base.cc revision 11150:a8a64cca231b
1/*
2 * Copyright (c) 2010-2012,2015 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2002-2005 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Steve Reinhardt
42 */
43
44#include "arch/kernel_stats.hh"
45#include "arch/stacktrace.hh"
46#include "arch/tlb.hh"
47#include "arch/utility.hh"
48#include "arch/vtophys.hh"
49#include "base/loader/symtab.hh"
50#include "base/cp_annotate.hh"
51#include "base/cprintf.hh"
52#include "base/inifile.hh"
53#include "base/misc.hh"
54#include "base/pollevent.hh"
55#include "base/trace.hh"
56#include "base/types.hh"
57#include "config/the_isa.hh"
58#include "cpu/simple/base.hh"
59#include "cpu/base.hh"
60#include "cpu/checker/cpu.hh"
61#include "cpu/checker/thread_context.hh"
62#include "cpu/exetrace.hh"
63#include "cpu/pred/bpred_unit.hh"
64#include "cpu/profile.hh"
65#include "cpu/simple/exec_context.hh"
66#include "cpu/simple_thread.hh"
67#include "cpu/smt.hh"
68#include "cpu/static_inst.hh"
69#include "cpu/thread_context.hh"
70#include "debug/Decode.hh"
71#include "debug/Fetch.hh"
72#include "debug/Quiesce.hh"
73#include "mem/mem_object.hh"
74#include "mem/packet.hh"
75#include "mem/request.hh"
76#include "params/BaseSimpleCPU.hh"
77#include "sim/byteswap.hh"
78#include "sim/debug.hh"
79#include "sim/faults.hh"
80#include "sim/full_system.hh"
81#include "sim/sim_events.hh"
82#include "sim/sim_object.hh"
83#include "sim/stats.hh"
84#include "sim/system.hh"
85
86using namespace std;
87using namespace TheISA;
88
89BaseSimpleCPU::BaseSimpleCPU(BaseSimpleCPUParams *p)
90    : BaseCPU(p),
91      curThread(0),
92      branchPred(p->branchPred),
93      traceData(NULL),
94      inst(),
95      _status(Idle)
96{
97    SimpleThread *thread;
98
99    for (unsigned i = 0; i < numThreads; i++) {
100        if (FullSystem) {
101            thread = new SimpleThread(this, i, p->system,
102                                      p->itb, p->dtb, p->isa[i]);
103        } else {
104            thread = new SimpleThread(this, i, p->system, p->workload[i],
105                                      p->itb, p->dtb, p->isa[i]);
106        }
107        threadInfo.push_back(new SimpleExecContext(this, thread));
108        ThreadContext *tc = thread->getTC();
109        threadContexts.push_back(tc);
110    }
111
112    if (p->checker) {
113        if (numThreads != 1)
114            fatal("Checker currently does not support SMT");
115
116        BaseCPU *temp_checker = p->checker;
117        checker = dynamic_cast<CheckerCPU *>(temp_checker);
118        checker->setSystem(p->system);
119        // Manipulate thread context
120        ThreadContext *cpu_tc = threadContexts[0];
121        threadContexts[0] = new CheckerThreadContext<ThreadContext>(cpu_tc, this->checker);
122    } else {
123        checker = NULL;
124    }
125}
126
127void
128BaseSimpleCPU::init()
129{
130    BaseCPU::init();
131
132    for (auto tc : threadContexts) {
133        // Initialise the ThreadContext's memory proxies
134        tc->initMemProxies(tc);
135
136        if (FullSystem && !params()->switched_out) {
137            // initialize CPU, including PC
138            TheISA::initCPU(tc, tc->contextId());
139        }
140    }
141}
142
143void
144BaseSimpleCPU::checkPcEventQueue()
145{
146    Addr oldpc, pc = threadInfo[curThread]->thread->instAddr();
147    do {
148        oldpc = pc;
149        system->pcEventQueue.service(threadContexts[curThread]);
150        pc = threadInfo[curThread]->thread->instAddr();
151    } while (oldpc != pc);
152}
153
154void
155BaseSimpleCPU::swapActiveThread()
156{
157    if (numThreads > 1) {
158        if ((!curStaticInst || !curStaticInst->isDelayedCommit()) &&
159             !threadInfo[curThread]->stayAtPC) {
160            // Swap active threads
161            if (!activeThreads.empty()) {
162                curThread = activeThreads.front();
163                activeThreads.pop_front();
164                activeThreads.push_back(curThread);
165            }
166        }
167    }
168}
169
170void
171BaseSimpleCPU::countInst()
172{
173    SimpleExecContext& t_info = *threadInfo[curThread];
174
175    if (!curStaticInst->isMicroop() || curStaticInst->isLastMicroop()) {
176        t_info.numInst++;
177        t_info.numInsts++;
178    }
179    t_info.numOp++;
180    t_info.numOps++;
181
182    system->totalNumInsts++;
183    t_info.thread->funcExeInst++;
184}
185
186Counter
187BaseSimpleCPU::totalInsts() const
188{
189    Counter total_inst = 0;
190    for (auto& t_info : threadInfo) {
191        total_inst += t_info->numInst;
192    }
193
194    return total_inst;
195}
196
197Counter
198BaseSimpleCPU::totalOps() const
199{
200    Counter total_op = 0;
201    for (auto& t_info : threadInfo) {
202        total_op += t_info->numOp;
203    }
204
205    return total_op;
206}
207
208BaseSimpleCPU::~BaseSimpleCPU()
209{
210}
211
212void
213BaseSimpleCPU::haltContext(ThreadID thread_num)
214{
215    // for now, these are equivalent
216    suspendContext(thread_num);
217}
218
219
220void
221BaseSimpleCPU::regStats()
222{
223    using namespace Stats;
224
225    BaseCPU::regStats();
226
227    for (ThreadID tid = 0; tid < numThreads; tid++) {
228        SimpleExecContext& t_info = *threadInfo[tid];
229
230        std::string thread_str = name();
231        if (numThreads > 1)
232            thread_str += ".thread" + std::to_string(tid);
233
234        t_info.numInsts
235            .name(thread_str + ".committedInsts")
236            .desc("Number of instructions committed")
237            ;
238
239        t_info.numOps
240            .name(thread_str + ".committedOps")
241            .desc("Number of ops (including micro ops) committed")
242            ;
243
244        t_info.numIntAluAccesses
245            .name(thread_str + ".num_int_alu_accesses")
246            .desc("Number of integer alu accesses")
247            ;
248
249        t_info.numFpAluAccesses
250            .name(thread_str + ".num_fp_alu_accesses")
251            .desc("Number of float alu accesses")
252            ;
253
254        t_info.numCallsReturns
255            .name(thread_str + ".num_func_calls")
256            .desc("number of times a function call or return occured")
257            ;
258
259        t_info.numCondCtrlInsts
260            .name(thread_str + ".num_conditional_control_insts")
261            .desc("number of instructions that are conditional controls")
262            ;
263
264        t_info.numIntInsts
265            .name(thread_str + ".num_int_insts")
266            .desc("number of integer instructions")
267            ;
268
269        t_info.numFpInsts
270            .name(thread_str + ".num_fp_insts")
271            .desc("number of float instructions")
272            ;
273
274        t_info.numIntRegReads
275            .name(thread_str + ".num_int_register_reads")
276            .desc("number of times the integer registers were read")
277            ;
278
279        t_info.numIntRegWrites
280            .name(thread_str + ".num_int_register_writes")
281            .desc("number of times the integer registers were written")
282            ;
283
284        t_info.numFpRegReads
285            .name(thread_str + ".num_fp_register_reads")
286            .desc("number of times the floating registers were read")
287            ;
288
289        t_info.numFpRegWrites
290            .name(thread_str + ".num_fp_register_writes")
291            .desc("number of times the floating registers were written")
292            ;
293
294        t_info.numCCRegReads
295            .name(thread_str + ".num_cc_register_reads")
296            .desc("number of times the CC registers were read")
297            .flags(nozero)
298            ;
299
300        t_info.numCCRegWrites
301            .name(thread_str + ".num_cc_register_writes")
302            .desc("number of times the CC registers were written")
303            .flags(nozero)
304            ;
305
306        t_info.numMemRefs
307            .name(thread_str + ".num_mem_refs")
308            .desc("number of memory refs")
309            ;
310
311        t_info.numStoreInsts
312            .name(thread_str + ".num_store_insts")
313            .desc("Number of store instructions")
314            ;
315
316        t_info.numLoadInsts
317            .name(thread_str + ".num_load_insts")
318            .desc("Number of load instructions")
319            ;
320
321        t_info.notIdleFraction
322            .name(thread_str + ".not_idle_fraction")
323            .desc("Percentage of non-idle cycles")
324            ;
325
326        t_info.idleFraction
327            .name(thread_str + ".idle_fraction")
328            .desc("Percentage of idle cycles")
329            ;
330
331        t_info.numBusyCycles
332            .name(thread_str + ".num_busy_cycles")
333            .desc("Number of busy cycles")
334            ;
335
336        t_info.numIdleCycles
337            .name(thread_str + ".num_idle_cycles")
338            .desc("Number of idle cycles")
339            ;
340
341        t_info.icacheStallCycles
342            .name(thread_str + ".icache_stall_cycles")
343            .desc("ICache total stall cycles")
344            .prereq(t_info.icacheStallCycles)
345            ;
346
347        t_info.dcacheStallCycles
348            .name(thread_str + ".dcache_stall_cycles")
349            .desc("DCache total stall cycles")
350            .prereq(t_info.dcacheStallCycles)
351            ;
352
353        t_info.statExecutedInstType
354            .init(Enums::Num_OpClass)
355            .name(thread_str + ".op_class")
356            .desc("Class of executed instruction")
357            .flags(total | pdf | dist)
358            ;
359
360        for (unsigned i = 0; i < Num_OpClasses; ++i) {
361            t_info.statExecutedInstType.subname(i, Enums::OpClassStrings[i]);
362        }
363
364        t_info.idleFraction = constant(1.0) - t_info.notIdleFraction;
365        t_info.numIdleCycles = t_info.idleFraction * numCycles;
366        t_info.numBusyCycles = t_info.notIdleFraction * numCycles;
367
368        t_info.numBranches
369            .name(thread_str + ".Branches")
370            .desc("Number of branches fetched")
371            .prereq(t_info.numBranches);
372
373        t_info.numPredictedBranches
374            .name(thread_str + ".predictedBranches")
375            .desc("Number of branches predicted as taken")
376            .prereq(t_info.numPredictedBranches);
377
378        t_info.numBranchMispred
379            .name(thread_str + ".BranchMispred")
380            .desc("Number of branch mispredictions")
381            .prereq(t_info.numBranchMispred);
382    }
383}
384
385void
386BaseSimpleCPU::resetStats()
387{
388    for (auto &thread_info : threadInfo) {
389        thread_info->notIdleFraction = (_status != Idle);
390    }
391}
392
393void
394BaseSimpleCPU::serializeThread(CheckpointOut &cp, ThreadID tid) const
395{
396    assert(_status == Idle || _status == Running);
397
398    threadInfo[tid]->thread->serialize(cp);
399}
400
401void
402BaseSimpleCPU::unserializeThread(CheckpointIn &cp, ThreadID tid)
403{
404    threadInfo[tid]->thread->unserialize(cp);
405}
406
407void
408change_thread_state(ThreadID tid, int activate, int priority)
409{
410}
411
412Addr
413BaseSimpleCPU::dbg_vtophys(Addr addr)
414{
415    return vtophys(threadContexts[curThread], addr);
416}
417
418void
419BaseSimpleCPU::wakeup()
420{
421    for (ThreadID tid = 0; tid < numThreads; tid++) {
422        getCpuAddrMonitor(tid)->gotWakeup = true;
423        if (threadInfo[tid]->thread->status() == ThreadContext::Suspended) {
424            DPRINTF(Quiesce,"Suspended Processor awoke\n");
425            threadInfo[tid]->thread->activate();
426        }
427    }
428}
429
430void
431BaseSimpleCPU::checkForInterrupts()
432{
433    SimpleExecContext&t_info = *threadInfo[curThread];
434    SimpleThread* thread = t_info.thread;
435    ThreadContext* tc = thread->getTC();
436
437    if (checkInterrupts(tc)) {
438        Fault interrupt = interrupts[curThread]->getInterrupt(tc);
439
440        if (interrupt != NoFault) {
441            t_info.fetchOffset = 0;
442            interrupts[curThread]->updateIntrInfo(tc);
443            interrupt->invoke(tc);
444            thread->decoder.reset();
445        }
446    }
447}
448
449
450void
451BaseSimpleCPU::setupFetchRequest(Request *req)
452{
453    SimpleExecContext &t_info = *threadInfo[curThread];
454    SimpleThread* thread = t_info.thread;
455
456    Addr instAddr = thread->instAddr();
457
458    // set up memory request for instruction fetch
459    DPRINTF(Fetch, "Fetch: PC:%08p\n", instAddr);
460
461    Addr fetchPC = (instAddr & PCMask) + t_info.fetchOffset;
462    req->setVirt(0, fetchPC, sizeof(MachInst), Request::INST_FETCH, instMasterId(),
463            instAddr);
464}
465
466
467void
468BaseSimpleCPU::preExecute()
469{
470    SimpleExecContext &t_info = *threadInfo[curThread];
471    SimpleThread* thread = t_info.thread;
472
473    // maintain $r0 semantics
474    thread->setIntReg(ZeroReg, 0);
475#if THE_ISA == ALPHA_ISA
476    thread->setFloatReg(ZeroReg, 0.0);
477#endif // ALPHA_ISA
478
479    // check for instruction-count-based events
480    comInstEventQueue[curThread]->serviceEvents(t_info.numInst);
481    system->instEventQueue.serviceEvents(system->totalNumInsts);
482
483    // decode the instruction
484    inst = gtoh(inst);
485
486    TheISA::PCState pcState = thread->pcState();
487
488    if (isRomMicroPC(pcState.microPC())) {
489        t_info.stayAtPC = false;
490        curStaticInst = microcodeRom.fetchMicroop(pcState.microPC(),
491                                                  curMacroStaticInst);
492    } else if (!curMacroStaticInst) {
493        //We're not in the middle of a macro instruction
494        StaticInstPtr instPtr = NULL;
495
496        TheISA::Decoder *decoder = &(thread->decoder);
497
498        //Predecode, ie bundle up an ExtMachInst
499        //If more fetch data is needed, pass it in.
500        Addr fetchPC = (pcState.instAddr() & PCMask) + t_info.fetchOffset;
501        //if(decoder->needMoreBytes())
502            decoder->moreBytes(pcState, fetchPC, inst);
503        //else
504        //    decoder->process();
505
506        //Decode an instruction if one is ready. Otherwise, we'll have to
507        //fetch beyond the MachInst at the current pc.
508        instPtr = decoder->decode(pcState);
509        if (instPtr) {
510            t_info.stayAtPC = false;
511            thread->pcState(pcState);
512        } else {
513            t_info.stayAtPC = true;
514            t_info.fetchOffset += sizeof(MachInst);
515        }
516
517        //If we decoded an instruction and it's microcoded, start pulling
518        //out micro ops
519        if (instPtr && instPtr->isMacroop()) {
520            curMacroStaticInst = instPtr;
521            curStaticInst =
522                curMacroStaticInst->fetchMicroop(pcState.microPC());
523        } else {
524            curStaticInst = instPtr;
525        }
526    } else {
527        //Read the next micro op from the macro op
528        curStaticInst = curMacroStaticInst->fetchMicroop(pcState.microPC());
529    }
530
531    //If we decoded an instruction this "tick", record information about it.
532    if (curStaticInst) {
533#if TRACING_ON
534        traceData = tracer->getInstRecord(curTick(), thread->getTC(),
535                curStaticInst, thread->pcState(), curMacroStaticInst);
536
537        DPRINTF(Decode,"Decode: Decoded %s instruction: %#x\n",
538                curStaticInst->getName(), curStaticInst->machInst);
539#endif // TRACING_ON
540    }
541
542    if (branchPred && curStaticInst &&
543        curStaticInst->isControl()) {
544        // Use a fake sequence number since we only have one
545        // instruction in flight at the same time.
546        const InstSeqNum cur_sn(0);
547        t_info.predPC = thread->pcState();
548        const bool predict_taken(
549            branchPred->predict(curStaticInst, cur_sn, t_info.predPC,
550                                curThread));
551
552        if (predict_taken)
553            ++t_info.numPredictedBranches;
554    }
555}
556
557void
558BaseSimpleCPU::postExecute()
559{
560    SimpleExecContext &t_info = *threadInfo[curThread];
561    SimpleThread* thread = t_info.thread;
562
563    assert(curStaticInst);
564
565    TheISA::PCState pc = threadContexts[curThread]->pcState();
566    Addr instAddr = pc.instAddr();
567    if (FullSystem && thread->profile) {
568        bool usermode = TheISA::inUserMode(threadContexts[curThread]);
569        thread->profilePC = usermode ? 1 : instAddr;
570        ProfileNode *node = thread->profile->consume(threadContexts[curThread],
571                                                     curStaticInst);
572        if (node)
573            thread->profileNode = node;
574    }
575
576    if (curStaticInst->isMemRef()) {
577        t_info.numMemRefs++;
578    }
579
580    if (curStaticInst->isLoad()) {
581        ++t_info.numLoad;
582        comLoadEventQueue[curThread]->serviceEvents(t_info.numLoad);
583    }
584
585    if (CPA::available()) {
586        CPA::cpa()->swAutoBegin(threadContexts[curThread], pc.nextInstAddr());
587    }
588
589    if (curStaticInst->isControl()) {
590        ++t_info.numBranches;
591    }
592
593    /* Power model statistics */
594    //integer alu accesses
595    if (curStaticInst->isInteger()){
596        t_info.numIntAluAccesses++;
597        t_info.numIntInsts++;
598    }
599
600    //float alu accesses
601    if (curStaticInst->isFloating()){
602        t_info.numFpAluAccesses++;
603        t_info.numFpInsts++;
604    }
605
606    //number of function calls/returns to get window accesses
607    if (curStaticInst->isCall() || curStaticInst->isReturn()){
608        t_info.numCallsReturns++;
609    }
610
611    //the number of branch predictions that will be made
612    if (curStaticInst->isCondCtrl()){
613        t_info.numCondCtrlInsts++;
614    }
615
616    //result bus acceses
617    if (curStaticInst->isLoad()){
618        t_info.numLoadInsts++;
619    }
620
621    if (curStaticInst->isStore()){
622        t_info.numStoreInsts++;
623    }
624    /* End power model statistics */
625
626    t_info.statExecutedInstType[curStaticInst->opClass()]++;
627
628    if (FullSystem)
629        traceFunctions(instAddr);
630
631    if (traceData) {
632        traceData->dump();
633        delete traceData;
634        traceData = NULL;
635    }
636
637    // Call CPU instruction commit probes
638    probeInstCommit(curStaticInst);
639}
640
641void
642BaseSimpleCPU::advancePC(const Fault &fault)
643{
644    SimpleExecContext &t_info = *threadInfo[curThread];
645    SimpleThread* thread = t_info.thread;
646
647    const bool branching(thread->pcState().branching());
648
649    //Since we're moving to a new pc, zero out the offset
650    t_info.fetchOffset = 0;
651    if (fault != NoFault) {
652        curMacroStaticInst = StaticInst::nullStaticInstPtr;
653        fault->invoke(threadContexts[curThread], curStaticInst);
654        thread->decoder.reset();
655    } else {
656        if (curStaticInst) {
657            if (curStaticInst->isLastMicroop())
658                curMacroStaticInst = StaticInst::nullStaticInstPtr;
659            TheISA::PCState pcState = thread->pcState();
660            TheISA::advancePC(pcState, curStaticInst);
661            thread->pcState(pcState);
662        }
663    }
664
665    if (branchPred && curStaticInst && curStaticInst->isControl()) {
666        // Use a fake sequence number since we only have one
667        // instruction in flight at the same time.
668        const InstSeqNum cur_sn(0);
669
670        if (t_info.predPC == thread->pcState()) {
671            // Correctly predicted branch
672            branchPred->update(cur_sn, curThread);
673        } else {
674            // Mis-predicted branch
675            branchPred->squash(cur_sn, thread->pcState(), branching, curThread);
676            ++t_info.numBranchMispred;
677        }
678    }
679}
680
681void
682BaseSimpleCPU::startup()
683{
684    BaseCPU::startup();
685    for (auto& t_info : threadInfo)
686        t_info->thread->startup();
687}
688