1/* 2 * Copyright (c) 2010-2018 ARM Limited 3 * All rights reserved 4 * 5 * The license below extends only to copyright in the software and shall 6 * not be construed as granting a license to any other intellectual 7 * property including but not limited to intellectual property relating 8 * to a hardware implementation of the functionality of the software 9 * licensed hereunder. You may use the software subject to the license 10 * terms below provided that you ensure that this notice is replicated 11 * unmodified and in its entirety in all distributions of the software, 12 * modified or unmodified, in source code or in binary form. 13 * 14 * Copyright (c) 2013 Amin Farmahini-Farahani 15 * All rights reserved. 16 * 17 * Redistribution and use in source and binary forms, with or without 18 * modification, are permitted provided that the following conditions are 19 * met: redistributions of source code must retain the above copyright 20 * notice, this list of conditions and the following disclaimer; 21 * redistributions in binary form must reproduce the above copyright 22 * notice, this list of conditions and the following disclaimer in the 23 * documentation and/or other materials provided with the distribution; 24 * neither the name of the copyright holders nor the names of its 25 * contributors may be used to endorse or promote products derived from 26 * this software without specific prior written permission. 27 * 28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 39 * 40 * Authors: Andreas Hansson 41 * Ani Udipi 42 * Neha Agarwal 43 * Omar Naji 44 * Wendy Elsasser 45 * Radhika Jagtap 46 */ 47 48#include "mem/dram_ctrl.hh" 49 50#include "base/bitfield.hh" 51#include "base/trace.hh" 52#include "debug/DRAM.hh" 53#include "debug/DRAMPower.hh" 54#include "debug/DRAMState.hh" 55#include "debug/Drain.hh" 56#include "debug/QOS.hh" 57#include "sim/system.hh" 58 59using namespace std; 60using namespace Data; 61 62DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) : 63 QoS::MemCtrl(p), 64 port(name() + ".port", *this), isTimingMode(false), 65 retryRdReq(false), retryWrReq(false), 66 nextReqEvent([this]{ processNextReqEvent(); }, name()), 67 respondEvent([this]{ processRespondEvent(); }, name()), 68 deviceSize(p->device_size), 69 deviceBusWidth(p->device_bus_width), burstLength(p->burst_length), 70 deviceRowBufferSize(p->device_rowbuffer_size), 71 devicesPerRank(p->devices_per_rank), 72 burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8), 73 rowBufferSize(devicesPerRank * deviceRowBufferSize), 74 columnsPerRowBuffer(rowBufferSize / burstSize), 75 columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1), 76 ranksPerChannel(p->ranks_per_channel), 77 bankGroupsPerRank(p->bank_groups_per_rank), 78 bankGroupArch(p->bank_groups_per_rank > 0), 79 banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0), 80 readBufferSize(p->read_buffer_size), 81 writeBufferSize(p->write_buffer_size), 82 writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0), 83 writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0), 84 minWritesPerSwitch(p->min_writes_per_switch), 85 writesThisTime(0), readsThisTime(0), 86 tCK(p->tCK), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST), 87 tCCD_L_WR(p->tCCD_L_WR), 88 tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), 89 tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD), 90 tRRD_L(p->tRRD_L), tXAW(p->tXAW), tXP(p->tXP), tXS(p->tXS), 91 activationLimit(p->activation_limit), rankToRankDly(tCS + tBURST), 92 wrToRdDly(tCL + tBURST + p->tWTR), rdToWrDly(tRTW + tBURST), 93 memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping), 94 pageMgmt(p->page_policy), 95 maxAccessesPerRow(p->max_accesses_per_row), 96 frontendLatency(p->static_frontend_latency), 97 backendLatency(p->static_backend_latency), 98 nextBurstAt(0), prevArrival(0), 99 nextReqTime(0), activeRank(0), timeStampOffset(0), 100 lastStatsResetTick(0), enableDRAMPowerdown(p->enable_dram_powerdown) 101{ 102 // sanity check the ranks since we rely on bit slicing for the 103 // address decoding 104 fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not " 105 "allowed, must be a power of two\n", ranksPerChannel); 106 107 fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, " 108 "must be a power of two\n", burstSize); 109 readQueue.resize(p->qos_priorities); 110 writeQueue.resize(p->qos_priorities); 111 112 113 for (int i = 0; i < ranksPerChannel; i++) { 114 Rank* rank = new Rank(*this, p, i); 115 ranks.push_back(rank); 116 } 117 118 // perform a basic check of the write thresholds 119 if (p->write_low_thresh_perc >= p->write_high_thresh_perc) 120 fatal("Write buffer low threshold %d must be smaller than the " 121 "high threshold %d\n", p->write_low_thresh_perc, 122 p->write_high_thresh_perc); 123 124 // determine the rows per bank by looking at the total capacity 125 uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size()); 126 127 // determine the dram actual capacity from the DRAM config in Mbytes 128 uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank * 129 ranksPerChannel; 130 131 // if actual DRAM size does not match memory capacity in system warn! 132 if (deviceCapacity != capacity / (1024 * 1024)) 133 warn("DRAM device capacity (%d Mbytes) does not match the " 134 "address range assigned (%d Mbytes)\n", deviceCapacity, 135 capacity / (1024 * 1024)); 136 137 DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity, 138 AbstractMemory::size()); 139 140 DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n", 141 rowBufferSize, columnsPerRowBuffer); 142 143 rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel); 144 145 // some basic sanity checks 146 if (tREFI <= tRP || tREFI <= tRFC) { 147 fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n", 148 tREFI, tRP, tRFC); 149 } 150 151 // basic bank group architecture checks -> 152 if (bankGroupArch) { 153 // must have at least one bank per bank group 154 if (bankGroupsPerRank > banksPerRank) { 155 fatal("banks per rank (%d) must be equal to or larger than " 156 "banks groups per rank (%d)\n", 157 banksPerRank, bankGroupsPerRank); 158 } 159 // must have same number of banks in each bank group 160 if ((banksPerRank % bankGroupsPerRank) != 0) { 161 fatal("Banks per rank (%d) must be evenly divisible by bank groups " 162 "per rank (%d) for equal banks per bank group\n", 163 banksPerRank, bankGroupsPerRank); 164 } 165 // tCCD_L should be greater than minimal, back-to-back burst delay 166 if (tCCD_L <= tBURST) { 167 fatal("tCCD_L (%d) should be larger than tBURST (%d) when " 168 "bank groups per rank (%d) is greater than 1\n", 169 tCCD_L, tBURST, bankGroupsPerRank); 170 } 171 // tCCD_L_WR should be greater than minimal, back-to-back burst delay 172 if (tCCD_L_WR <= tBURST) { 173 fatal("tCCD_L_WR (%d) should be larger than tBURST (%d) when " 174 "bank groups per rank (%d) is greater than 1\n", 175 tCCD_L_WR, tBURST, bankGroupsPerRank); 176 } 177 // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay 178 // some datasheets might specify it equal to tRRD 179 if (tRRD_L < tRRD) { 180 fatal("tRRD_L (%d) should be larger than tRRD (%d) when " 181 "bank groups per rank (%d) is greater than 1\n", 182 tRRD_L, tRRD, bankGroupsPerRank); 183 } 184 } 185 186} 187 188void 189DRAMCtrl::init() 190{ 191 MemCtrl::init(); 192 193 if (!port.isConnected()) { 194 fatal("DRAMCtrl %s is unconnected!\n", name()); 195 } else { 196 port.sendRangeChange(); 197 } 198 199 // a bit of sanity checks on the interleaving, save it for here to 200 // ensure that the system pointer is initialised 201 if (range.interleaved()) { 202 if (channels != range.stripes()) 203 fatal("%s has %d interleaved address stripes but %d channel(s)\n", 204 name(), range.stripes(), channels); 205 206 if (addrMapping == Enums::RoRaBaChCo) { 207 if (rowBufferSize != range.granularity()) { 208 fatal("Channel interleaving of %s doesn't match RoRaBaChCo " 209 "address map\n", name()); 210 } 211 } else if (addrMapping == Enums::RoRaBaCoCh || 212 addrMapping == Enums::RoCoRaBaCh) { 213 // for the interleavings with channel bits in the bottom, 214 // if the system uses a channel striping granularity that 215 // is larger than the DRAM burst size, then map the 216 // sequential accesses within a stripe to a number of 217 // columns in the DRAM, effectively placing some of the 218 // lower-order column bits as the least-significant bits 219 // of the address (above the ones denoting the burst size) 220 assert(columnsPerStripe >= 1); 221 222 // channel striping has to be done at a granularity that 223 // is equal or larger to a cache line 224 if (system()->cacheLineSize() > range.granularity()) { 225 fatal("Channel interleaving of %s must be at least as large " 226 "as the cache line size\n", name()); 227 } 228 229 // ...and equal or smaller than the row-buffer size 230 if (rowBufferSize < range.granularity()) { 231 fatal("Channel interleaving of %s must be at most as large " 232 "as the row-buffer size\n", name()); 233 } 234 // this is essentially the check above, so just to be sure 235 assert(columnsPerStripe <= columnsPerRowBuffer); 236 } 237 } 238} 239 240void 241DRAMCtrl::startup() 242{ 243 // remember the memory system mode of operation 244 isTimingMode = system()->isTimingMode(); 245 246 if (isTimingMode) { 247 // timestamp offset should be in clock cycles for DRAMPower 248 timeStampOffset = divCeil(curTick(), tCK); 249 250 // update the start tick for the precharge accounting to the 251 // current tick 252 for (auto r : ranks) { 253 r->startup(curTick() + tREFI - tRP); 254 } 255 256 // shift the bus busy time sufficiently far ahead that we never 257 // have to worry about negative values when computing the time for 258 // the next request, this will add an insignificant bubble at the 259 // start of simulation 260 nextBurstAt = curTick() + tRP + tRCD; 261 } 262} 263 264Tick 265DRAMCtrl::recvAtomic(PacketPtr pkt) 266{ 267 DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr()); 268 269 panic_if(pkt->cacheResponding(), "Should not see packets where cache " 270 "is responding"); 271 272 // do the actual memory access and turn the packet into a response 273 access(pkt); 274 275 Tick latency = 0; 276 if (pkt->hasData()) { 277 // this value is not supposed to be accurate, just enough to 278 // keep things going, mimic a closed page 279 latency = tRP + tRCD + tCL; 280 } 281 return latency; 282} 283 284bool 285DRAMCtrl::readQueueFull(unsigned int neededEntries) const 286{ 287 DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n", 288 readBufferSize, totalReadQueueSize + respQueue.size(), 289 neededEntries); 290 291 auto rdsize_new = totalReadQueueSize + respQueue.size() + neededEntries; 292 return rdsize_new > readBufferSize; 293} 294 295bool 296DRAMCtrl::writeQueueFull(unsigned int neededEntries) const 297{ 298 DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n", 299 writeBufferSize, totalWriteQueueSize, neededEntries); 300 301 auto wrsize_new = (totalWriteQueueSize + neededEntries); 302 return wrsize_new > writeBufferSize; 303} 304 305DRAMCtrl::DRAMPacket* 306DRAMCtrl::decodeAddr(const PacketPtr pkt, Addr dramPktAddr, unsigned size, 307 bool isRead) const 308{ 309 // decode the address based on the address mapping scheme, with 310 // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and 311 // channel, respectively 312 uint8_t rank; 313 uint8_t bank; 314 // use a 64-bit unsigned during the computations as the row is 315 // always the top bits, and check before creating the DRAMPacket 316 uint64_t row; 317 318 // truncate the address to a DRAM burst, which makes it unique to 319 // a specific column, row, bank, rank and channel 320 Addr addr = dramPktAddr / burstSize; 321 322 // we have removed the lowest order address bits that denote the 323 // position within the column 324 if (addrMapping == Enums::RoRaBaChCo) { 325 // the lowest order bits denote the column to ensure that 326 // sequential cache lines occupy the same row 327 addr = addr / columnsPerRowBuffer; 328 329 // take out the channel part of the address 330 addr = addr / channels; 331 332 // after the channel bits, get the bank bits to interleave 333 // over the banks 334 bank = addr % banksPerRank; 335 addr = addr / banksPerRank; 336 337 // after the bank, we get the rank bits which thus interleaves 338 // over the ranks 339 rank = addr % ranksPerChannel; 340 addr = addr / ranksPerChannel; 341 342 // lastly, get the row bits, no need to remove them from addr 343 row = addr % rowsPerBank; 344 } else if (addrMapping == Enums::RoRaBaCoCh) { 345 // take out the lower-order column bits 346 addr = addr / columnsPerStripe; 347 348 // take out the channel part of the address 349 addr = addr / channels; 350 351 // next, the higher-order column bites 352 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 353 354 // after the column bits, we get the bank bits to interleave 355 // over the banks 356 bank = addr % banksPerRank; 357 addr = addr / banksPerRank; 358 359 // after the bank, we get the rank bits which thus interleaves 360 // over the ranks 361 rank = addr % ranksPerChannel; 362 addr = addr / ranksPerChannel; 363 364 // lastly, get the row bits, no need to remove them from addr 365 row = addr % rowsPerBank; 366 } else if (addrMapping == Enums::RoCoRaBaCh) { 367 // optimise for closed page mode and utilise maximum 368 // parallelism of the DRAM (at the cost of power) 369 370 // take out the lower-order column bits 371 addr = addr / columnsPerStripe; 372 373 // take out the channel part of the address, not that this has 374 // to match with how accesses are interleaved between the 375 // controllers in the address mapping 376 addr = addr / channels; 377 378 // start with the bank bits, as this provides the maximum 379 // opportunity for parallelism between requests 380 bank = addr % banksPerRank; 381 addr = addr / banksPerRank; 382 383 // next get the rank bits 384 rank = addr % ranksPerChannel; 385 addr = addr / ranksPerChannel; 386 387 // next, the higher-order column bites 388 addr = addr / (columnsPerRowBuffer / columnsPerStripe); 389 390 // lastly, get the row bits, no need to remove them from addr 391 row = addr % rowsPerBank; 392 } else 393 panic("Unknown address mapping policy chosen!"); 394 395 assert(rank < ranksPerChannel); 396 assert(bank < banksPerRank); 397 assert(row < rowsPerBank); 398 assert(row < Bank::NO_ROW); 399 400 DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n", 401 dramPktAddr, rank, bank, row); 402 403 // create the corresponding DRAM packet with the entry time and 404 // ready time set to the current tick, the latter will be updated 405 // later 406 uint16_t bank_id = banksPerRank * rank + bank; 407 return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr, 408 size, ranks[rank]->banks[bank], *ranks[rank]); 409} 410 411void 412DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount) 413{ 414 // only add to the read queue here. whenever the request is 415 // eventually done, set the readyTime, and call schedule() 416 assert(!pkt->isWrite()); 417 418 assert(pktCount != 0); 419 420 // if the request size is larger than burst size, the pkt is split into 421 // multiple DRAM packets 422 // Note if the pkt starting address is not aligened to burst size, the 423 // address of first DRAM packet is kept unaliged. Subsequent DRAM packets 424 // are aligned to burst size boundaries. This is to ensure we accurately 425 // check read packets against packets in write queue. 426 Addr addr = pkt->getAddr(); 427 unsigned pktsServicedByWrQ = 0; 428 BurstHelper* burst_helper = NULL; 429 for (int cnt = 0; cnt < pktCount; ++cnt) { 430 unsigned size = std::min((addr | (burstSize - 1)) + 1, 431 pkt->getAddr() + pkt->getSize()) - addr; 432 readPktSize[ceilLog2(size)]++; 433 readBursts++; 434 masterReadAccesses[pkt->masterId()]++; 435 436 // First check write buffer to see if the data is already at 437 // the controller 438 bool foundInWrQ = false; 439 Addr burst_addr = burstAlign(addr); 440 // if the burst address is not present then there is no need 441 // looking any further 442 if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) { 443 for (const auto& vec : writeQueue) { 444 for (const auto& p : vec) { 445 // check if the read is subsumed in the write queue 446 // packet we are looking at 447 if (p->addr <= addr && 448 ((addr + size) <= (p->addr + p->size))) { 449 450 foundInWrQ = true; 451 servicedByWrQ++; 452 pktsServicedByWrQ++; 453 DPRINTF(DRAM, 454 "Read to addr %lld with size %d serviced by " 455 "write queue\n", 456 addr, size); 457 bytesReadWrQ += burstSize; 458 break; 459 } 460 } 461 } 462 } 463 464 // If not found in the write q, make a DRAM packet and 465 // push it onto the read queue 466 if (!foundInWrQ) { 467 468 // Make the burst helper for split packets 469 if (pktCount > 1 && burst_helper == NULL) { 470 DPRINTF(DRAM, "Read to addr %lld translates to %d " 471 "dram requests\n", pkt->getAddr(), pktCount); 472 burst_helper = new BurstHelper(pktCount); 473 } 474 475 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true); 476 dram_pkt->burstHelper = burst_helper; 477 478 assert(!readQueueFull(1)); 479 rdQLenPdf[totalReadQueueSize + respQueue.size()]++; 480 481 DPRINTF(DRAM, "Adding to read queue\n"); 482 483 readQueue[dram_pkt->qosValue()].push_back(dram_pkt); 484 485 ++dram_pkt->rankRef.readEntries; 486 487 // log packet 488 logRequest(MemCtrl::READ, pkt->masterId(), pkt->qosValue(), 489 dram_pkt->addr, 1); 490 491 // Update stats 492 avgRdQLen = totalReadQueueSize + respQueue.size(); 493 } 494 495 // Starting address of next dram pkt (aligend to burstSize boundary) 496 addr = (addr | (burstSize - 1)) + 1; 497 } 498 499 // If all packets are serviced by write queue, we send the repsonse back 500 if (pktsServicedByWrQ == pktCount) { 501 accessAndRespond(pkt, frontendLatency); 502 return; 503 } 504 505 // Update how many split packets are serviced by write queue 506 if (burst_helper != NULL) 507 burst_helper->burstsServiced = pktsServicedByWrQ; 508 509 // If we are not already scheduled to get a request out of the 510 // queue, do so now 511 if (!nextReqEvent.scheduled()) { 512 DPRINTF(DRAM, "Request scheduled immediately\n"); 513 schedule(nextReqEvent, curTick()); 514 } 515} 516 517void 518DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount) 519{ 520 // only add to the write queue here. whenever the request is 521 // eventually done, set the readyTime, and call schedule() 522 assert(pkt->isWrite()); 523 524 // if the request size is larger than burst size, the pkt is split into 525 // multiple DRAM packets 526 Addr addr = pkt->getAddr(); 527 for (int cnt = 0; cnt < pktCount; ++cnt) { 528 unsigned size = std::min((addr | (burstSize - 1)) + 1, 529 pkt->getAddr() + pkt->getSize()) - addr; 530 writePktSize[ceilLog2(size)]++; 531 writeBursts++; 532 masterWriteAccesses[pkt->masterId()]++; 533 534 // see if we can merge with an existing item in the write 535 // queue and keep track of whether we have merged or not 536 bool merged = isInWriteQueue.find(burstAlign(addr)) != 537 isInWriteQueue.end(); 538 539 // if the item was not merged we need to create a new write 540 // and enqueue it 541 if (!merged) { 542 DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false); 543 544 assert(totalWriteQueueSize < writeBufferSize); 545 wrQLenPdf[totalWriteQueueSize]++; 546 547 DPRINTF(DRAM, "Adding to write queue\n"); 548 549 writeQueue[dram_pkt->qosValue()].push_back(dram_pkt); 550 isInWriteQueue.insert(burstAlign(addr)); 551 552 // log packet 553 logRequest(MemCtrl::WRITE, pkt->masterId(), pkt->qosValue(), 554 dram_pkt->addr, 1); 555 556 assert(totalWriteQueueSize == isInWriteQueue.size()); 557 558 // Update stats 559 avgWrQLen = totalWriteQueueSize; 560 561 // increment write entries of the rank 562 ++dram_pkt->rankRef.writeEntries; 563 } else { 564 DPRINTF(DRAM, "Merging write burst with existing queue entry\n"); 565 566 // keep track of the fact that this burst effectively 567 // disappeared as it was merged with an existing one 568 mergedWrBursts++; 569 } 570 571 // Starting address of next dram pkt (aligend to burstSize boundary) 572 addr = (addr | (burstSize - 1)) + 1; 573 } 574 575 // we do not wait for the writes to be send to the actual memory, 576 // but instead take responsibility for the consistency here and 577 // snoop the write queue for any upcoming reads 578 // @todo, if a pkt size is larger than burst size, we might need a 579 // different front end latency 580 accessAndRespond(pkt, frontendLatency); 581 582 // If we are not already scheduled to get a request out of the 583 // queue, do so now 584 if (!nextReqEvent.scheduled()) { 585 DPRINTF(DRAM, "Request scheduled immediately\n"); 586 schedule(nextReqEvent, curTick()); 587 } 588} 589 590void 591DRAMCtrl::printQs() const 592{ 593#if TRACING_ON 594 DPRINTF(DRAM, "===READ QUEUE===\n\n"); 595 for (const auto& queue : readQueue) { 596 for (const auto& packet : queue) { 597 DPRINTF(DRAM, "Read %lu\n", packet->addr); 598 } 599 } 600 601 DPRINTF(DRAM, "\n===RESP QUEUE===\n\n"); 602 for (const auto& packet : respQueue) { 603 DPRINTF(DRAM, "Response %lu\n", packet->addr); 604 } 605 606 DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n"); 607 for (const auto& queue : writeQueue) { 608 for (const auto& packet : queue) { 609 DPRINTF(DRAM, "Write %lu\n", packet->addr); 610 } 611 } 612#endif // TRACING_ON 613} 614 615bool 616DRAMCtrl::recvTimingReq(PacketPtr pkt) 617{ 618 // This is where we enter from the outside world 619 DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n", 620 pkt->cmdString(), pkt->getAddr(), pkt->getSize()); 621 622 panic_if(pkt->cacheResponding(), "Should not see packets where cache " 623 "is responding"); 624 625 panic_if(!(pkt->isRead() || pkt->isWrite()), 626 "Should only see read and writes at memory controller\n"); 627 628 // Calc avg gap between requests 629 if (prevArrival != 0) { 630 totGap += curTick() - prevArrival; 631 } 632 prevArrival = curTick(); 633 634 635 // Find out how many dram packets a pkt translates to 636 // If the burst size is equal or larger than the pkt size, then a pkt 637 // translates to only one dram packet. Otherwise, a pkt translates to 638 // multiple dram packets 639 unsigned size = pkt->getSize(); 640 unsigned offset = pkt->getAddr() & (burstSize - 1); 641 unsigned int dram_pkt_count = divCeil(offset + size, burstSize); 642 643 // run the QoS scheduler and assign a QoS priority value to the packet 644 qosSchedule( { &readQueue, &writeQueue }, burstSize, pkt); 645 646 // check local buffers and do not accept if full 647 if (pkt->isWrite()) { 648 assert(size != 0); 649 if (writeQueueFull(dram_pkt_count)) { 650 DPRINTF(DRAM, "Write queue full, not accepting\n"); 651 // remember that we have to retry this port 652 retryWrReq = true; 653 numWrRetry++; 654 return false; 655 } else { 656 addToWriteQueue(pkt, dram_pkt_count); 657 writeReqs++; 658 bytesWrittenSys += size; 659 } 660 } else { 661 assert(pkt->isRead()); 662 assert(size != 0); 663 if (readQueueFull(dram_pkt_count)) { 664 DPRINTF(DRAM, "Read queue full, not accepting\n"); 665 // remember that we have to retry this port 666 retryRdReq = true; 667 numRdRetry++; 668 return false; 669 } else { 670 addToReadQueue(pkt, dram_pkt_count); 671 readReqs++; 672 bytesReadSys += size; 673 } 674 } 675 676 return true; 677} 678 679void 680DRAMCtrl::processRespondEvent() 681{ 682 DPRINTF(DRAM, 683 "processRespondEvent(): Some req has reached its readyTime\n"); 684 685 DRAMPacket* dram_pkt = respQueue.front(); 686 687 // if a read has reached its ready-time, decrement the number of reads 688 // At this point the packet has been handled and there is a possibility 689 // to switch to low-power mode if no other packet is available 690 --dram_pkt->rankRef.readEntries; 691 DPRINTF(DRAM, "number of read entries for rank %d is %d\n", 692 dram_pkt->rank, dram_pkt->rankRef.readEntries); 693 694 // counter should at least indicate one outstanding request 695 // for this read 696 assert(dram_pkt->rankRef.outstandingEvents > 0); 697 // read response received, decrement count 698 --dram_pkt->rankRef.outstandingEvents; 699 700 // at this moment should not have transitioned to a low-power state 701 assert((dram_pkt->rankRef.pwrState != PWR_SREF) && 702 (dram_pkt->rankRef.pwrState != PWR_PRE_PDN) && 703 (dram_pkt->rankRef.pwrState != PWR_ACT_PDN)); 704 705 // track if this is the last packet before idling 706 // and that there are no outstanding commands to this rank 707 if (dram_pkt->rankRef.isQueueEmpty() && 708 dram_pkt->rankRef.outstandingEvents == 0 && enableDRAMPowerdown) { 709 // verify that there are no events scheduled 710 assert(!dram_pkt->rankRef.activateEvent.scheduled()); 711 assert(!dram_pkt->rankRef.prechargeEvent.scheduled()); 712 713 // if coming from active state, schedule power event to 714 // active power-down else go to precharge power-down 715 DPRINTF(DRAMState, "Rank %d sleep at tick %d; current power state is " 716 "%d\n", dram_pkt->rank, curTick(), dram_pkt->rankRef.pwrState); 717 718 // default to ACT power-down unless already in IDLE state 719 // could be in IDLE if PRE issued before data returned 720 PowerState next_pwr_state = PWR_ACT_PDN; 721 if (dram_pkt->rankRef.pwrState == PWR_IDLE) { 722 next_pwr_state = PWR_PRE_PDN; 723 } 724 725 dram_pkt->rankRef.powerDownSleep(next_pwr_state, curTick()); 726 } 727 728 if (dram_pkt->burstHelper) { 729 // it is a split packet 730 dram_pkt->burstHelper->burstsServiced++; 731 if (dram_pkt->burstHelper->burstsServiced == 732 dram_pkt->burstHelper->burstCount) { 733 // we have now serviced all children packets of a system packet 734 // so we can now respond to the requester 735 // @todo we probably want to have a different front end and back 736 // end latency for split packets 737 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 738 delete dram_pkt->burstHelper; 739 dram_pkt->burstHelper = NULL; 740 } 741 } else { 742 // it is not a split packet 743 accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency); 744 } 745 746 delete respQueue.front(); 747 respQueue.pop_front(); 748 749 if (!respQueue.empty()) { 750 assert(respQueue.front()->readyTime >= curTick()); 751 assert(!respondEvent.scheduled()); 752 schedule(respondEvent, respQueue.front()->readyTime); 753 } else { 754 // if there is nothing left in any queue, signal a drain 755 if (drainState() == DrainState::Draining && 756 !totalWriteQueueSize && !totalReadQueueSize && allRanksDrained()) { 757 758 DPRINTF(Drain, "DRAM controller done draining\n"); 759 signalDrainDone(); 760 } 761 } 762 763 // We have made a location in the queue available at this point, 764 // so if there is a read that was forced to wait, retry now 765 if (retryRdReq) { 766 retryRdReq = false; 767 port.sendRetryReq(); 768 } 769} 770 771DRAMCtrl::DRAMPacketQueue::iterator 772DRAMCtrl::chooseNext(DRAMPacketQueue& queue, Tick extra_col_delay) 773{ 774 // This method does the arbitration between requests. 775 776 DRAMCtrl::DRAMPacketQueue::iterator ret = queue.end(); 777 778 if (!queue.empty()) { 779 if (queue.size() == 1) { 780 // available rank corresponds to state refresh idle 781 DRAMPacket* dram_pkt = *(queue.begin()); 782 if (ranks[dram_pkt->rank]->inRefIdleState()) { 783 ret = queue.begin(); 784 DPRINTF(DRAM, "Single request, going to a free rank\n"); 785 } else { 786 DPRINTF(DRAM, "Single request, going to a busy rank\n"); 787 } 788 } else if (memSchedPolicy == Enums::fcfs) { 789 // check if there is a packet going to a free rank 790 for (auto i = queue.begin(); i != queue.end(); ++i) { 791 DRAMPacket* dram_pkt = *i; 792 if (ranks[dram_pkt->rank]->inRefIdleState()) { 793 ret = i; 794 break; 795 } 796 } 797 } else if (memSchedPolicy == Enums::frfcfs) { 798 ret = chooseNextFRFCFS(queue, extra_col_delay); 799 } else { 800 panic("No scheduling policy chosen\n"); 801 } 802 } 803 return ret; 804} 805 806DRAMCtrl::DRAMPacketQueue::iterator 807DRAMCtrl::chooseNextFRFCFS(DRAMPacketQueue& queue, Tick extra_col_delay) 808{ 809 // Only determine this if needed 810 vector<uint32_t> earliest_banks(ranksPerChannel, 0); 811 812 // Has minBankPrep been called to populate earliest_banks? 813 bool filled_earliest_banks = false; 814 // can the PRE/ACT sequence be done without impacting utlization? 815 bool hidden_bank_prep = false; 816 817 // search for seamless row hits first, if no seamless row hit is 818 // found then determine if there are other packets that can be issued 819 // without incurring additional bus delay due to bank timing 820 // Will select closed rows first to enable more open row possibilies 821 // in future selections 822 bool found_hidden_bank = false; 823 824 // remember if we found a row hit, not seamless, but bank prepped 825 // and ready 826 bool found_prepped_pkt = false; 827 828 // if we have no row hit, prepped or not, and no seamless packet, 829 // just go for the earliest possible 830 bool found_earliest_pkt = false; 831 832 auto selected_pkt_it = queue.end(); 833 834 // time we need to issue a column command to be seamless 835 const Tick min_col_at = std::max(nextBurstAt + extra_col_delay, curTick()); 836 837 for (auto i = queue.begin(); i != queue.end() ; ++i) { 838 DRAMPacket* dram_pkt = *i; 839 const Bank& bank = dram_pkt->bankRef; 840 const Tick col_allowed_at = dram_pkt->isRead() ? bank.rdAllowedAt : 841 bank.wrAllowedAt; 842 843 DPRINTF(DRAM, "%s checking packet in bank %d\n", 844 __func__, dram_pkt->bankRef.bank); 845 846 // check if rank is not doing a refresh and thus is available, if not, 847 // jump to the next packet 848 if (dram_pkt->rankRef.inRefIdleState()) { 849 850 DPRINTF(DRAM, 851 "%s bank %d - Rank %d available\n", __func__, 852 dram_pkt->bankRef.bank, dram_pkt->rankRef.rank); 853 854 // check if it is a row hit 855 if (bank.openRow == dram_pkt->row) { 856 // no additional rank-to-rank or same bank-group 857 // delays, or we switched read/write and might as well 858 // go for the row hit 859 if (col_allowed_at <= min_col_at) { 860 // FCFS within the hits, giving priority to 861 // commands that can issue seamlessly, without 862 // additional delay, such as same rank accesses 863 // and/or different bank-group accesses 864 DPRINTF(DRAM, "%s Seamless row buffer hit\n", __func__); 865 selected_pkt_it = i; 866 // no need to look through the remaining queue entries 867 break; 868 } else if (!found_hidden_bank && !found_prepped_pkt) { 869 // if we did not find a packet to a closed row that can 870 // issue the bank commands without incurring delay, and 871 // did not yet find a packet to a prepped row, remember 872 // the current one 873 selected_pkt_it = i; 874 found_prepped_pkt = true; 875 DPRINTF(DRAM, "%s Prepped row buffer hit\n", __func__); 876 } 877 } else if (!found_earliest_pkt) { 878 // if we have not initialised the bank status, do it 879 // now, and only once per scheduling decisions 880 if (!filled_earliest_banks) { 881 // determine entries with earliest bank delay 882 std::tie(earliest_banks, hidden_bank_prep) = 883 minBankPrep(queue, min_col_at); 884 filled_earliest_banks = true; 885 } 886 887 // bank is amongst first available banks 888 // minBankPrep will give priority to packets that can 889 // issue seamlessly 890 if (bits(earliest_banks[dram_pkt->rank], 891 dram_pkt->bank, dram_pkt->bank)) { 892 found_earliest_pkt = true; 893 found_hidden_bank = hidden_bank_prep; 894 895 // give priority to packets that can issue 896 // bank commands 'behind the scenes' 897 // any additional delay if any will be due to 898 // col-to-col command requirements 899 if (hidden_bank_prep || !found_prepped_pkt) 900 selected_pkt_it = i; 901 } 902 } 903 } else { 904 DPRINTF(DRAM, "%s bank %d - Rank %d not available\n", __func__, 905 dram_pkt->bankRef.bank, dram_pkt->rankRef.rank); 906 } 907 } 908 909 if (selected_pkt_it == queue.end()) { 910 DPRINTF(DRAM, "%s no available ranks found\n", __func__); 911 } 912 913 return selected_pkt_it; 914} 915 916void 917DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency) 918{ 919 DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr()); 920 921 bool needsResponse = pkt->needsResponse(); 922 // do the actual memory access which also turns the packet into a 923 // response 924 access(pkt); 925 926 // turn packet around to go back to requester if response expected 927 if (needsResponse) { 928 // access already turned the packet into a response 929 assert(pkt->isResponse()); 930 // response_time consumes the static latency and is charged also 931 // with headerDelay that takes into account the delay provided by 932 // the xbar and also the payloadDelay that takes into account the 933 // number of data beats. 934 Tick response_time = curTick() + static_latency + pkt->headerDelay + 935 pkt->payloadDelay; 936 // Here we reset the timing of the packet before sending it out. 937 pkt->headerDelay = pkt->payloadDelay = 0; 938 939 // queue the packet in the response queue to be sent out after 940 // the static latency has passed 941 port.schedTimingResp(pkt, response_time); 942 } else { 943 // @todo the packet is going to be deleted, and the DRAMPacket 944 // is still having a pointer to it 945 pendingDelete.reset(pkt); 946 } 947 948 DPRINTF(DRAM, "Done\n"); 949 950 return; 951} 952 953void 954DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref, 955 Tick act_tick, uint32_t row) 956{ 957 assert(rank_ref.actTicks.size() == activationLimit); 958 959 DPRINTF(DRAM, "Activate at tick %d\n", act_tick); 960 961 // update the open row 962 assert(bank_ref.openRow == Bank::NO_ROW); 963 bank_ref.openRow = row; 964 965 // start counting anew, this covers both the case when we 966 // auto-precharged, and when this access is forced to 967 // precharge 968 bank_ref.bytesAccessed = 0; 969 bank_ref.rowAccesses = 0; 970 971 ++rank_ref.numBanksActive; 972 assert(rank_ref.numBanksActive <= banksPerRank); 973 974 DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n", 975 bank_ref.bank, rank_ref.rank, act_tick, 976 ranks[rank_ref.rank]->numBanksActive); 977 978 rank_ref.cmdList.push_back(Command(MemCommand::ACT, bank_ref.bank, 979 act_tick)); 980 981 DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) - 982 timeStampOffset, bank_ref.bank, rank_ref.rank); 983 984 // The next access has to respect tRAS for this bank 985 bank_ref.preAllowedAt = act_tick + tRAS; 986 987 // Respect the row-to-column command delay for both read and write cmds 988 bank_ref.rdAllowedAt = std::max(act_tick + tRCD, bank_ref.rdAllowedAt); 989 bank_ref.wrAllowedAt = std::max(act_tick + tRCD, bank_ref.wrAllowedAt); 990 991 // start by enforcing tRRD 992 for (int i = 0; i < banksPerRank; i++) { 993 // next activate to any bank in this rank must not happen 994 // before tRRD 995 if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) { 996 // bank group architecture requires longer delays between 997 // ACT commands within the same bank group. Use tRRD_L 998 // in this case 999 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L, 1000 rank_ref.banks[i].actAllowedAt); 1001 } else { 1002 // use shorter tRRD value when either 1003 // 1) bank group architecture is not supportted 1004 // 2) bank is in a different bank group 1005 rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD, 1006 rank_ref.banks[i].actAllowedAt); 1007 } 1008 } 1009 1010 // next, we deal with tXAW, if the activation limit is disabled 1011 // then we directly schedule an activate power event 1012 if (!rank_ref.actTicks.empty()) { 1013 // sanity check 1014 if (rank_ref.actTicks.back() && 1015 (act_tick - rank_ref.actTicks.back()) < tXAW) { 1016 panic("Got %d activates in window %d (%llu - %llu) which " 1017 "is smaller than %llu\n", activationLimit, act_tick - 1018 rank_ref.actTicks.back(), act_tick, 1019 rank_ref.actTicks.back(), tXAW); 1020 } 1021 1022 // shift the times used for the book keeping, the last element 1023 // (highest index) is the oldest one and hence the lowest value 1024 rank_ref.actTicks.pop_back(); 1025 1026 // record an new activation (in the future) 1027 rank_ref.actTicks.push_front(act_tick); 1028 1029 // cannot activate more than X times in time window tXAW, push the 1030 // next one (the X + 1'st activate) to be tXAW away from the 1031 // oldest in our window of X 1032 if (rank_ref.actTicks.back() && 1033 (act_tick - rank_ref.actTicks.back()) < tXAW) { 1034 DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate " 1035 "no earlier than %llu\n", activationLimit, 1036 rank_ref.actTicks.back() + tXAW); 1037 for (int j = 0; j < banksPerRank; j++) 1038 // next activate must not happen before end of window 1039 rank_ref.banks[j].actAllowedAt = 1040 std::max(rank_ref.actTicks.back() + tXAW, 1041 rank_ref.banks[j].actAllowedAt); 1042 } 1043 } 1044 1045 // at the point when this activate takes place, make sure we 1046 // transition to the active power state 1047 if (!rank_ref.activateEvent.scheduled()) 1048 schedule(rank_ref.activateEvent, act_tick); 1049 else if (rank_ref.activateEvent.when() > act_tick) 1050 // move it sooner in time 1051 reschedule(rank_ref.activateEvent, act_tick); 1052} 1053 1054void 1055DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace) 1056{ 1057 // make sure the bank has an open row 1058 assert(bank.openRow != Bank::NO_ROW); 1059 1060 // sample the bytes per activate here since we are closing 1061 // the page 1062 bytesPerActivate.sample(bank.bytesAccessed); 1063 1064 bank.openRow = Bank::NO_ROW; 1065 1066 // no precharge allowed before this one 1067 bank.preAllowedAt = pre_at; 1068 1069 Tick pre_done_at = pre_at + tRP; 1070 1071 bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at); 1072 1073 assert(rank_ref.numBanksActive != 0); 1074 --rank_ref.numBanksActive; 1075 1076 DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got " 1077 "%d active\n", bank.bank, rank_ref.rank, pre_at, 1078 rank_ref.numBanksActive); 1079 1080 if (trace) { 1081 1082 rank_ref.cmdList.push_back(Command(MemCommand::PRE, bank.bank, 1083 pre_at)); 1084 DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) - 1085 timeStampOffset, bank.bank, rank_ref.rank); 1086 } 1087 // if we look at the current number of active banks we might be 1088 // tempted to think the DRAM is now idle, however this can be 1089 // undone by an activate that is scheduled to happen before we 1090 // would have reached the idle state, so schedule an event and 1091 // rather check once we actually make it to the point in time when 1092 // the (last) precharge takes place 1093 if (!rank_ref.prechargeEvent.scheduled()) { 1094 schedule(rank_ref.prechargeEvent, pre_done_at); 1095 // New event, increment count 1096 ++rank_ref.outstandingEvents; 1097 } else if (rank_ref.prechargeEvent.when() < pre_done_at) { 1098 reschedule(rank_ref.prechargeEvent, pre_done_at); 1099 } 1100} 1101 1102void 1103DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt) 1104{ 1105 DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n", 1106 dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row); 1107 1108 // get the rank 1109 Rank& rank = dram_pkt->rankRef; 1110 1111 // are we in or transitioning to a low-power state and have not scheduled 1112 // a power-up event? 1113 // if so, wake up from power down to issue RD/WR burst 1114 if (rank.inLowPowerState) { 1115 assert(rank.pwrState != PWR_SREF); 1116 rank.scheduleWakeUpEvent(tXP); 1117 } 1118 1119 // get the bank 1120 Bank& bank = dram_pkt->bankRef; 1121 1122 // for the state we need to track if it is a row hit or not 1123 bool row_hit = true; 1124 1125 // Determine the access latency and update the bank state 1126 if (bank.openRow == dram_pkt->row) { 1127 // nothing to do 1128 } else { 1129 row_hit = false; 1130 1131 // If there is a page open, precharge it. 1132 if (bank.openRow != Bank::NO_ROW) { 1133 prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick())); 1134 } 1135 1136 // next we need to account for the delay in activating the 1137 // page 1138 Tick act_tick = std::max(bank.actAllowedAt, curTick()); 1139 1140 // Record the activation and deal with all the global timing 1141 // constraints caused be a new activation (tRRD and tXAW) 1142 activateBank(rank, bank, act_tick, dram_pkt->row); 1143 } 1144 1145 // respect any constraints on the command (e.g. tRCD or tCCD) 1146 const Tick col_allowed_at = dram_pkt->isRead() ? 1147 bank.rdAllowedAt : bank.wrAllowedAt; 1148 1149 // we need to wait until the bus is available before we can issue 1150 // the command; need minimum of tBURST between commands 1151 Tick cmd_at = std::max({col_allowed_at, nextBurstAt, curTick()}); 1152 1153 // update the packet ready time 1154 dram_pkt->readyTime = cmd_at + tCL + tBURST; 1155 1156 // update the time for the next read/write burst for each 1157 // bank (add a max with tCCD/tCCD_L/tCCD_L_WR here) 1158 Tick dly_to_rd_cmd; 1159 Tick dly_to_wr_cmd; 1160 for (int j = 0; j < ranksPerChannel; j++) { 1161 for (int i = 0; i < banksPerRank; i++) { 1162 // next burst to same bank group in this rank must not happen 1163 // before tCCD_L. Different bank group timing requirement is 1164 // tBURST; Add tCS for different ranks 1165 if (dram_pkt->rank == j) { 1166 if (bankGroupArch && 1167 (bank.bankgr == ranks[j]->banks[i].bankgr)) { 1168 // bank group architecture requires longer delays between 1169 // RD/WR burst commands to the same bank group. 1170 // tCCD_L is default requirement for same BG timing 1171 // tCCD_L_WR is required for write-to-write 1172 // Need to also take bus turnaround delays into account 1173 dly_to_rd_cmd = dram_pkt->isRead() ? 1174 tCCD_L : std::max(tCCD_L, wrToRdDly); 1175 dly_to_wr_cmd = dram_pkt->isRead() ? 1176 std::max(tCCD_L, rdToWrDly) : tCCD_L_WR; 1177 } else { 1178 // tBURST is default requirement for diff BG timing 1179 // Need to also take bus turnaround delays into account 1180 dly_to_rd_cmd = dram_pkt->isRead() ? tBURST : wrToRdDly; 1181 dly_to_wr_cmd = dram_pkt->isRead() ? rdToWrDly : tBURST; 1182 } 1183 } else { 1184 // different rank is by default in a different bank group and 1185 // doesn't require longer tCCD or additional RTW, WTR delays 1186 // Need to account for rank-to-rank switching with tCS 1187 dly_to_wr_cmd = rankToRankDly; 1188 dly_to_rd_cmd = rankToRankDly; 1189 } 1190 ranks[j]->banks[i].rdAllowedAt = std::max(cmd_at + dly_to_rd_cmd, 1191 ranks[j]->banks[i].rdAllowedAt); 1192 ranks[j]->banks[i].wrAllowedAt = std::max(cmd_at + dly_to_wr_cmd, 1193 ranks[j]->banks[i].wrAllowedAt); 1194 } 1195 } 1196 1197 // Save rank of current access 1198 activeRank = dram_pkt->rank; 1199 1200 // If this is a write, we also need to respect the write recovery 1201 // time before a precharge, in the case of a read, respect the 1202 // read to precharge constraint 1203 bank.preAllowedAt = std::max(bank.preAllowedAt, 1204 dram_pkt->isRead() ? cmd_at + tRTP : 1205 dram_pkt->readyTime + tWR); 1206 1207 // increment the bytes accessed and the accesses per row 1208 bank.bytesAccessed += burstSize; 1209 ++bank.rowAccesses; 1210 1211 // if we reached the max, then issue with an auto-precharge 1212 bool auto_precharge = pageMgmt == Enums::close || 1213 bank.rowAccesses == maxAccessesPerRow; 1214 1215 // if we did not hit the limit, we might still want to 1216 // auto-precharge 1217 if (!auto_precharge && 1218 (pageMgmt == Enums::open_adaptive || 1219 pageMgmt == Enums::close_adaptive)) { 1220 // a twist on the open and close page policies: 1221 // 1) open_adaptive page policy does not blindly keep the 1222 // page open, but close it if there are no row hits, and there 1223 // are bank conflicts in the queue 1224 // 2) close_adaptive page policy does not blindly close the 1225 // page, but closes it only if there are no row hits in the queue. 1226 // In this case, only force an auto precharge when there 1227 // are no same page hits in the queue 1228 bool got_more_hits = false; 1229 bool got_bank_conflict = false; 1230 1231 // either look at the read queue or write queue 1232 const std::vector<DRAMPacketQueue>& queue = 1233 dram_pkt->isRead() ? readQueue : writeQueue; 1234 1235 for (uint8_t i = 0; i < numPriorities(); ++i) { 1236 auto p = queue[i].begin(); 1237 // keep on looking until we find a hit or reach the end of the queue 1238 // 1) if a hit is found, then both open and close adaptive policies keep 1239 // the page open 1240 // 2) if no hit is found, got_bank_conflict is set to true if a bank 1241 // conflict request is waiting in the queue 1242 // 3) make sure we are not considering the packet that we are 1243 // currently dealing with 1244 while (!got_more_hits && p != queue[i].end()) { 1245 if (dram_pkt != (*p)) { 1246 bool same_rank_bank = (dram_pkt->rank == (*p)->rank) && 1247 (dram_pkt->bank == (*p)->bank); 1248 1249 bool same_row = dram_pkt->row == (*p)->row; 1250 got_more_hits |= same_rank_bank && same_row; 1251 got_bank_conflict |= same_rank_bank && !same_row; 1252 } 1253 ++p; 1254 } 1255 1256 if (got_more_hits) 1257 break; 1258 } 1259 1260 // auto pre-charge when either 1261 // 1) open_adaptive policy, we have not got any more hits, and 1262 // have a bank conflict 1263 // 2) close_adaptive policy and we have not got any more hits 1264 auto_precharge = !got_more_hits && 1265 (got_bank_conflict || pageMgmt == Enums::close_adaptive); 1266 } 1267 1268 // DRAMPower trace command to be written 1269 std::string mem_cmd = dram_pkt->isRead() ? "RD" : "WR"; 1270 1271 // MemCommand required for DRAMPower library 1272 MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD : 1273 MemCommand::WR; 1274 1275 // Update bus state to reflect when previous command was issued 1276 nextBurstAt = cmd_at + tBURST; 1277 1278 DPRINTF(DRAM, "Access to %lld, ready at %lld next burst at %lld.\n", 1279 dram_pkt->addr, dram_pkt->readyTime, nextBurstAt); 1280 1281 dram_pkt->rankRef.cmdList.push_back(Command(command, dram_pkt->bank, 1282 cmd_at)); 1283 1284 DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) - 1285 timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank); 1286 1287 // if this access should use auto-precharge, then we are 1288 // closing the row after the read/write burst 1289 if (auto_precharge) { 1290 // if auto-precharge push a PRE command at the correct tick to the 1291 // list used by DRAMPower library to calculate power 1292 prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt)); 1293 1294 DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId); 1295 } 1296 1297 // Update the minimum timing between the requests, this is a 1298 // conservative estimate of when we have to schedule the next 1299 // request to not introduce any unecessary bubbles. In most cases 1300 // we will wake up sooner than we have to. 1301 nextReqTime = nextBurstAt - (tRP + tRCD); 1302 1303 // Update the stats and schedule the next request 1304 if (dram_pkt->isRead()) { 1305 ++readsThisTime; 1306 if (row_hit) 1307 readRowHits++; 1308 bytesReadDRAM += burstSize; 1309 perBankRdBursts[dram_pkt->bankId]++; 1310 1311 // Update latency stats 1312 totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime; 1313 masterReadTotalLat[dram_pkt->masterId()] += 1314 dram_pkt->readyTime - dram_pkt->entryTime; 1315 1316 totBusLat += tBURST; 1317 totQLat += cmd_at - dram_pkt->entryTime; 1318 masterReadBytes[dram_pkt->masterId()] += dram_pkt->size; 1319 } else { 1320 ++writesThisTime; 1321 if (row_hit) 1322 writeRowHits++; 1323 bytesWritten += burstSize; 1324 perBankWrBursts[dram_pkt->bankId]++; 1325 masterWriteBytes[dram_pkt->masterId()] += dram_pkt->size; 1326 masterWriteTotalLat[dram_pkt->masterId()] += 1327 dram_pkt->readyTime - dram_pkt->entryTime; 1328 } 1329} 1330 1331void 1332DRAMCtrl::processNextReqEvent() 1333{ 1334 // transition is handled by QoS algorithm if enabled 1335 if (turnPolicy) { 1336 // select bus state - only done if QoS algorithms are in use 1337 busStateNext = selectNextBusState(); 1338 } 1339 1340 // detect bus state change 1341 bool switched_cmd_type = (busState != busStateNext); 1342 // record stats 1343 recordTurnaroundStats(); 1344 1345 DPRINTF(DRAM, "QoS Turnarounds selected state %s %s\n", 1346 (busState==MemCtrl::READ)?"READ":"WRITE", 1347 switched_cmd_type?"[turnaround triggered]":""); 1348 1349 if (switched_cmd_type) { 1350 if (busState == READ) { 1351 DPRINTF(DRAM, 1352 "Switching to writes after %d reads with %d reads " 1353 "waiting\n", readsThisTime, totalReadQueueSize); 1354 rdPerTurnAround.sample(readsThisTime); 1355 readsThisTime = 0; 1356 } else { 1357 DPRINTF(DRAM, 1358 "Switching to reads after %d writes with %d writes " 1359 "waiting\n", writesThisTime, totalWriteQueueSize); 1360 wrPerTurnAround.sample(writesThisTime); 1361 writesThisTime = 0; 1362 } 1363 } 1364 1365 // updates current state 1366 busState = busStateNext; 1367 1368 // check ranks for refresh/wakeup - uses busStateNext, so done after turnaround 1369 // decisions 1370 int busyRanks = 0; 1371 for (auto r : ranks) { 1372 if (!r->inRefIdleState()) { 1373 if (r->pwrState != PWR_SREF) { 1374 // rank is busy refreshing 1375 DPRINTF(DRAMState, "Rank %d is not available\n", r->rank); 1376 busyRanks++; 1377 1378 // let the rank know that if it was waiting to drain, it 1379 // is now done and ready to proceed 1380 r->checkDrainDone(); 1381 } 1382 1383 // check if we were in self-refresh and haven't started 1384 // to transition out 1385 if ((r->pwrState == PWR_SREF) && r->inLowPowerState) { 1386 DPRINTF(DRAMState, "Rank %d is in self-refresh\n", r->rank); 1387 // if we have commands queued to this rank and we don't have 1388 // a minimum number of active commands enqueued, 1389 // exit self-refresh 1390 if (r->forceSelfRefreshExit()) { 1391 DPRINTF(DRAMState, "rank %d was in self refresh and" 1392 " should wake up\n", r->rank); 1393 //wake up from self-refresh 1394 r->scheduleWakeUpEvent(tXS); 1395 // things are brought back into action once a refresh is 1396 // performed after self-refresh 1397 // continue with selection for other ranks 1398 } 1399 } 1400 } 1401 } 1402 1403 if (busyRanks == ranksPerChannel) { 1404 // if all ranks are refreshing wait for them to finish 1405 // and stall this state machine without taking any further 1406 // action, and do not schedule a new nextReqEvent 1407 return; 1408 } 1409 1410 // when we get here it is either a read or a write 1411 if (busState == READ) { 1412 1413 // track if we should switch or not 1414 bool switch_to_writes = false; 1415 1416 if (totalReadQueueSize == 0) { 1417 // In the case there is no read request to go next, 1418 // trigger writes if we have passed the low threshold (or 1419 // if we are draining) 1420 if (!(totalWriteQueueSize == 0) && 1421 (drainState() == DrainState::Draining || 1422 totalWriteQueueSize > writeLowThreshold)) { 1423 1424 DPRINTF(DRAM, "Switching to writes due to read queue empty\n"); 1425 switch_to_writes = true; 1426 } else { 1427 // check if we are drained 1428 // not done draining until in PWR_IDLE state 1429 // ensuring all banks are closed and 1430 // have exited low power states 1431 if (drainState() == DrainState::Draining && 1432 respQueue.empty() && allRanksDrained()) { 1433 1434 DPRINTF(Drain, "DRAM controller done draining\n"); 1435 signalDrainDone(); 1436 } 1437 1438 // nothing to do, not even any point in scheduling an 1439 // event for the next request 1440 return; 1441 } 1442 } else { 1443 1444 bool read_found = false; 1445 DRAMPacketQueue::iterator to_read; 1446 uint8_t prio = numPriorities(); 1447 1448 for (auto queue = readQueue.rbegin(); 1449 queue != readQueue.rend(); ++queue) { 1450 1451 prio--; 1452 1453 DPRINTF(QOS, 1454 "DRAM controller checking READ queue [%d] priority [%d elements]\n", 1455 prio, queue->size()); 1456 1457 // Figure out which read request goes next 1458 // If we are changing command type, incorporate the minimum 1459 // bus turnaround delay which will be tCS (different rank) case 1460 to_read = chooseNext((*queue), switched_cmd_type ? tCS : 0); 1461 1462 if (to_read != queue->end()) { 1463 // candidate read found 1464 read_found = true; 1465 break; 1466 } 1467 } 1468 1469 // if no read to an available rank is found then return 1470 // at this point. There could be writes to the available ranks 1471 // which are above the required threshold. However, to 1472 // avoid adding more complexity to the code, return and wait 1473 // for a refresh event to kick things into action again. 1474 if (!read_found) { 1475 DPRINTF(DRAM, "No Reads Found - exiting\n"); 1476 return; 1477 } 1478 1479 auto dram_pkt = *to_read; 1480 1481 assert(dram_pkt->rankRef.inRefIdleState()); 1482 1483 doDRAMAccess(dram_pkt); 1484 1485 // Every respQueue which will generate an event, increment count 1486 ++dram_pkt->rankRef.outstandingEvents; 1487 // sanity check 1488 assert(dram_pkt->size <= burstSize); 1489 assert(dram_pkt->readyTime >= curTick()); 1490 1491 // log the response 1492 logResponse(MemCtrl::READ, (*to_read)->masterId(), 1493 dram_pkt->qosValue(), dram_pkt->getAddr(), 1, 1494 dram_pkt->readyTime - dram_pkt->entryTime); 1495 1496 1497 // Insert into response queue. It will be sent back to the 1498 // requester at its readyTime 1499 if (respQueue.empty()) { 1500 assert(!respondEvent.scheduled()); 1501 schedule(respondEvent, dram_pkt->readyTime); 1502 } else { 1503 assert(respQueue.back()->readyTime <= dram_pkt->readyTime); 1504 assert(respondEvent.scheduled()); 1505 } 1506 1507 respQueue.push_back(dram_pkt); 1508 1509 // we have so many writes that we have to transition 1510 if (totalWriteQueueSize > writeHighThreshold) { 1511 switch_to_writes = true; 1512 } 1513 1514 // remove the request from the queue - the iterator is no longer valid . 1515 readQueue[dram_pkt->qosValue()].erase(to_read); 1516 } 1517 1518 // switching to writes, either because the read queue is empty 1519 // and the writes have passed the low threshold (or we are 1520 // draining), or because the writes hit the hight threshold 1521 if (switch_to_writes) { 1522 // transition to writing 1523 busStateNext = WRITE; 1524 } 1525 } else { 1526 1527 bool write_found = false; 1528 DRAMPacketQueue::iterator to_write; 1529 uint8_t prio = numPriorities(); 1530 1531 for (auto queue = writeQueue.rbegin(); 1532 queue != writeQueue.rend(); ++queue) { 1533 1534 prio--; 1535 1536 DPRINTF(QOS, 1537 "DRAM controller checking WRITE queue [%d] priority [%d elements]\n", 1538 prio, queue->size()); 1539 1540 // If we are changing command type, incorporate the minimum 1541 // bus turnaround delay 1542 to_write = chooseNext((*queue), 1543 switched_cmd_type ? std::min(tRTW, tCS) : 0); 1544 1545 if (to_write != queue->end()) { 1546 write_found = true; 1547 break; 1548 } 1549 } 1550 1551 // if there are no writes to a rank that is available to service 1552 // requests (i.e. rank is in refresh idle state) are found then 1553 // return. There could be reads to the available ranks. However, to 1554 // avoid adding more complexity to the code, return at this point and 1555 // wait for a refresh event to kick things into action again. 1556 if (!write_found) { 1557 DPRINTF(DRAM, "No Writes Found - exiting\n"); 1558 return; 1559 } 1560 1561 auto dram_pkt = *to_write; 1562 1563 assert(dram_pkt->rankRef.inRefIdleState()); 1564 // sanity check 1565 assert(dram_pkt->size <= burstSize); 1566 1567 doDRAMAccess(dram_pkt); 1568 1569 // removed write from queue, decrement count 1570 --dram_pkt->rankRef.writeEntries; 1571 1572 // Schedule write done event to decrement event count 1573 // after the readyTime has been reached 1574 // Only schedule latest write event to minimize events 1575 // required; only need to ensure that final event scheduled covers 1576 // the time that writes are outstanding and bus is active 1577 // to holdoff power-down entry events 1578 if (!dram_pkt->rankRef.writeDoneEvent.scheduled()) { 1579 schedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime); 1580 // New event, increment count 1581 ++dram_pkt->rankRef.outstandingEvents; 1582 1583 } else if (dram_pkt->rankRef.writeDoneEvent.when() < 1584 dram_pkt->readyTime) { 1585 1586 reschedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime); 1587 } 1588 1589 isInWriteQueue.erase(burstAlign(dram_pkt->addr)); 1590 1591 // log the response 1592 logResponse(MemCtrl::WRITE, dram_pkt->masterId(), 1593 dram_pkt->qosValue(), dram_pkt->getAddr(), 1, 1594 dram_pkt->readyTime - dram_pkt->entryTime); 1595 1596 1597 // remove the request from the queue - the iterator is no longer valid 1598 writeQueue[dram_pkt->qosValue()].erase(to_write); 1599 1600 delete dram_pkt; 1601 1602 // If we emptied the write queue, or got sufficiently below the 1603 // threshold (using the minWritesPerSwitch as the hysteresis) and 1604 // are not draining, or we have reads waiting and have done enough 1605 // writes, then switch to reads. 1606 bool below_threshold = 1607 totalWriteQueueSize + minWritesPerSwitch < writeLowThreshold; 1608 1609 if (totalWriteQueueSize == 0 || 1610 (below_threshold && drainState() != DrainState::Draining) || 1611 (totalReadQueueSize && writesThisTime >= minWritesPerSwitch)) { 1612 1613 // turn the bus back around for reads again 1614 busStateNext = READ; 1615 1616 // note that the we switch back to reads also in the idle 1617 // case, which eventually will check for any draining and 1618 // also pause any further scheduling if there is really 1619 // nothing to do 1620 } 1621 } 1622 // It is possible that a refresh to another rank kicks things back into 1623 // action before reaching this point. 1624 if (!nextReqEvent.scheduled()) 1625 schedule(nextReqEvent, std::max(nextReqTime, curTick())); 1626 1627 // If there is space available and we have writes waiting then let 1628 // them retry. This is done here to ensure that the retry does not 1629 // cause a nextReqEvent to be scheduled before we do so as part of 1630 // the next request processing 1631 if (retryWrReq && totalWriteQueueSize < writeBufferSize) { 1632 retryWrReq = false; 1633 port.sendRetryReq(); 1634 } 1635} 1636 1637pair<vector<uint32_t>, bool> 1638DRAMCtrl::minBankPrep(const DRAMPacketQueue& queue, 1639 Tick min_col_at) const 1640{ 1641 Tick min_act_at = MaxTick; 1642 vector<uint32_t> bank_mask(ranksPerChannel, 0); 1643 1644 // latest Tick for which ACT can occur without incurring additoinal 1645 // delay on the data bus 1646 const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick()); 1647 1648 // Flag condition when burst can issue back-to-back with previous burst 1649 bool found_seamless_bank = false; 1650 1651 // Flag condition when bank can be opened without incurring additional 1652 // delay on the data bus 1653 bool hidden_bank_prep = false; 1654 1655 // determine if we have queued transactions targetting the 1656 // bank in question 1657 vector<bool> got_waiting(ranksPerChannel * banksPerRank, false); 1658 for (const auto& p : queue) { 1659 if (p->rankRef.inRefIdleState()) 1660 got_waiting[p->bankId] = true; 1661 } 1662 1663 // Find command with optimal bank timing 1664 // Will prioritize commands that can issue seamlessly. 1665 for (int i = 0; i < ranksPerChannel; i++) { 1666 for (int j = 0; j < banksPerRank; j++) { 1667 uint16_t bank_id = i * banksPerRank + j; 1668 1669 // if we have waiting requests for the bank, and it is 1670 // amongst the first available, update the mask 1671 if (got_waiting[bank_id]) { 1672 // make sure this rank is not currently refreshing. 1673 assert(ranks[i]->inRefIdleState()); 1674 // simplistic approximation of when the bank can issue 1675 // an activate, ignoring any rank-to-rank switching 1676 // cost in this calculation 1677 Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ? 1678 std::max(ranks[i]->banks[j].actAllowedAt, curTick()) : 1679 std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP; 1680 1681 // When is the earliest the R/W burst can issue? 1682 const Tick col_allowed_at = (busState == READ) ? 1683 ranks[i]->banks[j].rdAllowedAt : 1684 ranks[i]->banks[j].wrAllowedAt; 1685 Tick col_at = std::max(col_allowed_at, act_at + tRCD); 1686 1687 // bank can issue burst back-to-back (seamlessly) with 1688 // previous burst 1689 bool new_seamless_bank = col_at <= min_col_at; 1690 1691 // if we found a new seamless bank or we have no 1692 // seamless banks, and got a bank with an earlier 1693 // activate time, it should be added to the bit mask 1694 if (new_seamless_bank || 1695 (!found_seamless_bank && act_at <= min_act_at)) { 1696 // if we did not have a seamless bank before, and 1697 // we do now, reset the bank mask, also reset it 1698 // if we have not yet found a seamless bank and 1699 // the activate time is smaller than what we have 1700 // seen so far 1701 if (!found_seamless_bank && 1702 (new_seamless_bank || act_at < min_act_at)) { 1703 std::fill(bank_mask.begin(), bank_mask.end(), 0); 1704 } 1705 1706 found_seamless_bank |= new_seamless_bank; 1707 1708 // ACT can occur 'behind the scenes' 1709 hidden_bank_prep = act_at <= hidden_act_max; 1710 1711 // set the bit corresponding to the available bank 1712 replaceBits(bank_mask[i], j, j, 1); 1713 min_act_at = act_at; 1714 } 1715 } 1716 } 1717 } 1718 1719 return make_pair(bank_mask, hidden_bank_prep); 1720} 1721 1722DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p, int rank) 1723 : EventManager(&_memory), memory(_memory), 1724 pwrStateTrans(PWR_IDLE), pwrStatePostRefresh(PWR_IDLE), 1725 pwrStateTick(0), refreshDueAt(0), pwrState(PWR_IDLE), 1726 refreshState(REF_IDLE), inLowPowerState(false), rank(rank), 1727 readEntries(0), writeEntries(0), outstandingEvents(0), 1728 wakeUpAllowedAt(0), power(_p, false), banks(_p->banks_per_rank), 1729 numBanksActive(0), actTicks(_p->activation_limit, 0), 1730 writeDoneEvent([this]{ processWriteDoneEvent(); }, name()), 1731 activateEvent([this]{ processActivateEvent(); }, name()), 1732 prechargeEvent([this]{ processPrechargeEvent(); }, name()), 1733 refreshEvent([this]{ processRefreshEvent(); }, name()), 1734 powerEvent([this]{ processPowerEvent(); }, name()), 1735 wakeUpEvent([this]{ processWakeUpEvent(); }, name()) 1736{ 1737 for (int b = 0; b < _p->banks_per_rank; b++) { 1738 banks[b].bank = b; 1739 // GDDR addressing of banks to BG is linear. 1740 // Here we assume that all DRAM generations address bank groups as 1741 // follows: 1742 if (_p->bank_groups_per_rank > 0) { 1743 // Simply assign lower bits to bank group in order to 1744 // rotate across bank groups as banks are incremented 1745 // e.g. with 4 banks per bank group and 16 banks total: 1746 // banks 0,4,8,12 are in bank group 0 1747 // banks 1,5,9,13 are in bank group 1 1748 // banks 2,6,10,14 are in bank group 2 1749 // banks 3,7,11,15 are in bank group 3 1750 banks[b].bankgr = b % _p->bank_groups_per_rank; 1751 } else { 1752 // No bank groups; simply assign to bank number 1753 banks[b].bankgr = b; 1754 } 1755 } 1756} 1757 1758void 1759DRAMCtrl::Rank::startup(Tick ref_tick) 1760{ 1761 assert(ref_tick > curTick()); 1762 1763 pwrStateTick = curTick(); 1764 1765 // kick off the refresh, and give ourselves enough time to 1766 // precharge 1767 schedule(refreshEvent, ref_tick); 1768} 1769 1770void 1771DRAMCtrl::Rank::suspend() 1772{ 1773 deschedule(refreshEvent); 1774 1775 // Update the stats 1776 updatePowerStats(); 1777 1778 // don't automatically transition back to LP state after next REF 1779 pwrStatePostRefresh = PWR_IDLE; 1780} 1781 1782bool 1783DRAMCtrl::Rank::isQueueEmpty() const 1784{ 1785 // check commmands in Q based on current bus direction 1786 bool no_queued_cmds = ((memory.busStateNext == READ) && (readEntries == 0)) 1787 || ((memory.busStateNext == WRITE) && 1788 (writeEntries == 0)); 1789 return no_queued_cmds; 1790} 1791 1792void 1793DRAMCtrl::Rank::checkDrainDone() 1794{ 1795 // if this rank was waiting to drain it is now able to proceed to 1796 // precharge 1797 if (refreshState == REF_DRAIN) { 1798 DPRINTF(DRAM, "Refresh drain done, now precharging\n"); 1799 1800 refreshState = REF_PD_EXIT; 1801 1802 // hand control back to the refresh event loop 1803 schedule(refreshEvent, curTick()); 1804 } 1805} 1806 1807void 1808DRAMCtrl::Rank::flushCmdList() 1809{ 1810 // at the moment sort the list of commands and update the counters 1811 // for DRAMPower libray when doing a refresh 1812 sort(cmdList.begin(), cmdList.end(), DRAMCtrl::sortTime); 1813 1814 auto next_iter = cmdList.begin(); 1815 // push to commands to DRAMPower 1816 for ( ; next_iter != cmdList.end() ; ++next_iter) { 1817 Command cmd = *next_iter; 1818 if (cmd.timeStamp <= curTick()) { 1819 // Move all commands at or before curTick to DRAMPower 1820 power.powerlib.doCommand(cmd.type, cmd.bank, 1821 divCeil(cmd.timeStamp, memory.tCK) - 1822 memory.timeStampOffset); 1823 } else { 1824 // done - found all commands at or before curTick() 1825 // next_iter references the 1st command after curTick 1826 break; 1827 } 1828 } 1829 // reset cmdList to only contain commands after curTick 1830 // if there are no commands after curTick, updated cmdList will be empty 1831 // in this case, next_iter is cmdList.end() 1832 cmdList.assign(next_iter, cmdList.end()); 1833} 1834 1835void 1836DRAMCtrl::Rank::processActivateEvent() 1837{ 1838 // we should transition to the active state as soon as any bank is active 1839 if (pwrState != PWR_ACT) 1840 // note that at this point numBanksActive could be back at 1841 // zero again due to a precharge scheduled in the future 1842 schedulePowerEvent(PWR_ACT, curTick()); 1843} 1844 1845void 1846DRAMCtrl::Rank::processPrechargeEvent() 1847{ 1848 // counter should at least indicate one outstanding request 1849 // for this precharge 1850 assert(outstandingEvents > 0); 1851 // precharge complete, decrement count 1852 --outstandingEvents; 1853 1854 // if we reached zero, then special conditions apply as we track 1855 // if all banks are precharged for the power models 1856 if (numBanksActive == 0) { 1857 // no reads to this rank in the Q and no pending 1858 // RD/WR or refresh commands 1859 if (isQueueEmpty() && outstandingEvents == 0 && 1860 memory.enableDRAMPowerdown) { 1861 // should still be in ACT state since bank still open 1862 assert(pwrState == PWR_ACT); 1863 1864 // All banks closed - switch to precharge power down state. 1865 DPRINTF(DRAMState, "Rank %d sleep at tick %d\n", 1866 rank, curTick()); 1867 powerDownSleep(PWR_PRE_PDN, curTick()); 1868 } else { 1869 // we should transition to the idle state when the last bank 1870 // is precharged 1871 schedulePowerEvent(PWR_IDLE, curTick()); 1872 } 1873 } 1874} 1875 1876void 1877DRAMCtrl::Rank::processWriteDoneEvent() 1878{ 1879 // counter should at least indicate one outstanding request 1880 // for this write 1881 assert(outstandingEvents > 0); 1882 // Write transfer on bus has completed 1883 // decrement per rank counter 1884 --outstandingEvents; 1885} 1886 1887void 1888DRAMCtrl::Rank::processRefreshEvent() 1889{ 1890 // when first preparing the refresh, remember when it was due 1891 if ((refreshState == REF_IDLE) || (refreshState == REF_SREF_EXIT)) { 1892 // remember when the refresh is due 1893 refreshDueAt = curTick(); 1894 1895 // proceed to drain 1896 refreshState = REF_DRAIN; 1897 1898 // make nonzero while refresh is pending to ensure 1899 // power down and self-refresh are not entered 1900 ++outstandingEvents; 1901 1902 DPRINTF(DRAM, "Refresh due\n"); 1903 } 1904 1905 // let any scheduled read or write to the same rank go ahead, 1906 // after which it will 1907 // hand control back to this event loop 1908 if (refreshState == REF_DRAIN) { 1909 // if a request is at the moment being handled and this request is 1910 // accessing the current rank then wait for it to finish 1911 if ((rank == memory.activeRank) 1912 && (memory.nextReqEvent.scheduled())) { 1913 // hand control over to the request loop until it is 1914 // evaluated next 1915 DPRINTF(DRAM, "Refresh awaiting draining\n"); 1916 1917 return; 1918 } else { 1919 refreshState = REF_PD_EXIT; 1920 } 1921 } 1922 1923 // at this point, ensure that rank is not in a power-down state 1924 if (refreshState == REF_PD_EXIT) { 1925 // if rank was sleeping and we have't started exit process, 1926 // wake-up for refresh 1927 if (inLowPowerState) { 1928 DPRINTF(DRAM, "Wake Up for refresh\n"); 1929 // save state and return after refresh completes 1930 scheduleWakeUpEvent(memory.tXP); 1931 return; 1932 } else { 1933 refreshState = REF_PRE; 1934 } 1935 } 1936 1937 // at this point, ensure that all banks are precharged 1938 if (refreshState == REF_PRE) { 1939 // precharge any active bank 1940 if (numBanksActive != 0) { 1941 // at the moment, we use a precharge all even if there is 1942 // only a single bank open 1943 DPRINTF(DRAM, "Precharging all\n"); 1944 1945 // first determine when we can precharge 1946 Tick pre_at = curTick(); 1947 1948 for (auto &b : banks) { 1949 // respect both causality and any existing bank 1950 // constraints, some banks could already have a 1951 // (auto) precharge scheduled 1952 pre_at = std::max(b.preAllowedAt, pre_at); 1953 } 1954 1955 // make sure all banks per rank are precharged, and for those that 1956 // already are, update their availability 1957 Tick act_allowed_at = pre_at + memory.tRP; 1958 1959 for (auto &b : banks) { 1960 if (b.openRow != Bank::NO_ROW) { 1961 memory.prechargeBank(*this, b, pre_at, false); 1962 } else { 1963 b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at); 1964 b.preAllowedAt = std::max(b.preAllowedAt, pre_at); 1965 } 1966 } 1967 1968 // precharge all banks in rank 1969 cmdList.push_back(Command(MemCommand::PREA, 0, pre_at)); 1970 1971 DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", 1972 divCeil(pre_at, memory.tCK) - 1973 memory.timeStampOffset, rank); 1974 } else if ((pwrState == PWR_IDLE) && (outstandingEvents == 1)) { 1975 // Banks are closed, have transitioned to IDLE state, and 1976 // no outstanding ACT,RD/WR,Auto-PRE sequence scheduled 1977 DPRINTF(DRAM, "All banks already precharged, starting refresh\n"); 1978 1979 // go ahead and kick the power state machine into gear since 1980 // we are already idle 1981 schedulePowerEvent(PWR_REF, curTick()); 1982 } else { 1983 // banks state is closed but haven't transitioned pwrState to IDLE 1984 // or have outstanding ACT,RD/WR,Auto-PRE sequence scheduled 1985 // should have outstanding precharge event in this case 1986 assert(prechargeEvent.scheduled()); 1987 // will start refresh when pwrState transitions to IDLE 1988 } 1989 1990 assert(numBanksActive == 0); 1991 1992 // wait for all banks to be precharged, at which point the 1993 // power state machine will transition to the idle state, and 1994 // automatically move to a refresh, at that point it will also 1995 // call this method to get the refresh event loop going again 1996 return; 1997 } 1998 1999 // last but not least we perform the actual refresh 2000 if (refreshState == REF_START) { 2001 // should never get here with any banks active 2002 assert(numBanksActive == 0); 2003 assert(pwrState == PWR_REF); 2004 2005 Tick ref_done_at = curTick() + memory.tRFC; 2006 2007 for (auto &b : banks) { 2008 b.actAllowedAt = ref_done_at; 2009 } 2010 2011 // at the moment this affects all ranks 2012 cmdList.push_back(Command(MemCommand::REF, 0, curTick())); 2013 2014 // Update the stats 2015 updatePowerStats(); 2016 2017 DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) - 2018 memory.timeStampOffset, rank); 2019 2020 // Update for next refresh 2021 refreshDueAt += memory.tREFI; 2022 2023 // make sure we did not wait so long that we cannot make up 2024 // for it 2025 if (refreshDueAt < ref_done_at) { 2026 fatal("Refresh was delayed so long we cannot catch up\n"); 2027 } 2028 2029 // Run the refresh and schedule event to transition power states 2030 // when refresh completes 2031 refreshState = REF_RUN; 2032 schedule(refreshEvent, ref_done_at); 2033 return; 2034 } 2035 2036 if (refreshState == REF_RUN) { 2037 // should never get here with any banks active 2038 assert(numBanksActive == 0); 2039 assert(pwrState == PWR_REF); 2040 2041 assert(!powerEvent.scheduled()); 2042 2043 if ((memory.drainState() == DrainState::Draining) || 2044 (memory.drainState() == DrainState::Drained)) { 2045 // if draining, do not re-enter low-power mode. 2046 // simply go to IDLE and wait 2047 schedulePowerEvent(PWR_IDLE, curTick()); 2048 } else { 2049 // At the moment, we sleep when the refresh ends and wait to be 2050 // woken up again if previously in a low-power state. 2051 if (pwrStatePostRefresh != PWR_IDLE) { 2052 // power State should be power Refresh 2053 assert(pwrState == PWR_REF); 2054 DPRINTF(DRAMState, "Rank %d sleeping after refresh and was in " 2055 "power state %d before refreshing\n", rank, 2056 pwrStatePostRefresh); 2057 powerDownSleep(pwrState, curTick()); 2058 2059 // Force PRE power-down if there are no outstanding commands 2060 // in Q after refresh. 2061 } else if (isQueueEmpty() && memory.enableDRAMPowerdown) { 2062 // still have refresh event outstanding but there should 2063 // be no other events outstanding 2064 assert(outstandingEvents == 1); 2065 DPRINTF(DRAMState, "Rank %d sleeping after refresh but was NOT" 2066 " in a low power state before refreshing\n", rank); 2067 powerDownSleep(PWR_PRE_PDN, curTick()); 2068 2069 } else { 2070 // move to the idle power state once the refresh is done, this 2071 // will also move the refresh state machine to the refresh 2072 // idle state 2073 schedulePowerEvent(PWR_IDLE, curTick()); 2074 } 2075 } 2076 2077 // At this point, we have completed the current refresh. 2078 // In the SREF bypass case, we do not get to this state in the 2079 // refresh STM and therefore can always schedule next event. 2080 // Compensate for the delay in actually performing the refresh 2081 // when scheduling the next one 2082 schedule(refreshEvent, refreshDueAt - memory.tRP); 2083 2084 DPRINTF(DRAMState, "Refresh done at %llu and next refresh" 2085 " at %llu\n", curTick(), refreshDueAt); 2086 } 2087} 2088 2089void 2090DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick) 2091{ 2092 // respect causality 2093 assert(tick >= curTick()); 2094 2095 if (!powerEvent.scheduled()) { 2096 DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n", 2097 tick, pwr_state); 2098 2099 // insert the new transition 2100 pwrStateTrans = pwr_state; 2101 2102 schedule(powerEvent, tick); 2103 } else { 2104 panic("Scheduled power event at %llu to state %d, " 2105 "with scheduled event at %llu to %d\n", tick, pwr_state, 2106 powerEvent.when(), pwrStateTrans); 2107 } 2108} 2109 2110void 2111DRAMCtrl::Rank::powerDownSleep(PowerState pwr_state, Tick tick) 2112{ 2113 // if low power state is active low, schedule to active low power state. 2114 // in reality tCKE is needed to enter active low power. This is neglected 2115 // here and could be added in the future. 2116 if (pwr_state == PWR_ACT_PDN) { 2117 schedulePowerEvent(pwr_state, tick); 2118 // push command to DRAMPower 2119 cmdList.push_back(Command(MemCommand::PDN_F_ACT, 0, tick)); 2120 DPRINTF(DRAMPower, "%llu,PDN_F_ACT,0,%d\n", divCeil(tick, 2121 memory.tCK) - memory.timeStampOffset, rank); 2122 } else if (pwr_state == PWR_PRE_PDN) { 2123 // if low power state is precharge low, schedule to precharge low 2124 // power state. In reality tCKE is needed to enter active low power. 2125 // This is neglected here. 2126 schedulePowerEvent(pwr_state, tick); 2127 //push Command to DRAMPower 2128 cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick)); 2129 DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick, 2130 memory.tCK) - memory.timeStampOffset, rank); 2131 } else if (pwr_state == PWR_REF) { 2132 // if a refresh just occurred 2133 // transition to PRE_PDN now that all banks are closed 2134 // precharge power down requires tCKE to enter. For simplicity 2135 // this is not considered. 2136 schedulePowerEvent(PWR_PRE_PDN, tick); 2137 //push Command to DRAMPower 2138 cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick)); 2139 DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick, 2140 memory.tCK) - memory.timeStampOffset, rank); 2141 } else if (pwr_state == PWR_SREF) { 2142 // should only enter SREF after PRE-PD wakeup to do a refresh 2143 assert(pwrStatePostRefresh == PWR_PRE_PDN); 2144 // self refresh requires time tCKESR to enter. For simplicity, 2145 // this is not considered. 2146 schedulePowerEvent(PWR_SREF, tick); 2147 // push Command to DRAMPower 2148 cmdList.push_back(Command(MemCommand::SREN, 0, tick)); 2149 DPRINTF(DRAMPower, "%llu,SREN,0,%d\n", divCeil(tick, 2150 memory.tCK) - memory.timeStampOffset, rank); 2151 } 2152 // Ensure that we don't power-down and back up in same tick 2153 // Once we commit to PD entry, do it and wait for at least 1tCK 2154 // This could be replaced with tCKE if/when that is added to the model 2155 wakeUpAllowedAt = tick + memory.tCK; 2156 2157 // Transitioning to a low power state, set flag 2158 inLowPowerState = true; 2159} 2160 2161void 2162DRAMCtrl::Rank::scheduleWakeUpEvent(Tick exit_delay) 2163{ 2164 Tick wake_up_tick = std::max(curTick(), wakeUpAllowedAt); 2165 2166 DPRINTF(DRAMState, "Scheduling wake-up for rank %d at tick %d\n", 2167 rank, wake_up_tick); 2168 2169 // if waking for refresh, hold previous state 2170 // else reset state back to IDLE 2171 if (refreshState == REF_PD_EXIT) { 2172 pwrStatePostRefresh = pwrState; 2173 } else { 2174 // don't automatically transition back to LP state after next REF 2175 pwrStatePostRefresh = PWR_IDLE; 2176 } 2177 2178 // schedule wake-up with event to ensure entry has completed before 2179 // we try to wake-up 2180 schedule(wakeUpEvent, wake_up_tick); 2181 2182 for (auto &b : banks) { 2183 // respect both causality and any existing bank 2184 // constraints, some banks could already have a 2185 // (auto) precharge scheduled 2186 b.wrAllowedAt = std::max(wake_up_tick + exit_delay, b.wrAllowedAt); 2187 b.rdAllowedAt = std::max(wake_up_tick + exit_delay, b.rdAllowedAt); 2188 b.preAllowedAt = std::max(wake_up_tick + exit_delay, b.preAllowedAt); 2189 b.actAllowedAt = std::max(wake_up_tick + exit_delay, b.actAllowedAt); 2190 } 2191 // Transitioning out of low power state, clear flag 2192 inLowPowerState = false; 2193 2194 // push to DRAMPower 2195 // use pwrStateTrans for cases where we have a power event scheduled 2196 // to enter low power that has not yet been processed 2197 if (pwrStateTrans == PWR_ACT_PDN) { 2198 cmdList.push_back(Command(MemCommand::PUP_ACT, 0, wake_up_tick)); 2199 DPRINTF(DRAMPower, "%llu,PUP_ACT,0,%d\n", divCeil(wake_up_tick, 2200 memory.tCK) - memory.timeStampOffset, rank); 2201 2202 } else if (pwrStateTrans == PWR_PRE_PDN) { 2203 cmdList.push_back(Command(MemCommand::PUP_PRE, 0, wake_up_tick)); 2204 DPRINTF(DRAMPower, "%llu,PUP_PRE,0,%d\n", divCeil(wake_up_tick, 2205 memory.tCK) - memory.timeStampOffset, rank); 2206 } else if (pwrStateTrans == PWR_SREF) { 2207 cmdList.push_back(Command(MemCommand::SREX, 0, wake_up_tick)); 2208 DPRINTF(DRAMPower, "%llu,SREX,0,%d\n", divCeil(wake_up_tick, 2209 memory.tCK) - memory.timeStampOffset, rank); 2210 } 2211} 2212 2213void 2214DRAMCtrl::Rank::processWakeUpEvent() 2215{ 2216 // Should be in a power-down or self-refresh state 2217 assert((pwrState == PWR_ACT_PDN) || (pwrState == PWR_PRE_PDN) || 2218 (pwrState == PWR_SREF)); 2219 2220 // Check current state to determine transition state 2221 if (pwrState == PWR_ACT_PDN) { 2222 // banks still open, transition to PWR_ACT 2223 schedulePowerEvent(PWR_ACT, curTick()); 2224 } else { 2225 // transitioning from a precharge power-down or self-refresh state 2226 // banks are closed - transition to PWR_IDLE 2227 schedulePowerEvent(PWR_IDLE, curTick()); 2228 } 2229} 2230 2231void 2232DRAMCtrl::Rank::processPowerEvent() 2233{ 2234 assert(curTick() >= pwrStateTick); 2235 // remember where we were, and for how long 2236 Tick duration = curTick() - pwrStateTick; 2237 PowerState prev_state = pwrState; 2238 2239 // update the accounting 2240 pwrStateTime[prev_state] += duration; 2241 2242 // track to total idle time 2243 if ((prev_state == PWR_PRE_PDN) || (prev_state == PWR_ACT_PDN) || 2244 (prev_state == PWR_SREF)) { 2245 totalIdleTime += duration; 2246 } 2247 2248 pwrState = pwrStateTrans; 2249 pwrStateTick = curTick(); 2250 2251 // if rank was refreshing, make sure to start scheduling requests again 2252 if (prev_state == PWR_REF) { 2253 // bus IDLED prior to REF 2254 // counter should be one for refresh command only 2255 assert(outstandingEvents == 1); 2256 // REF complete, decrement count and go back to IDLE 2257 --outstandingEvents; 2258 refreshState = REF_IDLE; 2259 2260 DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration); 2261 // if moving back to power-down after refresh 2262 if (pwrState != PWR_IDLE) { 2263 assert(pwrState == PWR_PRE_PDN); 2264 DPRINTF(DRAMState, "Switching to power down state after refreshing" 2265 " rank %d at %llu tick\n", rank, curTick()); 2266 } 2267 2268 // completed refresh event, ensure next request is scheduled 2269 if (!memory.nextReqEvent.scheduled()) { 2270 DPRINTF(DRAM, "Scheduling next request after refreshing" 2271 " rank %d\n", rank); 2272 schedule(memory.nextReqEvent, curTick()); 2273 } 2274 } 2275 2276 if ((pwrState == PWR_ACT) && (refreshState == REF_PD_EXIT)) { 2277 // have exited ACT PD 2278 assert(prev_state == PWR_ACT_PDN); 2279 2280 // go back to REF event and close banks 2281 refreshState = REF_PRE; 2282 schedule(refreshEvent, curTick()); 2283 } else if (pwrState == PWR_IDLE) { 2284 DPRINTF(DRAMState, "All banks precharged\n"); 2285 if (prev_state == PWR_SREF) { 2286 // set refresh state to REF_SREF_EXIT, ensuring inRefIdleState 2287 // continues to return false during tXS after SREF exit 2288 // Schedule a refresh which kicks things back into action 2289 // when it finishes 2290 refreshState = REF_SREF_EXIT; 2291 schedule(refreshEvent, curTick() + memory.tXS); 2292 } else { 2293 // if we have a pending refresh, and are now moving to 2294 // the idle state, directly transition to, or schedule refresh 2295 if ((refreshState == REF_PRE) || (refreshState == REF_PD_EXIT)) { 2296 // ensure refresh is restarted only after final PRE command. 2297 // do not restart refresh if controller is in an intermediate 2298 // state, after PRE_PDN exit, when banks are IDLE but an 2299 // ACT is scheduled. 2300 if (!activateEvent.scheduled()) { 2301 // there should be nothing waiting at this point 2302 assert(!powerEvent.scheduled()); 2303 if (refreshState == REF_PD_EXIT) { 2304 // exiting PRE PD, will be in IDLE until tXP expires 2305 // and then should transition to PWR_REF state 2306 assert(prev_state == PWR_PRE_PDN); 2307 schedulePowerEvent(PWR_REF, curTick() + memory.tXP); 2308 } else if (refreshState == REF_PRE) { 2309 // can directly move to PWR_REF state and proceed below 2310 pwrState = PWR_REF; 2311 } 2312 } else { 2313 // must have PRE scheduled to transition back to IDLE 2314 // and re-kick off refresh 2315 assert(prechargeEvent.scheduled()); 2316 } 2317 } 2318 } 2319 } 2320 2321 // transition to the refresh state and re-start refresh process 2322 // refresh state machine will schedule the next power state transition 2323 if (pwrState == PWR_REF) { 2324 // completed final PRE for refresh or exiting power-down 2325 assert(refreshState == REF_PRE || refreshState == REF_PD_EXIT); 2326 2327 // exited PRE PD for refresh, with no pending commands 2328 // bypass auto-refresh and go straight to SREF, where memory 2329 // will issue refresh immediately upon entry 2330 if (pwrStatePostRefresh == PWR_PRE_PDN && isQueueEmpty() && 2331 (memory.drainState() != DrainState::Draining) && 2332 (memory.drainState() != DrainState::Drained) && 2333 memory.enableDRAMPowerdown) { 2334 DPRINTF(DRAMState, "Rank %d bypassing refresh and transitioning " 2335 "to self refresh at %11u tick\n", rank, curTick()); 2336 powerDownSleep(PWR_SREF, curTick()); 2337 2338 // Since refresh was bypassed, remove event by decrementing count 2339 assert(outstandingEvents == 1); 2340 --outstandingEvents; 2341 2342 // reset state back to IDLE temporarily until SREF is entered 2343 pwrState = PWR_IDLE; 2344 2345 // Not bypassing refresh for SREF entry 2346 } else { 2347 DPRINTF(DRAMState, "Refreshing\n"); 2348 2349 // there should be nothing waiting at this point 2350 assert(!powerEvent.scheduled()); 2351 2352 // kick the refresh event loop into action again, and that 2353 // in turn will schedule a transition to the idle power 2354 // state once the refresh is done 2355 schedule(refreshEvent, curTick()); 2356 2357 // Banks transitioned to IDLE, start REF 2358 refreshState = REF_START; 2359 } 2360 } 2361 2362} 2363 2364void 2365DRAMCtrl::Rank::updatePowerStats() 2366{ 2367 // All commands up to refresh have completed 2368 // flush cmdList to DRAMPower 2369 flushCmdList(); 2370 2371 // Call the function that calculates window energy at intermediate update 2372 // events like at refresh, stats dump as well as at simulation exit. 2373 // Window starts at the last time the calcWindowEnergy function was called 2374 // and is upto current time. 2375 power.powerlib.calcWindowEnergy(divCeil(curTick(), memory.tCK) - 2376 memory.timeStampOffset); 2377 2378 // Get the energy from DRAMPower 2379 Data::MemoryPowerModel::Energy energy = power.powerlib.getEnergy(); 2380 2381 // The energy components inside the power lib are calculated over 2382 // the window so accumulate into the corresponding gem5 stat 2383 actEnergy += energy.act_energy * memory.devicesPerRank; 2384 preEnergy += energy.pre_energy * memory.devicesPerRank; 2385 readEnergy += energy.read_energy * memory.devicesPerRank; 2386 writeEnergy += energy.write_energy * memory.devicesPerRank; 2387 refreshEnergy += energy.ref_energy * memory.devicesPerRank; 2388 actBackEnergy += energy.act_stdby_energy * memory.devicesPerRank; 2389 preBackEnergy += energy.pre_stdby_energy * memory.devicesPerRank; 2390 actPowerDownEnergy += energy.f_act_pd_energy * memory.devicesPerRank; 2391 prePowerDownEnergy += energy.f_pre_pd_energy * memory.devicesPerRank; 2392 selfRefreshEnergy += energy.sref_energy * memory.devicesPerRank; 2393 2394 // Accumulate window energy into the total energy. 2395 totalEnergy += energy.window_energy * memory.devicesPerRank; 2396 // Average power must not be accumulated but calculated over the time 2397 // since last stats reset. SimClock::Frequency is tick period not tick 2398 // frequency. 2399 // energy (pJ) 1e-9 2400 // power (mW) = ----------- * ---------- 2401 // time (tick) tick_frequency 2402 averagePower = (totalEnergy.value() / 2403 (curTick() - memory.lastStatsResetTick)) * 2404 (SimClock::Frequency / 1000000000.0); 2405} 2406 2407void 2408DRAMCtrl::Rank::computeStats() 2409{ 2410 DPRINTF(DRAM,"Computing stats due to a dump callback\n"); 2411 2412 // Update the stats 2413 updatePowerStats(); 2414 2415 // final update of power state times 2416 pwrStateTime[pwrState] += (curTick() - pwrStateTick); 2417 pwrStateTick = curTick(); 2418 2419} 2420 2421void 2422DRAMCtrl::Rank::resetStats() { 2423 // The only way to clear the counters in DRAMPower is to call 2424 // calcWindowEnergy function as that then calls clearCounters. The 2425 // clearCounters method itself is private. 2426 power.powerlib.calcWindowEnergy(divCeil(curTick(), memory.tCK) - 2427 memory.timeStampOffset); 2428 2429} 2430 2431void 2432DRAMCtrl::Rank::regStats() 2433{ 2434 pwrStateTime 2435 .init(6) 2436 .name(name() + ".memoryStateTime") 2437 .desc("Time in different power states"); 2438 pwrStateTime.subname(0, "IDLE"); 2439 pwrStateTime.subname(1, "REF"); 2440 pwrStateTime.subname(2, "SREF"); 2441 pwrStateTime.subname(3, "PRE_PDN"); 2442 pwrStateTime.subname(4, "ACT"); 2443 pwrStateTime.subname(5, "ACT_PDN"); 2444 2445 actEnergy 2446 .name(name() + ".actEnergy") 2447 .desc("Energy for activate commands per rank (pJ)"); 2448 2449 preEnergy 2450 .name(name() + ".preEnergy") 2451 .desc("Energy for precharge commands per rank (pJ)"); 2452 2453 readEnergy 2454 .name(name() + ".readEnergy") 2455 .desc("Energy for read commands per rank (pJ)"); 2456 2457 writeEnergy 2458 .name(name() + ".writeEnergy") 2459 .desc("Energy for write commands per rank (pJ)"); 2460 2461 refreshEnergy 2462 .name(name() + ".refreshEnergy") 2463 .desc("Energy for refresh commands per rank (pJ)"); 2464 2465 actBackEnergy 2466 .name(name() + ".actBackEnergy") 2467 .desc("Energy for active background per rank (pJ)"); 2468 2469 preBackEnergy 2470 .name(name() + ".preBackEnergy") 2471 .desc("Energy for precharge background per rank (pJ)"); 2472 2473 actPowerDownEnergy 2474 .name(name() + ".actPowerDownEnergy") 2475 .desc("Energy for active power-down per rank (pJ)"); 2476 2477 prePowerDownEnergy 2478 .name(name() + ".prePowerDownEnergy") 2479 .desc("Energy for precharge power-down per rank (pJ)"); 2480 2481 selfRefreshEnergy 2482 .name(name() + ".selfRefreshEnergy") 2483 .desc("Energy for self refresh per rank (pJ)"); 2484 2485 totalEnergy 2486 .name(name() + ".totalEnergy") 2487 .desc("Total energy per rank (pJ)"); 2488 2489 averagePower 2490 .name(name() + ".averagePower") 2491 .desc("Core power per rank (mW)"); 2492 2493 totalIdleTime 2494 .name(name() + ".totalIdleTime") 2495 .desc("Total Idle time Per DRAM Rank"); 2496 2497 Stats::registerDumpCallback(new RankDumpCallback(this)); 2498 Stats::registerResetCallback(new RankResetCallback(this)); 2499} 2500void 2501DRAMCtrl::regStats() 2502{ 2503 using namespace Stats; 2504 2505 MemCtrl::regStats(); 2506 2507 for (auto r : ranks) { 2508 r->regStats(); 2509 } 2510 2511 registerResetCallback(new MemResetCallback(this)); 2512 2513 readReqs 2514 .name(name() + ".readReqs") 2515 .desc("Number of read requests accepted"); 2516 2517 writeReqs 2518 .name(name() + ".writeReqs") 2519 .desc("Number of write requests accepted"); 2520 2521 readBursts 2522 .name(name() + ".readBursts") 2523 .desc("Number of DRAM read bursts, " 2524 "including those serviced by the write queue"); 2525 2526 writeBursts 2527 .name(name() + ".writeBursts") 2528 .desc("Number of DRAM write bursts, " 2529 "including those merged in the write queue"); 2530 2531 servicedByWrQ 2532 .name(name() + ".servicedByWrQ") 2533 .desc("Number of DRAM read bursts serviced by the write queue"); 2534 2535 mergedWrBursts 2536 .name(name() + ".mergedWrBursts") 2537 .desc("Number of DRAM write bursts merged with an existing one"); 2538 2539 neitherReadNorWrite 2540 .name(name() + ".neitherReadNorWriteReqs") 2541 .desc("Number of requests that are neither read nor write"); 2542 2543 perBankRdBursts 2544 .init(banksPerRank * ranksPerChannel) 2545 .name(name() + ".perBankRdBursts") 2546 .desc("Per bank write bursts"); 2547 2548 perBankWrBursts 2549 .init(banksPerRank * ranksPerChannel) 2550 .name(name() + ".perBankWrBursts") 2551 .desc("Per bank write bursts"); 2552 2553 avgRdQLen 2554 .name(name() + ".avgRdQLen") 2555 .desc("Average read queue length when enqueuing") 2556 .precision(2); 2557 2558 avgWrQLen 2559 .name(name() + ".avgWrQLen") 2560 .desc("Average write queue length when enqueuing") 2561 .precision(2); 2562 2563 totQLat 2564 .name(name() + ".totQLat") 2565 .desc("Total ticks spent queuing"); 2566 2567 totBusLat 2568 .name(name() + ".totBusLat") 2569 .desc("Total ticks spent in databus transfers"); 2570 2571 totMemAccLat 2572 .name(name() + ".totMemAccLat") 2573 .desc("Total ticks spent from burst creation until serviced " 2574 "by the DRAM"); 2575 2576 avgQLat 2577 .name(name() + ".avgQLat") 2578 .desc("Average queueing delay per DRAM burst") 2579 .precision(2); 2580 2581 avgQLat = totQLat / (readBursts - servicedByWrQ); 2582 2583 avgBusLat 2584 .name(name() + ".avgBusLat") 2585 .desc("Average bus latency per DRAM burst") 2586 .precision(2); 2587 2588 avgBusLat = totBusLat / (readBursts - servicedByWrQ); 2589 2590 avgMemAccLat 2591 .name(name() + ".avgMemAccLat") 2592 .desc("Average memory access latency per DRAM burst") 2593 .precision(2); 2594 2595 avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ); 2596 2597 numRdRetry 2598 .name(name() + ".numRdRetry") 2599 .desc("Number of times read queue was full causing retry"); 2600 2601 numWrRetry 2602 .name(name() + ".numWrRetry") 2603 .desc("Number of times write queue was full causing retry"); 2604 2605 readRowHits 2606 .name(name() + ".readRowHits") 2607 .desc("Number of row buffer hits during reads"); 2608 2609 writeRowHits 2610 .name(name() + ".writeRowHits") 2611 .desc("Number of row buffer hits during writes"); 2612 2613 readRowHitRate 2614 .name(name() + ".readRowHitRate") 2615 .desc("Row buffer hit rate for reads") 2616 .precision(2); 2617 2618 readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100; 2619 2620 writeRowHitRate 2621 .name(name() + ".writeRowHitRate") 2622 .desc("Row buffer hit rate for writes") 2623 .precision(2); 2624 2625 writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100; 2626 2627 readPktSize 2628 .init(ceilLog2(burstSize) + 1) 2629 .name(name() + ".readPktSize") 2630 .desc("Read request sizes (log2)"); 2631 2632 writePktSize 2633 .init(ceilLog2(burstSize) + 1) 2634 .name(name() + ".writePktSize") 2635 .desc("Write request sizes (log2)"); 2636 2637 rdQLenPdf 2638 .init(readBufferSize) 2639 .name(name() + ".rdQLenPdf") 2640 .desc("What read queue length does an incoming req see"); 2641 2642 wrQLenPdf 2643 .init(writeBufferSize) 2644 .name(name() + ".wrQLenPdf") 2645 .desc("What write queue length does an incoming req see"); 2646 2647 bytesPerActivate 2648 .init(maxAccessesPerRow ? maxAccessesPerRow : rowBufferSize) 2649 .name(name() + ".bytesPerActivate") 2650 .desc("Bytes accessed per row activation") 2651 .flags(nozero); 2652 2653 rdPerTurnAround 2654 .init(readBufferSize) 2655 .name(name() + ".rdPerTurnAround") 2656 .desc("Reads before turning the bus around for writes") 2657 .flags(nozero); 2658 2659 wrPerTurnAround 2660 .init(writeBufferSize) 2661 .name(name() + ".wrPerTurnAround") 2662 .desc("Writes before turning the bus around for reads") 2663 .flags(nozero); 2664 2665 bytesReadDRAM 2666 .name(name() + ".bytesReadDRAM") 2667 .desc("Total number of bytes read from DRAM"); 2668 2669 bytesReadWrQ 2670 .name(name() + ".bytesReadWrQ") 2671 .desc("Total number of bytes read from write queue"); 2672 2673 bytesWritten 2674 .name(name() + ".bytesWritten") 2675 .desc("Total number of bytes written to DRAM"); 2676 2677 bytesReadSys 2678 .name(name() + ".bytesReadSys") 2679 .desc("Total read bytes from the system interface side"); 2680 2681 bytesWrittenSys 2682 .name(name() + ".bytesWrittenSys") 2683 .desc("Total written bytes from the system interface side"); 2684 2685 avgRdBW 2686 .name(name() + ".avgRdBW") 2687 .desc("Average DRAM read bandwidth in MiByte/s") 2688 .precision(2); 2689 2690 avgRdBW = (bytesReadDRAM / 1000000) / simSeconds; 2691 2692 avgWrBW 2693 .name(name() + ".avgWrBW") 2694 .desc("Average achieved write bandwidth in MiByte/s") 2695 .precision(2); 2696 2697 avgWrBW = (bytesWritten / 1000000) / simSeconds; 2698 2699 avgRdBWSys 2700 .name(name() + ".avgRdBWSys") 2701 .desc("Average system read bandwidth in MiByte/s") 2702 .precision(2); 2703 2704 avgRdBWSys = (bytesReadSys / 1000000) / simSeconds; 2705 2706 avgWrBWSys 2707 .name(name() + ".avgWrBWSys") 2708 .desc("Average system write bandwidth in MiByte/s") 2709 .precision(2); 2710 2711 avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds; 2712 2713 peakBW 2714 .name(name() + ".peakBW") 2715 .desc("Theoretical peak bandwidth in MiByte/s") 2716 .precision(2); 2717 2718 peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000; 2719 2720 busUtil 2721 .name(name() + ".busUtil") 2722 .desc("Data bus utilization in percentage") 2723 .precision(2); 2724 busUtil = (avgRdBW + avgWrBW) / peakBW * 100; 2725 2726 totGap 2727 .name(name() + ".totGap") 2728 .desc("Total gap between requests"); 2729 2730 avgGap 2731 .name(name() + ".avgGap") 2732 .desc("Average gap between requests") 2733 .precision(2); 2734 2735 avgGap = totGap / (readReqs + writeReqs); 2736 2737 // Stats for DRAM Power calculation based on Micron datasheet 2738 busUtilRead 2739 .name(name() + ".busUtilRead") 2740 .desc("Data bus utilization in percentage for reads") 2741 .precision(2); 2742 2743 busUtilRead = avgRdBW / peakBW * 100; 2744 2745 busUtilWrite 2746 .name(name() + ".busUtilWrite") 2747 .desc("Data bus utilization in percentage for writes") 2748 .precision(2); 2749 2750 busUtilWrite = avgWrBW / peakBW * 100; 2751 2752 pageHitRate 2753 .name(name() + ".pageHitRate") 2754 .desc("Row buffer hit rate, read and write combined") 2755 .precision(2); 2756 2757 pageHitRate = (writeRowHits + readRowHits) / 2758 (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100; 2759 2760 // per-master bytes read and written to memory 2761 masterReadBytes 2762 .init(_system->maxMasters()) 2763 .name(name() + ".masterReadBytes") 2764 .desc("Per-master bytes read from memory") 2765 .flags(nozero | nonan); 2766 2767 masterWriteBytes 2768 .init(_system->maxMasters()) 2769 .name(name() + ".masterWriteBytes") 2770 .desc("Per-master bytes write to memory") 2771 .flags(nozero | nonan); 2772 2773 // per-master bytes read and written to memory rate 2774 masterReadRate.name(name() + ".masterReadRate") 2775 .desc("Per-master bytes read from memory rate (Bytes/sec)") 2776 .flags(nozero | nonan) 2777 .precision(12); 2778 2779 masterReadRate = masterReadBytes/simSeconds; 2780 2781 masterWriteRate 2782 .name(name() + ".masterWriteRate") 2783 .desc("Per-master bytes write to memory rate (Bytes/sec)") 2784 .flags(nozero | nonan) 2785 .precision(12); 2786 2787 masterWriteRate = masterWriteBytes/simSeconds; 2788 2789 masterReadAccesses 2790 .init(_system->maxMasters()) 2791 .name(name() + ".masterReadAccesses") 2792 .desc("Per-master read serviced memory accesses") 2793 .flags(nozero); 2794 2795 masterWriteAccesses 2796 .init(_system->maxMasters()) 2797 .name(name() + ".masterWriteAccesses") 2798 .desc("Per-master write serviced memory accesses") 2799 .flags(nozero); 2800 2801 2802 masterReadTotalLat 2803 .init(_system->maxMasters()) 2804 .name(name() + ".masterReadTotalLat") 2805 .desc("Per-master read total memory access latency") 2806 .flags(nozero | nonan); 2807 2808 masterReadAvgLat.name(name() + ".masterReadAvgLat") 2809 .desc("Per-master read average memory access latency") 2810 .flags(nonan) 2811 .precision(2); 2812 2813 masterReadAvgLat = masterReadTotalLat/masterReadAccesses; 2814 2815 masterWriteTotalLat 2816 .init(_system->maxMasters()) 2817 .name(name() + ".masterWriteTotalLat") 2818 .desc("Per-master write total memory access latency") 2819 .flags(nozero | nonan); 2820 2821 masterWriteAvgLat.name(name() + ".masterWriteAvgLat") 2822 .desc("Per-master write average memory access latency") 2823 .flags(nonan) 2824 .precision(2); 2825 2826 masterWriteAvgLat = masterWriteTotalLat/masterWriteAccesses; 2827 2828 for (int i = 0; i < _system->maxMasters(); i++) { 2829 const std::string master = _system->getMasterName(i); 2830 masterReadBytes.subname(i, master); 2831 masterReadRate.subname(i, master); 2832 masterWriteBytes.subname(i, master); 2833 masterWriteRate.subname(i, master); 2834 masterReadAccesses.subname(i, master); 2835 masterWriteAccesses.subname(i, master); 2836 masterReadTotalLat.subname(i, master); 2837 masterReadAvgLat.subname(i, master); 2838 masterWriteTotalLat.subname(i, master); 2839 masterWriteAvgLat.subname(i, master); 2840 } 2841} 2842 2843void 2844DRAMCtrl::recvFunctional(PacketPtr pkt) 2845{ 2846 // rely on the abstract memory 2847 functionalAccess(pkt); 2848} 2849 2850Port & 2851DRAMCtrl::getPort(const string &if_name, PortID idx) 2852{ 2853 if (if_name != "port") { 2854 return QoS::MemCtrl::getPort(if_name, idx); 2855 } else { 2856 return port; 2857 } 2858} 2859 2860DrainState 2861DRAMCtrl::drain() 2862{ 2863 // if there is anything in any of our internal queues, keep track 2864 // of that as well 2865 if (!(!totalWriteQueueSize && !totalReadQueueSize && respQueue.empty() && 2866 allRanksDrained())) { 2867 2868 DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d," 2869 " resp: %d\n", totalWriteQueueSize, totalReadQueueSize, 2870 respQueue.size()); 2871 2872 // the only queue that is not drained automatically over time 2873 // is the write queue, thus kick things into action if needed 2874 if (!totalWriteQueueSize && !nextReqEvent.scheduled()) { 2875 schedule(nextReqEvent, curTick()); 2876 } 2877 2878 // also need to kick off events to exit self-refresh 2879 for (auto r : ranks) { 2880 // force self-refresh exit, which in turn will issue auto-refresh 2881 if (r->pwrState == PWR_SREF) { 2882 DPRINTF(DRAM,"Rank%d: Forcing self-refresh wakeup in drain\n", 2883 r->rank); 2884 r->scheduleWakeUpEvent(tXS); 2885 } 2886 } 2887 2888 return DrainState::Draining; 2889 } else { 2890 return DrainState::Drained; 2891 } 2892} 2893 2894bool 2895DRAMCtrl::allRanksDrained() const 2896{ 2897 // true until proven false 2898 bool all_ranks_drained = true; 2899 for (auto r : ranks) { 2900 // then verify that the power state is IDLE ensuring all banks are 2901 // closed and rank is not in a low power state. Also verify that rank 2902 // is idle from a refresh point of view. 2903 all_ranks_drained = r->inPwrIdleState() && r->inRefIdleState() && 2904 all_ranks_drained; 2905 } 2906 return all_ranks_drained; 2907} 2908 2909void 2910DRAMCtrl::drainResume() 2911{ 2912 if (!isTimingMode && system()->isTimingMode()) { 2913 // if we switched to timing mode, kick things into action, 2914 // and behave as if we restored from a checkpoint 2915 startup(); 2916 } else if (isTimingMode && !system()->isTimingMode()) { 2917 // if we switch from timing mode, stop the refresh events to 2918 // not cause issues with KVM 2919 for (auto r : ranks) { 2920 r->suspend(); 2921 } 2922 } 2923 2924 // update the mode 2925 isTimingMode = system()->isTimingMode(); 2926} 2927 2928DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory) 2929 : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this, true), 2930 memory(_memory) 2931{ } 2932 2933AddrRangeList 2934DRAMCtrl::MemoryPort::getAddrRanges() const 2935{ 2936 AddrRangeList ranges; 2937 ranges.push_back(memory.getAddrRange()); 2938 return ranges; 2939} 2940 2941void 2942DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt) 2943{ 2944 pkt->pushLabel(memory.name()); 2945 2946 if (!queue.trySatisfyFunctional(pkt)) { 2947 // Default implementation of SimpleTimingPort::recvFunctional() 2948 // calls recvAtomic() and throws away the latency; we can save a 2949 // little here by just not calculating the latency. 2950 memory.recvFunctional(pkt); 2951 } 2952 2953 pkt->popLabel(); 2954} 2955 2956Tick 2957DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt) 2958{ 2959 return memory.recvAtomic(pkt); 2960} 2961 2962bool 2963DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt) 2964{ 2965 // pass it to the memory controller 2966 return memory.recvTimingReq(pkt); 2967} 2968 2969DRAMCtrl* 2970DRAMCtrlParams::create() 2971{ 2972 return new DRAMCtrl(this); 2973} 2974