base.cc revision 189
12207SN/A/*
22207SN/A * Copyright (c) 2003 The Regents of The University of Michigan
32207SN/A * All rights reserved.
42207SN/A *
52207SN/A * Redistribution and use in source and binary forms, with or without
62207SN/A * modification, are permitted provided that the following conditions are
72207SN/A * met: redistributions of source code must retain the above copyright
82207SN/A * notice, this list of conditions and the following disclaimer;
92207SN/A * redistributions in binary form must reproduce the above copyright
102207SN/A * notice, this list of conditions and the following disclaimer in the
112207SN/A * documentation and/or other materials provided with the distribution;
122207SN/A * neither the name of the copyright holders nor the names of its
132207SN/A * contributors may be used to endorse or promote products derived from
142207SN/A * this software without specific prior written permission.
152207SN/A *
162207SN/A * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
172207SN/A * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
182207SN/A * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
192207SN/A * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
202207SN/A * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
212207SN/A * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
222207SN/A * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
232207SN/A * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
242207SN/A * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
252207SN/A * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
262207SN/A * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
272665Ssaidi@eecs.umich.edu */
282665Ssaidi@eecs.umich.edu
292665Ssaidi@eecs.umich.edu#include <cmath>
302207SN/A#include <cstdio>
312207SN/A#include <cstdlib>
325569Snate@binkert.org#include <iostream>
335569Snate@binkert.org#include <iomanip>
342207SN/A#include <list>
352474SN/A#include <sstream>
362207SN/A#include <string>
372474SN/A
382207SN/A#include "base/cprintf.hh"
397532Ssteve.reinhardt@amd.com#include "base/inifile.hh"
407532Ssteve.reinhardt@amd.com#include "base/loader/symtab.hh"
417532Ssteve.reinhardt@amd.com#include "base/misc.hh"
422474SN/A#include "base/pollevent.hh"
435569Snate@binkert.org#include "base/range.hh"
442207SN/A#include "base/trace.hh"
457532Ssteve.reinhardt@amd.com#include "cpu/base_cpu.hh"
467532Ssteve.reinhardt@amd.com#include "cpu/exec_context.hh"
475759Shsul@eecs.umich.edu#include "cpu/exetrace.hh"
485759Shsul@eecs.umich.edu#include "cpu/full_cpu/smt.hh"
495958Sgblack@eecs.umich.edu#include "cpu/simple_cpu/simple_cpu.hh"
505958Sgblack@eecs.umich.edu#include "cpu/static_inst.hh"
516701Sgblack@eecs.umich.edu#include "mem/base_mem.hh"
525958Sgblack@eecs.umich.edu#include "mem/mem_interface.hh"
535958Sgblack@eecs.umich.edu#include "sim/annotation.hh"
542474SN/A#include "sim/builder.hh"
552474SN/A#include "sim/debug.hh"
565569Snate@binkert.org#include "sim/host.hh"
57#include "sim/sim_events.hh"
58#include "sim/sim_object.hh"
59#include "sim/sim_stats.hh"
60
61#ifdef FULL_SYSTEM
62#include "base/remote_gdb.hh"
63#include "dev/alpha_access.h"
64#include "dev/pciareg.h"
65#include "mem/functional_mem/memory_control.hh"
66#include "mem/functional_mem/physical_memory.hh"
67#include "sim/system.hh"
68#include "targetarch/alpha_memory.hh"
69#include "targetarch/vtophys.hh"
70#else // !FULL_SYSTEM
71#include "eio/eio.hh"
72#include "mem/functional_mem/functional_memory.hh"
73#include "sim/prog.hh"
74#endif // FULL_SYSTEM
75
76using namespace std;
77
78SimpleCPU::CacheCompletionEvent::CacheCompletionEvent(SimpleCPU *_cpu)
79    : Event(&mainEventQueue),
80      cpu(_cpu)
81{
82}
83
84void SimpleCPU::CacheCompletionEvent::process()
85{
86    cpu->processCacheCompletion();
87}
88
89const char *
90SimpleCPU::CacheCompletionEvent::description()
91{
92    return "cache completion event";
93}
94
95#ifdef FULL_SYSTEM
96SimpleCPU::SimpleCPU(const string &_name,
97                     System *_system,
98                     Counter max_insts_any_thread,
99                     Counter max_insts_all_threads,
100                     Counter max_loads_any_thread,
101                     Counter max_loads_all_threads,
102                     AlphaItb *itb, AlphaDtb *dtb,
103                     FunctionalMemory *mem,
104                     MemInterface *icache_interface,
105                     MemInterface *dcache_interface,
106                     Tick freq)
107    : BaseCPU(_name, /* number_of_threads */ 1,
108              max_insts_any_thread, max_insts_all_threads,
109              max_loads_any_thread, max_loads_all_threads,
110              _system, freq),
111#else
112SimpleCPU::SimpleCPU(const string &_name, Process *_process,
113                     Counter max_insts_any_thread,
114                     Counter max_insts_all_threads,
115                     Counter max_loads_any_thread,
116                     Counter max_loads_all_threads,
117                     MemInterface *icache_interface,
118                     MemInterface *dcache_interface)
119    : BaseCPU(_name, /* number_of_threads */ 1,
120              max_insts_any_thread, max_insts_all_threads,
121              max_loads_any_thread, max_loads_all_threads),
122#endif
123      tickEvent(this), xc(NULL), cacheCompletionEvent(this)
124{
125    _status = Idle;
126#ifdef FULL_SYSTEM
127    xc = new ExecContext(this, 0, system, itb, dtb, mem);
128
129    TheISA::initCPU(&xc->regs);
130
131    IntReg *ipr = xc->regs.ipr;
132    ipr[TheISA::IPR_MCSR] = 0x6;
133
134    AlphaISA::swap_palshadow(&xc->regs, true);
135
136    fault = Reset_Fault;
137    xc->regs.pc = ipr[TheISA::IPR_PAL_BASE] + AlphaISA::fault_addr[fault];
138    xc->regs.npc = xc->regs.pc + sizeof(MachInst);
139#else
140    xc = new ExecContext(this, /* thread_num */ 0, _process, /* asid */ 0);
141    fault = No_Fault;
142#endif // !FULL_SYSTEM
143
144    icacheInterface = icache_interface;
145    dcacheInterface = dcache_interface;
146
147    memReq = new MemReq();
148    memReq->xc = xc;
149    memReq->asid = 0;
150    memReq->data = new uint8_t[64];
151
152    numInst = 0;
153    numLoad = 0;
154    last_idle = 0;
155    lastIcacheStall = 0;
156    lastDcacheStall = 0;
157
158    execContexts.push_back(xc);
159}
160
161SimpleCPU::~SimpleCPU()
162{
163}
164
165
166void
167SimpleCPU::switchOut()
168{
169    _status = SwitchedOut;
170    if (tickEvent.scheduled())
171        tickEvent.squash();
172}
173
174
175void
176SimpleCPU::takeOverFrom(BaseCPU *oldCPU)
177{
178    BaseCPU::takeOverFrom(oldCPU);
179
180    assert(!tickEvent.scheduled());
181
182    // if any of this CPU's ExecContexts are active, mark the CPU as
183    // running and schedule its tick event.
184    for (int i = 0; i < execContexts.size(); ++i) {
185        ExecContext *xc = execContexts[i];
186        if (xc->status() == ExecContext::Active && _status != Running) {
187            _status = Running;
188            tickEvent.schedule(curTick);
189        }
190    }
191
192    oldCPU->switchOut();
193}
194
195
196void
197SimpleCPU::execCtxStatusChg(int thread_num) {
198    assert(thread_num == 0);
199    assert(xc);
200
201    if (xc->status() == ExecContext::Active)
202        setStatus(Running);
203    else
204        setStatus(Idle);
205}
206
207
208void
209SimpleCPU::regStats()
210{
211    BaseCPU::regStats();
212
213    numInsts
214        .name(name() + ".num_insts")
215        .desc("Number of instructions executed")
216        ;
217
218    numMemRefs
219        .name(name() + ".num_refs")
220        .desc("Number of memory references")
221        ;
222
223    idleCycles
224        .name(name() + ".idle_cycles")
225        .desc("Number of idle cycles")
226        ;
227
228    idleFraction
229        .name(name() + ".idle_fraction")
230        .desc("Percentage of idle cycles")
231        ;
232
233    icacheStallCycles
234        .name(name() + ".icache_stall_cycles")
235        .desc("ICache total stall cycles")
236        .prereq(icacheStallCycles)
237        ;
238
239    dcacheStallCycles
240        .name(name() + ".dcache_stall_cycles")
241        .desc("DCache total stall cycles")
242        .prereq(dcacheStallCycles)
243        ;
244
245    idleFraction = idleCycles / simTicks;
246
247    numInsts = Statistics::scalar(numInst);
248    simInsts += numInsts;
249}
250
251void
252SimpleCPU::serialize()
253{
254    nameOut();
255
256#ifdef FULL_SYSTEM
257#if 0
258    // do we need this anymore?? egh
259    childOut("itb", xc->itb);
260    childOut("dtb", xc->dtb);
261    childOut("physmem", physmem);
262#endif
263#endif
264
265    for (int i = 0; i < NumIntRegs; i++) {
266        stringstream buf;
267        ccprintf(buf, "R%02d", i);
268        paramOut(buf.str(), xc->regs.intRegFile[i]);
269    }
270    for (int i = 0; i < NumFloatRegs; i++) {
271        stringstream buf;
272        ccprintf(buf, "F%02d", i);
273        paramOut(buf.str(), xc->regs.floatRegFile.d[i]);
274    }
275    // CPUTraitsType::serializeSpecialRegs(getProxy(), xc->regs);
276}
277
278void
279SimpleCPU::unserialize(IniFile &db, const string &category, ConfigNode *node)
280{
281    string data;
282
283    for (int i = 0; i < NumIntRegs; i++) {
284        stringstream buf;
285        ccprintf(buf, "R%02d", i);
286        db.findDefault(category, buf.str(), data);
287        to_number(data,xc->regs.intRegFile[i]);
288    }
289    for (int i = 0; i < NumFloatRegs; i++) {
290        stringstream buf;
291        ccprintf(buf, "F%02d", i);
292        db.findDefault(category, buf.str(), data);
293        xc->regs.floatRegFile.d[i] = strtod(data.c_str(),NULL);
294    }
295
296    // Read in Special registers
297
298    // CPUTraitsType::unserializeSpecialRegs(db,category,node,xc->regs);
299}
300
301void
302change_thread_state(int thread_number, int activate, int priority)
303{
304}
305
306// precise architected memory state accessor macros
307template <class T>
308Fault
309SimpleCPU::read(Addr addr, T& data, unsigned flags)
310{
311    memReq->reset(addr, sizeof(T), flags);
312
313    // translate to physical address
314    Fault fault = xc->translateDataReadReq(memReq);
315
316    // do functional access
317    if (fault == No_Fault)
318        fault = xc->read(memReq, data);
319
320    if (traceData) {
321        traceData->setAddr(addr);
322        if (fault == No_Fault)
323            traceData->setData(data);
324    }
325
326    // if we have a cache, do cache access too
327    if (fault == No_Fault && dcacheInterface) {
328        memReq->cmd = Read;
329        memReq->completionEvent = NULL;
330        memReq->time = curTick;
331        memReq->flags &= ~UNCACHEABLE;
332        MemAccessResult result = dcacheInterface->access(memReq);
333
334        // Ugly hack to get an event scheduled *only* if the access is
335        // a miss.  We really should add first-class support for this
336        // at some point.
337        if (result != MA_HIT && dcacheInterface->doEvents) {
338            memReq->completionEvent = &cacheCompletionEvent;
339            setStatus(DcacheMissStall);
340        }
341    }
342
343    return fault;
344}
345
346#ifndef DOXYGEN_SHOULD_SKIP_THIS
347
348template
349Fault
350SimpleCPU::read(Addr addr, uint64_t& data, unsigned flags);
351
352template
353Fault
354SimpleCPU::read(Addr addr, uint32_t& data, unsigned flags);
355
356template
357Fault
358SimpleCPU::read(Addr addr, uint16_t& data, unsigned flags);
359
360template
361Fault
362SimpleCPU::read(Addr addr, uint8_t& data, unsigned flags);
363
364#endif //DOXYGEN_SHOULD_SKIP_THIS
365
366template<>
367Fault
368SimpleCPU::read(Addr addr, double& data, unsigned flags)
369{
370    return read(addr, *(uint64_t*)&data, flags);
371}
372
373template<>
374Fault
375SimpleCPU::read(Addr addr, float& data, unsigned flags)
376{
377    return read(addr, *(uint32_t*)&data, flags);
378}
379
380
381template<>
382Fault
383SimpleCPU::read(Addr addr, int32_t& data, unsigned flags)
384{
385    return read(addr, (uint32_t&)data, flags);
386}
387
388
389template <class T>
390Fault
391SimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
392{
393    if (traceData) {
394        traceData->setAddr(addr);
395        traceData->setData(data);
396    }
397
398    memReq->reset(addr, sizeof(T), flags);
399
400    // translate to physical address
401    Fault fault = xc->translateDataWriteReq(memReq);
402
403    // do functional access
404    if (fault == No_Fault)
405        fault = xc->write(memReq, data);
406
407    if (fault == No_Fault && dcacheInterface) {
408        memReq->cmd = Write;
409        memcpy(memReq->data,(uint8_t *)&data,memReq->size);
410        memReq->completionEvent = NULL;
411        memReq->time = curTick;
412        memReq->flags &= ~UNCACHEABLE;
413        MemAccessResult result = dcacheInterface->access(memReq);
414
415        // Ugly hack to get an event scheduled *only* if the access is
416        // a miss.  We really should add first-class support for this
417        // at some point.
418        if (result != MA_HIT && dcacheInterface->doEvents) {
419            memReq->completionEvent = &cacheCompletionEvent;
420            setStatus(DcacheMissStall);
421        }
422    }
423
424    if (res && (fault == No_Fault))
425        *res = memReq->result;
426
427    return fault;
428}
429
430
431#ifndef DOXYGEN_SHOULD_SKIP_THIS
432template
433Fault
434SimpleCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
435
436template
437Fault
438SimpleCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
439
440template
441Fault
442SimpleCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
443
444template
445Fault
446SimpleCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
447
448#endif //DOXYGEN_SHOULD_SKIP_THIS
449
450template<>
451Fault
452SimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
453{
454    return write(*(uint64_t*)&data, addr, flags, res);
455}
456
457template<>
458Fault
459SimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
460{
461    return write(*(uint32_t*)&data, addr, flags, res);
462}
463
464
465template<>
466Fault
467SimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
468{
469    return write((uint32_t)data, addr, flags, res);
470}
471
472
473#ifdef FULL_SYSTEM
474Addr
475SimpleCPU::dbg_vtophys(Addr addr)
476{
477    return vtophys(xc, addr);
478}
479#endif // FULL_SYSTEM
480
481Tick save_cycle = 0;
482
483
484void
485SimpleCPU::processCacheCompletion()
486{
487    switch (status()) {
488      case IcacheMissStall:
489        icacheStallCycles += curTick - lastIcacheStall;
490        setStatus(IcacheMissComplete);
491        break;
492      case DcacheMissStall:
493        dcacheStallCycles += curTick - lastDcacheStall;
494        setStatus(Running);
495        break;
496      case SwitchedOut:
497        // If this CPU has been switched out due to sampling/warm-up,
498        // ignore any further status changes (e.g., due to cache
499        // misses outstanding at the time of the switch).
500        return;
501      default:
502        panic("SimpleCPU::processCacheCompletion: bad state");
503        break;
504    }
505}
506
507#ifdef FULL_SYSTEM
508void
509SimpleCPU::post_interrupt(int int_num, int index)
510{
511    BaseCPU::post_interrupt(int_num, index);
512
513    if (xc->status() == ExecContext::Suspended) {
514                DPRINTF(IPI,"Suspended Processor awoke\n");
515        xc->setStatus(ExecContext::Active);
516        Annotate::Resume(xc);
517    }
518}
519#endif // FULL_SYSTEM
520
521/* start simulation, program loaded, processor precise state initialized */
522void
523SimpleCPU::tick()
524{
525    traceData = NULL;
526
527#ifdef FULL_SYSTEM
528    if (fault == No_Fault && AlphaISA::check_interrupts &&
529        xc->cpu->check_interrupts() &&
530        !PC_PAL(xc->regs.pc) &&
531        status() != IcacheMissComplete) {
532        int ipl = 0;
533        int summary = 0;
534        AlphaISA::check_interrupts = 0;
535        IntReg *ipr = xc->regs.ipr;
536
537        if (xc->regs.ipr[TheISA::IPR_SIRR]) {
538            for (int i = TheISA::INTLEVEL_SOFTWARE_MIN;
539                 i < TheISA::INTLEVEL_SOFTWARE_MAX; i++) {
540                if (ipr[TheISA::IPR_SIRR] & (ULL(1) << i)) {
541                    // See table 4-19 of 21164 hardware reference
542                    ipl = (i - TheISA::INTLEVEL_SOFTWARE_MIN) + 1;
543                    summary |= (ULL(1) << i);
544                }
545            }
546        }
547
548        uint64_t interrupts = xc->cpu->intr_status();
549        for (int i = TheISA::INTLEVEL_EXTERNAL_MIN;
550            i < TheISA::INTLEVEL_EXTERNAL_MAX; i++) {
551            if (interrupts & (ULL(1) << i)) {
552                // See table 4-19 of 21164 hardware reference
553                ipl = i;
554                summary |= (ULL(1) << i);
555            }
556        }
557
558        if (ipr[TheISA::IPR_ASTRR])
559            panic("asynchronous traps not implemented\n");
560
561        if (ipl && ipl > xc->regs.ipr[TheISA::IPR_IPLR]) {
562            ipr[TheISA::IPR_ISR] = summary;
563            ipr[TheISA::IPR_INTID] = ipl;
564            xc->ev5_trap(Interrupt_Fault);
565
566            DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
567                    ipr[TheISA::IPR_IPLR], ipl, summary);
568        }
569    }
570#endif
571
572    // maintain $r0 semantics
573    xc->regs.intRegFile[ZeroReg] = 0;
574#ifdef TARGET_ALPHA
575    xc->regs.floatRegFile.d[ZeroReg] = 0.0;
576#endif // TARGET_ALPHA
577
578    if (status() == IcacheMissComplete) {
579        // We've already fetched an instruction and were stalled on an
580        // I-cache miss.  No need to fetch it again.
581
582        setStatus(Running);
583    }
584    else {
585        // Try to fetch an instruction
586
587        // set up memory request for instruction fetch
588#ifdef FULL_SYSTEM
589#define IFETCH_FLAGS(pc)	((pc) & 1) ? PHYSICAL : 0
590#else
591#define IFETCH_FLAGS(pc)	0
592#endif
593
594        memReq->cmd = Read;
595        memReq->reset(xc->regs.pc & ~3, sizeof(uint32_t),
596                     IFETCH_FLAGS(xc->regs.pc));
597
598        fault = xc->translateInstReq(memReq);
599
600        if (fault == No_Fault)
601            fault = xc->mem->read(memReq, inst);
602
603        if (icacheInterface && fault == No_Fault) {
604            memReq->completionEvent = NULL;
605
606            memReq->time = curTick;
607            memReq->flags &= ~UNCACHEABLE;
608            MemAccessResult result = icacheInterface->access(memReq);
609
610            // Ugly hack to get an event scheduled *only* if the access is
611            // a miss.  We really should add first-class support for this
612            // at some point.
613            if (result != MA_HIT && icacheInterface->doEvents) {
614                memReq->completionEvent = &cacheCompletionEvent;
615                setStatus(IcacheMissStall);
616                return;
617            }
618        }
619    }
620
621    // If we've got a valid instruction (i.e., no fault on instruction
622    // fetch), then execute it.
623    if (fault == No_Fault) {
624
625        // keep an instruction count
626        numInst++;
627
628        // check for instruction-count-based events
629        comInsnEventQueue[0]->serviceEvents(numInst);
630
631        // decode the instruction
632        StaticInstPtr<TheISA> si(inst);
633
634        traceData = Trace::getInstRecord(curTick, xc, this, si,
635                                         xc->regs.pc);
636
637#ifdef FULL_SYSTEM
638        xc->regs.opcode = (inst >> 26) & 0x3f;
639        xc->regs.ra = (inst >> 21) & 0x1f;
640#endif // FULL_SYSTEM
641
642        xc->func_exe_insn++;
643
644        fault = si->execute(this, xc, traceData);
645
646        if (si->isMemRef()) {
647            numMemRefs++;
648        }
649
650        if (si->isLoad()) {
651            ++numLoad;
652            comLoadEventQueue[0]->serviceEvents(numLoad);
653        }
654
655        if (traceData)
656            traceData->finalize();
657
658    }	// if (fault == No_Fault)
659
660    if (fault != No_Fault) {
661#ifdef FULL_SYSTEM
662        xc->ev5_trap(fault);
663#else // !FULL_SYSTEM
664        fatal("fault (%d) detected @ PC 0x%08p", fault, xc->regs.pc);
665#endif // FULL_SYSTEM
666    }
667    else {
668        // go to the next instruction
669        xc->regs.pc = xc->regs.npc;
670        xc->regs.npc += sizeof(MachInst);
671    }
672
673#ifdef FULL_SYSTEM
674    Addr oldpc;
675    do {
676        oldpc = xc->regs.pc;
677        system->pcEventQueue.service(xc);
678    } while (oldpc != xc->regs.pc);
679#endif
680
681    assert(status() == Running ||
682           status() == Idle ||
683           status() == DcacheMissStall);
684
685    if (status() == Running && !tickEvent.scheduled())
686        tickEvent.schedule(curTick + 1);
687}
688
689
690////////////////////////////////////////////////////////////////////////
691//
692//  SimpleCPU Simulation Object
693//
694BEGIN_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
695
696    Param<Counter> max_insts_any_thread;
697    Param<Counter> max_insts_all_threads;
698    Param<Counter> max_loads_any_thread;
699    Param<Counter> max_loads_all_threads;
700
701#ifdef FULL_SYSTEM
702    SimObjectParam<AlphaItb *> itb;
703    SimObjectParam<AlphaDtb *> dtb;
704    SimObjectParam<FunctionalMemory *> mem;
705    SimObjectParam<System *> system;
706    Param<int> mult;
707#else
708    SimObjectParam<Process *> workload;
709#endif // FULL_SYSTEM
710
711    SimObjectParam<BaseMem *> icache;
712    SimObjectParam<BaseMem *> dcache;
713
714    Param<bool> defer_registration;
715
716END_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
717
718BEGIN_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
719
720    INIT_PARAM_DFLT(max_insts_any_thread,
721                    "terminate when any thread reaches this insn count",
722                    0),
723    INIT_PARAM_DFLT(max_insts_all_threads,
724                    "terminate when all threads have reached this insn count",
725                    0),
726    INIT_PARAM_DFLT(max_loads_any_thread,
727                    "terminate when any thread reaches this load count",
728                    0),
729    INIT_PARAM_DFLT(max_loads_all_threads,
730                    "terminate when all threads have reached this load count",
731                    0),
732
733#ifdef FULL_SYSTEM
734    INIT_PARAM(itb, "Instruction TLB"),
735    INIT_PARAM(dtb, "Data TLB"),
736    INIT_PARAM(mem, "memory"),
737    INIT_PARAM(system, "system object"),
738    INIT_PARAM_DFLT(mult, "system clock multiplier", 1),
739#else
740    INIT_PARAM(workload, "processes to run"),
741#endif // FULL_SYSTEM
742
743    INIT_PARAM_DFLT(icache, "L1 instruction cache object", NULL),
744    INIT_PARAM_DFLT(dcache, "L1 data cache object", NULL),
745    INIT_PARAM_DFLT(defer_registration, "defer registration with system "
746                    "(for sampling)", false)
747
748END_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
749
750
751CREATE_SIM_OBJECT(SimpleCPU)
752{
753    SimpleCPU *cpu;
754#ifdef FULL_SYSTEM
755    if (mult != 1)
756        panic("processor clock multiplier must be 1\n");
757
758    cpu = new SimpleCPU(getInstanceName(), system,
759                        max_insts_any_thread, max_insts_all_threads,
760                        max_loads_any_thread, max_loads_all_threads,
761                        itb, dtb, mem,
762                        (icache) ? icache->getInterface() : NULL,
763                        (dcache) ? dcache->getInterface() : NULL,
764                        ticksPerSecond * mult);
765#else
766
767    cpu = new SimpleCPU(getInstanceName(), workload,
768                        max_insts_any_thread, max_insts_all_threads,
769                        max_loads_any_thread, max_loads_all_threads,
770                        (icache) ? icache->getInterface() : NULL,
771                        (dcache) ? dcache->getInterface() : NULL);
772
773#endif // FULL_SYSTEM
774
775    if (!defer_registration) {
776        cpu->registerExecContexts();
777    }
778
779    return cpu;
780}
781
782REGISTER_SIM_OBJECT("SimpleCPU", SimpleCPU)
783