automatically over time
1322        // is the write queue, thus trigger writes if there are any
1323        // waiting and no reads waiting, otherwise wait until the
1324        // reads are done
1325        if (readQueue.empty() && !writeQueue.empty() &&
1326            !writeEvent.scheduled())
1327            triggerWrites();
1328    }
1329
1330    if (count)
1331        setDrainState(Drainable::Draining);
1332    else
1333        setDrainState(Drainable::Drained);
1334    return count;
1335}
1336
1337SimpleDRAM::MemoryPort::MemoryPort(const std::string& name, SimpleDRAM& _memory)
1338    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1339      memory(_memory)
1340{ }
1341
1342AddrRangeList
1343SimpleDRAM::MemoryPort::getAddrRanges() const
1344{
1345    AddrRangeList ranges;
1346    ranges.push_back(memory.getAddrRange());
1347    return ranges;
1348}
1349
1350void
1351SimpleDRAM::MemoryPort::recvFunctional(PacketPtr pkt)
1352{
1353    pkt->pushLabel(memory.name());
1354
1355    if (!queue.checkFunctional(pkt)) {
1356        // Default implementation of SimpleTimingPort::recvFunctional()
1357        // calls recvAtomic() and throws away the latency; we can save a
1358        // little here by just not calculating the latency.
1359        memory.recvFunctional(pkt);
1360    }
1361
1362    pkt->popLabel();
1363}
1364
1365Tick
1366SimpleDRAM::MemoryPort::recvAtomic(PacketPtr pkt)
1367{
1368    return memory.recvAtomic(pkt);
1369}
1370
1371bool
1372SimpleDRAM::MemoryPort::recvTimingReq(PacketPtr pkt)
1373{
1374    // pass it to the memory controller
1375    return memory.recvTimingReq(pkt);
1376}
1377
1378SimpleDRAM*
1379SimpleDRAMParams::create()
1380{
1381    return new SimpleDRAM(this);
1382}
1383