base.cc revision 2361
1/*
2 * Copyright (c) 2002-2005 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <cmath>
30#include <cstdio>
31#include <cstdlib>
32#include <iostream>
33#include <iomanip>
34#include <list>
35#include <sstream>
36#include <string>
37
38#include "base/cprintf.hh"
39#include "base/inifile.hh"
40#include "base/loader/symtab.hh"
41#include "base/misc.hh"
42#include "base/pollevent.hh"
43#include "base/range.hh"
44#include "base/stats/events.hh"
45#include "base/trace.hh"
46#include "cpu/base.hh"
47#include "cpu/cpu_exec_context.hh"
48#include "cpu/exec_context.hh"
49#include "cpu/exetrace.hh"
50#include "cpu/profile.hh"
51#include "cpu/sampler/sampler.hh"
52#include "cpu/simple/cpu.hh"
53#include "cpu/smt.hh"
54#include "cpu/static_inst.hh"
55#include "kern/kernel_stats.hh"
56#include "mem/base_mem.hh"
57#include "mem/mem_interface.hh"
58#include "sim/byteswap.hh"
59#include "sim/builder.hh"
60#include "sim/debug.hh"
61#include "sim/host.hh"
62#include "sim/sim_events.hh"
63#include "sim/sim_object.hh"
64#include "sim/stats.hh"
65
66#if FULL_SYSTEM
67#include "base/remote_gdb.hh"
68#include "mem/functional/memory_control.hh"
69#include "mem/functional/physical.hh"
70#include "sim/system.hh"
71#include "arch/tlb.hh"
72#include "arch/stacktrace.hh"
73#include "arch/vtophys.hh"
74#else // !FULL_SYSTEM
75#include "mem/functional/functional.hh"
76#endif // FULL_SYSTEM
77
78using namespace std;
79//The SimpleCPU does alpha only
80using namespace AlphaISA;
81
82
83SimpleCPU::TickEvent::TickEvent(SimpleCPU *c, int w)
84    : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c), width(w)
85{
86}
87
88
89void
90SimpleCPU::init()
91{
92    BaseCPU::init();
93#if FULL_SYSTEM
94    for (int i = 0; i < execContexts.size(); ++i) {
95        ExecContext *xc = execContexts[i];
96
97        // initialize CPU, including PC
98        TheISA::initCPU(xc, xc->readCpuId());
99    }
100#endif
101}
102
103void
104SimpleCPU::TickEvent::process()
105{
106    int count = width;
107    do {
108        cpu->tick();
109    } while (--count > 0 && cpu->status() == Running);
110}
111
112const char *
113SimpleCPU::TickEvent::description()
114{
115    return "SimpleCPU tick event";
116}
117
118
119SimpleCPU::CacheCompletionEvent::CacheCompletionEvent(SimpleCPU *_cpu)
120    : Event(&mainEventQueue), cpu(_cpu)
121{
122}
123
124void SimpleCPU::CacheCompletionEvent::process()
125{
126    cpu->processCacheCompletion();
127}
128
129const char *
130SimpleCPU::CacheCompletionEvent::description()
131{
132    return "SimpleCPU cache completion event";
133}
134
135SimpleCPU::SimpleCPU(Params *p)
136    : BaseCPU(p), tickEvent(this, p->width), cpuXC(NULL),
137      cacheCompletionEvent(this)
138{
139    _status = Idle;
140#if FULL_SYSTEM
141    cpuXC = new CPUExecContext(this, 0, p->system, p->itb, p->dtb, p->mem);
142
143#else
144    cpuXC = new CPUExecContext(this, /* thread_num */ 0, p->process,
145                               /* asid */ 0);
146#endif // !FULL_SYSTEM
147    cpuXC->setStatus(ExecContext::Suspended);
148    xcProxy = cpuXC->getProxy();
149
150    icacheInterface = p->icache_interface;
151    dcacheInterface = p->dcache_interface;
152
153    memReq = new MemReq();
154    memReq->xc = xcProxy;
155    memReq->asid = 0;
156    memReq->data = new uint8_t[64];
157
158    numInst = 0;
159    startNumInst = 0;
160    numLoad = 0;
161    startNumLoad = 0;
162    lastIcacheStall = 0;
163    lastDcacheStall = 0;
164
165    execContexts.push_back(xcProxy);
166}
167
168SimpleCPU::~SimpleCPU()
169{
170}
171
172void
173SimpleCPU::switchOut(Sampler *s)
174{
175    sampler = s;
176    if (status() == DcacheMissStall) {
177        DPRINTF(Sampler,"Outstanding dcache access, waiting for completion\n");
178        _status = DcacheMissSwitch;
179    }
180    else {
181        _status = SwitchedOut;
182
183        if (tickEvent.scheduled())
184            tickEvent.deschedule();
185
186        assert(!tickEvent.scheduled());
187
188        sampler->signalSwitched();
189    }
190}
191
192
193void
194SimpleCPU::takeOverFrom(BaseCPU *oldCPU)
195{
196    BaseCPU::takeOverFrom(oldCPU);
197
198    assert(!tickEvent.scheduled());
199
200    // if any of this CPU's ExecContexts are active, mark the CPU as
201    // running and schedule its tick event.
202    for (int i = 0; i < execContexts.size(); ++i) {
203        ExecContext *xc = execContexts[i];
204        if (xc->status() == ExecContext::Active && _status != Running) {
205            _status = Running;
206            tickEvent.schedule(curTick);
207        }
208    }
209}
210
211
212void
213SimpleCPU::activateContext(int thread_num, int delay)
214{
215    assert(thread_num == 0);
216    assert(cpuXC);
217
218    assert(_status == Idle || _status == SwitchedOut);
219    notIdleFraction++;
220    scheduleTickEvent(delay);
221    _status = Running;
222}
223
224
225void
226SimpleCPU::suspendContext(int thread_num)
227{
228    assert(thread_num == 0);
229    assert(cpuXC);
230
231    assert(_status == Running || _status == SwitchedOut);
232    notIdleFraction--;
233    unscheduleTickEvent();
234    _status = Idle;
235}
236
237
238void
239SimpleCPU::deallocateContext(int thread_num)
240{
241    // for now, these are equivalent
242    suspendContext(thread_num);
243}
244
245
246void
247SimpleCPU::haltContext(int thread_num)
248{
249    // for now, these are equivalent
250    suspendContext(thread_num);
251}
252
253
254void
255SimpleCPU::regStats()
256{
257    using namespace Stats;
258
259    BaseCPU::regStats();
260
261    numInsts
262        .name(name() + ".num_insts")
263        .desc("Number of instructions executed")
264        ;
265
266    numMemRefs
267        .name(name() + ".num_refs")
268        .desc("Number of memory references")
269        ;
270
271    notIdleFraction
272        .name(name() + ".not_idle_fraction")
273        .desc("Percentage of non-idle cycles")
274        ;
275
276    idleFraction
277        .name(name() + ".idle_fraction")
278        .desc("Percentage of idle cycles")
279        ;
280
281    icacheStallCycles
282        .name(name() + ".icache_stall_cycles")
283        .desc("ICache total stall cycles")
284        .prereq(icacheStallCycles)
285        ;
286
287    dcacheStallCycles
288        .name(name() + ".dcache_stall_cycles")
289        .desc("DCache total stall cycles")
290        .prereq(dcacheStallCycles)
291        ;
292
293    idleFraction = constant(1.0) - notIdleFraction;
294}
295
296void
297SimpleCPU::resetStats()
298{
299//    startNumInst = numInst;
300    notIdleFraction = (_status != Idle);
301}
302
303void
304SimpleCPU::serialize(ostream &os)
305{
306    BaseCPU::serialize(os);
307    SERIALIZE_ENUM(_status);
308    SERIALIZE_SCALAR(inst);
309    nameOut(os, csprintf("%s.xc.0", name()));
310    cpuXC->serialize(os);
311    nameOut(os, csprintf("%s.tickEvent", name()));
312    tickEvent.serialize(os);
313    nameOut(os, csprintf("%s.cacheCompletionEvent", name()));
314    cacheCompletionEvent.serialize(os);
315}
316
317void
318SimpleCPU::unserialize(Checkpoint *cp, const string &section)
319{
320    BaseCPU::unserialize(cp, section);
321    UNSERIALIZE_ENUM(_status);
322    UNSERIALIZE_SCALAR(inst);
323    cpuXC->unserialize(cp, csprintf("%s.xc.0", section));
324    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
325    cacheCompletionEvent
326        .unserialize(cp, csprintf("%s.cacheCompletionEvent", section));
327}
328
329void
330change_thread_state(int thread_number, int activate, int priority)
331{
332}
333
334Fault
335SimpleCPU::copySrcTranslate(Addr src)
336{
337    static bool no_warn = true;
338    int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
339    // Only support block sizes of 64 atm.
340    assert(blk_size == 64);
341    int offset = src & (blk_size - 1);
342
343    // Make sure block doesn't span page
344    if (no_warn &&
345        (src & PageMask) != ((src + blk_size) & PageMask) &&
346        (src >> 40) != 0xfffffc) {
347        warn("Copied block source spans pages %x.", src);
348        no_warn = false;
349    }
350
351    memReq->reset(src & ~(blk_size - 1), blk_size);
352
353    // translate to physical address
354    Fault fault = cpuXC->translateDataReadReq(memReq);
355
356    if (fault == NoFault) {
357        panic("We can't copy!");
358        cpuXC->copySrcAddr = src;
359        cpuXC->copySrcPhysAddr = memReq->paddr + offset;
360    } else {
361        assert(!fault->isAlignmentFault());
362
363        cpuXC->copySrcAddr = 0;
364        cpuXC->copySrcPhysAddr = 0;
365    }
366    return fault;
367}
368
369Fault
370SimpleCPU::copy(Addr dest)
371{
372    static bool no_warn = true;
373    int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
374    // Only support block sizes of 64 atm.
375    assert(blk_size == 64);
376    uint8_t data[blk_size];
377    //assert(cpuXC->copySrcAddr);
378    int offset = dest & (blk_size - 1);
379
380    // Make sure block doesn't span page
381    if (no_warn &&
382        (dest & PageMask) != ((dest + blk_size) & PageMask) &&
383        (dest >> 40) != 0xfffffc) {
384        no_warn = false;
385        warn("Copied block destination spans pages %x. ", dest);
386    }
387
388    memReq->reset(dest & ~(blk_size -1), blk_size);
389    // translate to physical address
390    Fault fault = cpuXC->translateDataWriteReq(memReq);
391
392    if (fault == NoFault) {
393        Addr dest_addr = memReq->paddr + offset;
394        // Need to read straight from memory since we have more than 8 bytes.
395        memReq->paddr = cpuXC->copySrcPhysAddr;
396        cpuXC->mem->read(memReq, data);
397        memReq->paddr = dest_addr;
398        cpuXC->mem->write(memReq, data);
399        if (dcacheInterface) {
400            memReq->cmd = Copy;
401            memReq->completionEvent = NULL;
402            memReq->paddr = cpuXC->copySrcPhysAddr;
403            memReq->dest = dest_addr;
404            memReq->size = 64;
405            memReq->time = curTick;
406            memReq->flags &= ~INST_READ;
407            dcacheInterface->access(memReq);
408        }
409    }
410    else
411        assert(!fault->isAlignmentFault());
412
413    return fault;
414}
415
416// precise architected memory state accessor macros
417template <class T>
418Fault
419SimpleCPU::read(Addr addr, T &data, unsigned flags)
420{
421    if (status() == DcacheMissStall || status() == DcacheMissSwitch) {
422        Fault fault = cpuXC->read(memReq,data);
423
424        if (traceData) {
425            traceData->setAddr(memReq->vaddr);
426        }
427        return fault;
428    }
429
430    memReq->reset(addr, sizeof(T), flags);
431
432    // translate to physical address
433    Fault fault = cpuXC->translateDataReadReq(memReq);
434
435    // if we have a cache, do cache access too
436    if (fault == NoFault && dcacheInterface) {
437        memReq->cmd = Read;
438        memReq->completionEvent = NULL;
439        memReq->time = curTick;
440        memReq->flags &= ~INST_READ;
441        MemAccessResult result = dcacheInterface->access(memReq);
442
443        // Ugly hack to get an event scheduled *only* if the access is
444        // a miss.  We really should add first-class support for this
445        // at some point.
446        if (result != MA_HIT && dcacheInterface->doEvents()) {
447            memReq->completionEvent = &cacheCompletionEvent;
448            lastDcacheStall = curTick;
449            unscheduleTickEvent();
450            _status = DcacheMissStall;
451        } else {
452            // do functional access
453            fault = cpuXC->read(memReq, data);
454
455        }
456    } else if(fault == NoFault) {
457        // do functional access
458        fault = cpuXC->read(memReq, data);
459
460    }
461
462    if (!dcacheInterface && (memReq->flags & UNCACHEABLE))
463        recordEvent("Uncached Read");
464
465    return fault;
466}
467
468#ifndef DOXYGEN_SHOULD_SKIP_THIS
469
470template
471Fault
472SimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
473
474template
475Fault
476SimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
477
478template
479Fault
480SimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
481
482template
483Fault
484SimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
485
486#endif //DOXYGEN_SHOULD_SKIP_THIS
487
488template<>
489Fault
490SimpleCPU::read(Addr addr, double &data, unsigned flags)
491{
492    return read(addr, *(uint64_t*)&data, flags);
493}
494
495template<>
496Fault
497SimpleCPU::read(Addr addr, float &data, unsigned flags)
498{
499    return read(addr, *(uint32_t*)&data, flags);
500}
501
502
503template<>
504Fault
505SimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
506{
507    return read(addr, (uint32_t&)data, flags);
508}
509
510
511template <class T>
512Fault
513SimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
514{
515    memReq->reset(addr, sizeof(T), flags);
516
517    // translate to physical address
518    Fault fault = cpuXC->translateDataWriteReq(memReq);
519
520    // do functional access
521    if (fault == NoFault)
522        fault = cpuXC->write(memReq, data);
523
524    if (fault == NoFault && dcacheInterface) {
525        memReq->cmd = Write;
526        memcpy(memReq->data,(uint8_t *)&data,memReq->size);
527        memReq->completionEvent = NULL;
528        memReq->time = curTick;
529        memReq->flags &= ~INST_READ;
530        MemAccessResult result = dcacheInterface->access(memReq);
531
532        // Ugly hack to get an event scheduled *only* if the access is
533        // a miss.  We really should add first-class support for this
534        // at some point.
535        if (result != MA_HIT && dcacheInterface->doEvents()) {
536            memReq->completionEvent = &cacheCompletionEvent;
537            lastDcacheStall = curTick;
538            unscheduleTickEvent();
539            _status = DcacheMissStall;
540        }
541    }
542
543    if (res && (fault == NoFault))
544        *res = memReq->result;
545
546    if (!dcacheInterface && (memReq->flags & UNCACHEABLE))
547        recordEvent("Uncached Write");
548
549    return fault;
550}
551
552
553#ifndef DOXYGEN_SHOULD_SKIP_THIS
554template
555Fault
556SimpleCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
557
558template
559Fault
560SimpleCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
561
562template
563Fault
564SimpleCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
565
566template
567Fault
568SimpleCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
569
570#endif //DOXYGEN_SHOULD_SKIP_THIS
571
572template<>
573Fault
574SimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
575{
576    return write(*(uint64_t*)&data, addr, flags, res);
577}
578
579template<>
580Fault
581SimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
582{
583    return write(*(uint32_t*)&data, addr, flags, res);
584}
585
586
587template<>
588Fault
589SimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
590{
591    return write((uint32_t)data, addr, flags, res);
592}
593
594
595#if FULL_SYSTEM
596Addr
597SimpleCPU::dbg_vtophys(Addr addr)
598{
599    return vtophys(xcProxy, addr);
600}
601#endif // FULL_SYSTEM
602
603void
604SimpleCPU::processCacheCompletion()
605{
606    Fault fault;
607
608    switch (status()) {
609      case IcacheMissStall:
610        icacheStallCycles += curTick - lastIcacheStall;
611        _status = IcacheMissComplete;
612        scheduleTickEvent(1);
613        break;
614      case DcacheMissStall:
615        if (memReq->cmd.isRead()) {
616            curStaticInst->execute(this,traceData);
617            if (traceData)
618                traceData->finalize();
619        }
620        dcacheStallCycles += curTick - lastDcacheStall;
621        _status = Running;
622        scheduleTickEvent(1);
623        break;
624      case DcacheMissSwitch:
625        if (memReq->cmd.isRead()) {
626            fault = curStaticInst->execute(this,traceData);
627            if (traceData)
628                traceData->finalize();
629        } else {
630            fault = NoFault;
631        }
632        assert(fault == NoFault);
633        assert(!tickEvent.scheduled());
634        _status = SwitchedOut;
635        sampler->signalSwitched();
636        return;
637      case SwitchedOut:
638        // If this CPU has been switched out due to sampling/warm-up,
639        // ignore any further status changes (e.g., due to cache
640        // misses outstanding at the time of the switch).
641        return;
642      default:
643        panic("SimpleCPU::processCacheCompletion: bad state");
644        break;
645    }
646}
647
648#if FULL_SYSTEM
649void
650SimpleCPU::post_interrupt(int int_num, int index)
651{
652    BaseCPU::post_interrupt(int_num, index);
653
654    if (cpuXC->status() == ExecContext::Suspended) {
655                DPRINTF(IPI,"Suspended Processor awoke\n");
656        cpuXC->activate();
657    }
658}
659#endif // FULL_SYSTEM
660
661/* start simulation, program loaded, processor precise state initialized */
662void
663SimpleCPU::tick()
664{
665    numCycles++;
666
667    traceData = NULL;
668
669    Fault fault = NoFault;
670
671#if FULL_SYSTEM
672    if (checkInterrupts && check_interrupts() && !cpuXC->inPalMode() &&
673        status() != IcacheMissComplete) {
674        int ipl = 0;
675        int summary = 0;
676        checkInterrupts = false;
677
678        if (cpuXC->readMiscReg(IPR_SIRR)) {
679            for (int i = INTLEVEL_SOFTWARE_MIN;
680                 i < INTLEVEL_SOFTWARE_MAX; i++) {
681                if (cpuXC->readMiscReg(IPR_SIRR) & (ULL(1) << i)) {
682                    // See table 4-19 of 21164 hardware reference
683                    ipl = (i - INTLEVEL_SOFTWARE_MIN) + 1;
684                    summary |= (ULL(1) << i);
685                }
686            }
687        }
688
689        uint64_t interrupts = cpuXC->cpu->intr_status();
690        for (int i = INTLEVEL_EXTERNAL_MIN;
691            i < INTLEVEL_EXTERNAL_MAX; i++) {
692            if (interrupts & (ULL(1) << i)) {
693                // See table 4-19 of 21164 hardware reference
694                ipl = i;
695                summary |= (ULL(1) << i);
696            }
697        }
698
699        if (cpuXC->readMiscReg(IPR_ASTRR))
700            panic("asynchronous traps not implemented\n");
701
702        if (ipl && ipl > cpuXC->readMiscReg(IPR_IPLR)) {
703            cpuXC->setMiscReg(IPR_ISR, summary);
704            cpuXC->setMiscReg(IPR_INTID, ipl);
705
706            Fault(new InterruptFault)->invoke(xcProxy);
707
708            DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
709                    cpuXC->readMiscReg(IPR_IPLR), ipl, summary);
710        }
711    }
712#endif
713
714    // maintain $r0 semantics
715    cpuXC->setIntReg(ZeroReg, 0);
716#ifdef TARGET_ALPHA
717    cpuXC->setFloatRegDouble(ZeroReg, 0.0);
718#endif // TARGET_ALPHA
719
720    if (status() == IcacheMissComplete) {
721        // We've already fetched an instruction and were stalled on an
722        // I-cache miss.  No need to fetch it again.
723
724        // Set status to running; tick event will get rescheduled if
725        // necessary at end of tick() function.
726        _status = Running;
727    }
728    else {
729        // Try to fetch an instruction
730
731        // set up memory request for instruction fetch
732#if FULL_SYSTEM
733#define IFETCH_FLAGS(pc)	((pc) & 1) ? PHYSICAL : 0
734#else
735#define IFETCH_FLAGS(pc)	0
736#endif
737
738        memReq->cmd = Read;
739        memReq->reset(cpuXC->readPC() & ~3, sizeof(uint32_t),
740                     IFETCH_FLAGS(cpuXC->readPC()));
741
742        fault = cpuXC->translateInstReq(memReq);
743
744        if (fault == NoFault)
745            fault = cpuXC->mem->read(memReq, inst);
746
747        if (icacheInterface && fault == NoFault) {
748            memReq->completionEvent = NULL;
749
750            memReq->time = curTick;
751            memReq->flags |= INST_READ;
752            MemAccessResult result = icacheInterface->access(memReq);
753
754            // Ugly hack to get an event scheduled *only* if the access is
755            // a miss.  We really should add first-class support for this
756            // at some point.
757            if (result != MA_HIT && icacheInterface->doEvents()) {
758                memReq->completionEvent = &cacheCompletionEvent;
759                lastIcacheStall = curTick;
760                unscheduleTickEvent();
761                _status = IcacheMissStall;
762                return;
763            }
764        }
765    }
766
767    // If we've got a valid instruction (i.e., no fault on instruction
768    // fetch), then execute it.
769    if (fault == NoFault) {
770
771        // keep an instruction count
772        numInst++;
773        numInsts++;
774
775        // check for instruction-count-based events
776        comInstEventQueue[0]->serviceEvents(numInst);
777
778        // decode the instruction
779        inst = gtoh(inst);
780        curStaticInst = StaticInst::decode(makeExtMI(inst, cpuXC->readPC()));
781
782        traceData = Trace::getInstRecord(curTick, xcProxy, this, curStaticInst,
783                                         cpuXC->readPC());
784
785#if FULL_SYSTEM
786        cpuXC->setInst(inst);
787#endif // FULL_SYSTEM
788
789        cpuXC->func_exe_inst++;
790
791        fault = curStaticInst->execute(this, traceData);
792
793#if FULL_SYSTEM
794        if (system->kernelBinning->fnbin) {
795            assert(cpuXC->getKernelStats());
796            system->kernelBinning->execute(xcProxy, inst);
797        }
798
799        if (cpuXC->profile) {
800//            bool usermode =
801//                (cpuXC->readMiscReg(AlphaISA::IPR_DTB_CM) & 0x18) != 0;
802//            cpuXC->profilePC = usermode ? 1 : cpuXC->readPC();
803            cpuXC->profilePC = cpuXC->readPC();
804            ProfileNode *node = cpuXC->profile->consume(xcProxy, inst);
805            if (node)
806                cpuXC->profileNode = node;
807        }
808#endif
809
810        if (curStaticInst->isMemRef()) {
811            numMemRefs++;
812        }
813
814        if (curStaticInst->isLoad()) {
815            ++numLoad;
816            comLoadEventQueue[0]->serviceEvents(numLoad);
817        }
818
819        // If we have a dcache miss, then we can't finialize the instruction
820        // trace yet because we want to populate it with the data later
821        if (traceData &&
822                !(status() == DcacheMissStall && memReq->cmd.isRead())) {
823            traceData->finalize();
824        }
825
826        traceFunctions(cpuXC->readPC());
827
828    }	// if (fault == NoFault)
829
830    if (fault != NoFault) {
831#if FULL_SYSTEM
832        fault->invoke(xcProxy);
833#else // !FULL_SYSTEM
834        fatal("fault (%d) detected @ PC 0x%08p", fault, cpuXC->readPC());
835#endif // FULL_SYSTEM
836    }
837    else {
838#if THE_ISA != MIPS_ISA
839        // go to the next instruction
840        cpuXC->setPC(cpuXC->readNextPC());
841        cpuXC->setNextPC(cpuXC->readNextPC() + sizeof(MachInst));
842#else
843        // go to the next instruction
844        cpuXC->setPC(cpuXC->readNextPC());
845        cpuXC->setNextPC(cpuXC->readNextNPC());
846        cpuXC->setNextNPC(cpuXC->readNextNPC() + sizeof(MachInst));
847#endif
848
849    }
850
851#if FULL_SYSTEM
852    Addr oldpc;
853    do {
854        oldpc = cpuXC->readPC();
855        system->pcEventQueue.service(xcProxy);
856    } while (oldpc != cpuXC->readPC());
857#endif
858
859    assert(status() == Running ||
860           status() == Idle ||
861           status() == DcacheMissStall);
862
863    if (status() == Running && !tickEvent.scheduled()) {
864        assert(_status != SwitchedOut);
865        tickEvent.schedule(curTick + cycles(1));
866    }
867}
868
869////////////////////////////////////////////////////////////////////////
870//
871//  SimpleCPU Simulation Object
872//
873BEGIN_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
874
875    Param<Counter> max_insts_any_thread;
876    Param<Counter> max_insts_all_threads;
877    Param<Counter> max_loads_any_thread;
878    Param<Counter> max_loads_all_threads;
879    Param<Counter> stats_reset_inst;
880    Param<Tick> progress_interval;
881
882#if FULL_SYSTEM
883    SimObjectParam<AlphaITB *> itb;
884    SimObjectParam<AlphaDTB *> dtb;
885    SimObjectParam<FunctionalMemory *> mem;
886    SimObjectParam<System *> system;
887    Param<int> cpu_id;
888    Param<Tick> profile;
889#else
890    SimObjectParam<Process *> workload;
891#endif // FULL_SYSTEM
892
893    Param<int> clock;
894    SimObjectParam<BaseMem *> icache;
895    SimObjectParam<BaseMem *> dcache;
896
897    Param<bool> defer_registration;
898    Param<int> width;
899    Param<bool> function_trace;
900    Param<Tick> function_trace_start;
901
902END_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
903
904BEGIN_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
905
906    INIT_PARAM(max_insts_any_thread,
907               "terminate when any thread reaches this inst count"),
908    INIT_PARAM(max_insts_all_threads,
909               "terminate when all threads have reached this inst count"),
910    INIT_PARAM(max_loads_any_thread,
911               "terminate when any thread reaches this load count"),
912    INIT_PARAM(max_loads_all_threads,
913               "terminate when all threads have reached this load count"),
914    INIT_PARAM(stats_reset_inst,
915               "instruction to reset stats on"),
916    INIT_PARAM_DFLT(progress_interval, "CPU Progress interval", 0),
917
918#if FULL_SYSTEM
919    INIT_PARAM(itb, "Instruction TLB"),
920    INIT_PARAM(dtb, "Data TLB"),
921    INIT_PARAM(mem, "memory"),
922    INIT_PARAM(system, "system object"),
923    INIT_PARAM(cpu_id, "processor ID"),
924    INIT_PARAM(profile, ""),
925#else
926    INIT_PARAM(workload, "processes to run"),
927#endif // FULL_SYSTEM
928
929    INIT_PARAM(clock, "clock speed"),
930    INIT_PARAM(icache, "L1 instruction cache object"),
931    INIT_PARAM(dcache, "L1 data cache object"),
932    INIT_PARAM(defer_registration, "defer system registration (for sampling)"),
933    INIT_PARAM(width, "cpu width"),
934    INIT_PARAM(function_trace, "Enable function trace"),
935    INIT_PARAM(function_trace_start, "Cycle to start function trace")
936
937END_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
938
939
940CREATE_SIM_OBJECT(SimpleCPU)
941{
942    SimpleCPU::Params *params = new SimpleCPU::Params();
943    params->name = getInstanceName();
944    params->numberOfThreads = 1;
945    params->max_insts_any_thread = max_insts_any_thread;
946    params->max_insts_all_threads = max_insts_all_threads;
947    params->max_loads_any_thread = max_loads_any_thread;
948    params->max_loads_all_threads = max_loads_all_threads;
949    params->stats_reset_inst = stats_reset_inst;
950    params->deferRegistration = defer_registration;
951    params->clock = clock;
952    params->functionTrace = function_trace;
953    params->functionTraceStart = function_trace_start;
954    params->icache_interface = (icache) ? icache->getInterface() : NULL;
955    params->dcache_interface = (dcache) ? dcache->getInterface() : NULL;
956    params->width = width;
957
958    params->progress_interval = progress_interval;
959#if FULL_SYSTEM
960    params->itb = itb;
961    params->dtb = dtb;
962    params->mem = mem;
963    params->system = system;
964    params->cpu_id = cpu_id;
965    params->profile = profile;
966#else
967    params->process = workload;
968#endif
969
970    SimpleCPU *cpu = new SimpleCPU(params);
971    return cpu;
972}
973
974REGISTER_SIM_OBJECT("SimpleCPU", SimpleCPU)
975
976