base.cc revision 1191
1/*
2 * Copyright (c) 2002-2004 The Regents of The University of Michigan
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include <cmath>
30#include <cstdio>
31#include <cstdlib>
32#include <iostream>
33#include <iomanip>
34#include <list>
35#include <sstream>
36#include <string>
37
38#include "base/cprintf.hh"
39#include "base/inifile.hh"
40#include "base/loader/symtab.hh"
41#include "base/misc.hh"
42#include "base/pollevent.hh"
43#include "base/range.hh"
44#include "base/trace.hh"
45#include "base/stats/events.hh"
46#include "cpu/base_cpu.hh"
47#include "cpu/exec_context.hh"
48#include "cpu/exetrace.hh"
49#include "cpu/full_cpu/smt.hh"
50#include "cpu/simple_cpu/simple_cpu.hh"
51#include "cpu/static_inst.hh"
52#include "mem/base_mem.hh"
53#include "mem/mem_interface.hh"
54#include "sim/builder.hh"
55#include "sim/debug.hh"
56#include "sim/host.hh"
57#include "sim/sim_events.hh"
58#include "sim/sim_object.hh"
59#include "sim/stats.hh"
60
61#ifdef FULL_SYSTEM
62#include "base/remote_gdb.hh"
63#include "dev/alpha_access.h"
64#include "dev/pciareg.h"
65#include "mem/functional_mem/memory_control.hh"
66#include "mem/functional_mem/physical_memory.hh"
67#include "sim/system.hh"
68#include "targetarch/alpha_memory.hh"
69#include "targetarch/vtophys.hh"
70#else // !FULL_SYSTEM
71#include "eio/eio.hh"
72#include "mem/functional_mem/functional_memory.hh"
73#endif // FULL_SYSTEM
74
75using namespace std;
76
77SimpleCPU::TickEvent::TickEvent(SimpleCPU *c)
78    : Event(&mainEventQueue, CPU_Tick_Pri), cpu(c), multiplier(1)
79{
80}
81
82void
83SimpleCPU::TickEvent::process()
84{
85    int count = multiplier;
86    do {
87        cpu->tick();
88    } while (--count > 0 && cpu->status() == Running);
89}
90
91const char *
92SimpleCPU::TickEvent::description()
93{
94    return "SimpleCPU tick event";
95}
96
97
98SimpleCPU::CacheCompletionEvent::CacheCompletionEvent(SimpleCPU *_cpu)
99    : Event(&mainEventQueue),
100      cpu(_cpu)
101{
102}
103
104void SimpleCPU::CacheCompletionEvent::process()
105{
106    cpu->processCacheCompletion();
107}
108
109const char *
110SimpleCPU::CacheCompletionEvent::description()
111{
112    return "SimpleCPU cache completion event";
113}
114
115#ifdef FULL_SYSTEM
116SimpleCPU::SimpleCPU(const string &_name,
117                     System *_system,
118                     Counter max_insts_any_thread,
119                     Counter max_insts_all_threads,
120                     Counter max_loads_any_thread,
121                     Counter max_loads_all_threads,
122                     AlphaITB *itb, AlphaDTB *dtb,
123                     FunctionalMemory *mem,
124                     MemInterface *icache_interface,
125                     MemInterface *dcache_interface,
126                     bool _def_reg, Tick freq,
127                     bool _function_trace, Tick _function_trace_start)
128    : BaseCPU(_name, /* number_of_threads */ 1, _def_reg,
129              max_insts_any_thread, max_insts_all_threads,
130              max_loads_any_thread, max_loads_all_threads,
131              _system, freq, _function_trace, _function_trace_start),
132#else
133SimpleCPU::SimpleCPU(const string &_name, Process *_process,
134                     Counter max_insts_any_thread,
135                     Counter max_insts_all_threads,
136                     Counter max_loads_any_thread,
137                     Counter max_loads_all_threads,
138                     MemInterface *icache_interface,
139                     MemInterface *dcache_interface,
140                     bool _def_reg,
141                     bool _function_trace, Tick _function_trace_start)
142    : BaseCPU(_name, /* number_of_threads */ 1, _def_reg,
143              max_insts_any_thread, max_insts_all_threads,
144              max_loads_any_thread, max_loads_all_threads,
145              _function_trace, _function_trace_start),
146#endif
147      tickEvent(this), xc(NULL), cacheCompletionEvent(this)
148{
149    _status = Idle;
150#ifdef FULL_SYSTEM
151    xc = new ExecContext(this, 0, system, itb, dtb, mem);
152
153    // initialize CPU, including PC
154    TheISA::initCPU(&xc->regs);
155#else
156    xc = new ExecContext(this, /* thread_num */ 0, _process, /* asid */ 0);
157#endif // !FULL_SYSTEM
158
159    icacheInterface = icache_interface;
160    dcacheInterface = dcache_interface;
161
162    memReq = new MemReq();
163    memReq->xc = xc;
164    memReq->asid = 0;
165    memReq->data = new uint8_t[64];
166
167    numInst = 0;
168    startNumInst = 0;
169    numLoad = 0;
170    startNumLoad = 0;
171    lastIcacheStall = 0;
172    lastDcacheStall = 0;
173
174    execContexts.push_back(xc);
175}
176
177SimpleCPU::~SimpleCPU()
178{
179}
180
181void
182SimpleCPU::switchOut()
183{
184    _status = SwitchedOut;
185    if (tickEvent.scheduled())
186        tickEvent.squash();
187}
188
189
190void
191SimpleCPU::takeOverFrom(BaseCPU *oldCPU)
192{
193    BaseCPU::takeOverFrom(oldCPU);
194
195    assert(!tickEvent.scheduled());
196
197    // if any of this CPU's ExecContexts are active, mark the CPU as
198    // running and schedule its tick event.
199    for (int i = 0; i < execContexts.size(); ++i) {
200        ExecContext *xc = execContexts[i];
201        if (xc->status() == ExecContext::Active && _status != Running) {
202            _status = Running;
203            tickEvent.schedule(curTick);
204        }
205    }
206
207    oldCPU->switchOut();
208}
209
210
211void
212SimpleCPU::activateContext(int thread_num, int delay)
213{
214    assert(thread_num == 0);
215    assert(xc);
216
217    assert(_status == Idle);
218    notIdleFraction++;
219    scheduleTickEvent(delay);
220    _status = Running;
221}
222
223
224void
225SimpleCPU::suspendContext(int thread_num)
226{
227    assert(thread_num == 0);
228    assert(xc);
229
230    assert(_status == Running);
231    notIdleFraction--;
232    unscheduleTickEvent();
233    _status = Idle;
234}
235
236
237void
238SimpleCPU::deallocateContext(int thread_num)
239{
240    // for now, these are equivalent
241    suspendContext(thread_num);
242}
243
244
245void
246SimpleCPU::haltContext(int thread_num)
247{
248    // for now, these are equivalent
249    suspendContext(thread_num);
250}
251
252
253void
254SimpleCPU::regStats()
255{
256    using namespace Stats;
257
258    BaseCPU::regStats();
259
260    numInsts
261        .name(name() + ".num_insts")
262        .desc("Number of instructions executed")
263        ;
264
265    numMemRefs
266        .name(name() + ".num_refs")
267        .desc("Number of memory references")
268        ;
269
270    notIdleFraction
271        .name(name() + ".not_idle_fraction")
272        .desc("Percentage of non-idle cycles")
273        ;
274
275    idleFraction
276        .name(name() + ".idle_fraction")
277        .desc("Percentage of idle cycles")
278        ;
279
280    icacheStallCycles
281        .name(name() + ".icache_stall_cycles")
282        .desc("ICache total stall cycles")
283        .prereq(icacheStallCycles)
284        ;
285
286    dcacheStallCycles
287        .name(name() + ".dcache_stall_cycles")
288        .desc("DCache total stall cycles")
289        .prereq(dcacheStallCycles)
290        ;
291
292    idleFraction = constant(1.0) - notIdleFraction;
293}
294
295void
296SimpleCPU::resetStats()
297{
298    startNumInst = numInst;
299    notIdleFraction = (_status != Idle);
300}
301
302void
303SimpleCPU::serialize(ostream &os)
304{
305    BaseCPU::serialize(os);
306    SERIALIZE_ENUM(_status);
307    SERIALIZE_SCALAR(inst);
308    nameOut(os, csprintf("%s.xc", name()));
309    xc->serialize(os);
310    nameOut(os, csprintf("%s.tickEvent", name()));
311    tickEvent.serialize(os);
312    nameOut(os, csprintf("%s.cacheCompletionEvent", name()));
313    cacheCompletionEvent.serialize(os);
314}
315
316void
317SimpleCPU::unserialize(Checkpoint *cp, const string &section)
318{
319    BaseCPU::unserialize(cp, section);
320    UNSERIALIZE_ENUM(_status);
321    UNSERIALIZE_SCALAR(inst);
322    xc->unserialize(cp, csprintf("%s.xc", section));
323    tickEvent.unserialize(cp, csprintf("%s.tickEvent", section));
324    cacheCompletionEvent
325        .unserialize(cp, csprintf("%s.cacheCompletionEvent", section));
326}
327
328void
329change_thread_state(int thread_number, int activate, int priority)
330{
331}
332
333Fault
334SimpleCPU::copySrcTranslate(Addr src)
335{
336    static bool no_warn = true;
337    int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
338    // Only support block sizes of 64 atm.
339    assert(blk_size == 64);
340    int offset = src & (blk_size - 1);
341
342    // Make sure block doesn't span page
343    if (no_warn &&
344        (src & TheISA::PageMask) != ((src + blk_size) & TheISA::PageMask) &&
345        (src >> 40) != 0xfffffc) {
346        warn("Copied block source spans pages %x.", src);
347        no_warn = false;
348    }
349
350    memReq->reset(src & ~(blk_size - 1), blk_size);
351
352    // translate to physical address
353    Fault fault = xc->translateDataReadReq(memReq);
354
355    assert(fault != Alignment_Fault);
356
357    if (fault == No_Fault) {
358        xc->copySrcAddr = src;
359        xc->copySrcPhysAddr = memReq->paddr + offset;
360    } else {
361        xc->copySrcAddr = 0;
362        xc->copySrcPhysAddr = 0;
363    }
364    return fault;
365}
366
367Fault
368SimpleCPU::copy(Addr dest)
369{
370    static bool no_warn = true;
371    int blk_size = (dcacheInterface) ? dcacheInterface->getBlockSize() : 64;
372    // Only support block sizes of 64 atm.
373    assert(blk_size == 64);
374    uint8_t data[blk_size];
375    //assert(xc->copySrcAddr);
376    int offset = dest & (blk_size - 1);
377
378    // Make sure block doesn't span page
379    if (no_warn &&
380        (dest & TheISA::PageMask) != ((dest + blk_size) & TheISA::PageMask) &&
381        (dest >> 40) != 0xfffffc) {
382        no_warn = false;
383        warn("Copied block destination spans pages %x. ", dest);
384    }
385
386    memReq->reset(dest & ~(blk_size -1), blk_size);
387    // translate to physical address
388    Fault fault = xc->translateDataWriteReq(memReq);
389
390    assert(fault != Alignment_Fault);
391
392    if (fault == No_Fault) {
393        Addr dest_addr = memReq->paddr + offset;
394        // Need to read straight from memory since we have more than 8 bytes.
395        memReq->paddr = xc->copySrcPhysAddr;
396        xc->mem->read(memReq, data);
397        memReq->paddr = dest_addr;
398        xc->mem->write(memReq, data);
399        if (dcacheInterface) {
400            memReq->cmd = Copy;
401            memReq->completionEvent = NULL;
402            memReq->paddr = xc->copySrcPhysAddr;
403            memReq->dest = dest_addr;
404            memReq->size = 64;
405            memReq->time = curTick;
406            dcacheInterface->access(memReq);
407        }
408    }
409    return fault;
410}
411
412// precise architected memory state accessor macros
413template <class T>
414Fault
415SimpleCPU::read(Addr addr, T &data, unsigned flags)
416{
417    memReq->reset(addr, sizeof(T), flags);
418
419    // translate to physical address
420    Fault fault = xc->translateDataReadReq(memReq);
421
422    // do functional access
423    if (fault == No_Fault)
424        fault = xc->read(memReq, data);
425
426    if (traceData) {
427        traceData->setAddr(addr);
428        if (fault == No_Fault)
429            traceData->setData(data);
430    }
431
432    // if we have a cache, do cache access too
433    if (fault == No_Fault && dcacheInterface) {
434        memReq->cmd = Read;
435        memReq->completionEvent = NULL;
436        memReq->time = curTick;
437        MemAccessResult result = dcacheInterface->access(memReq);
438
439        // Ugly hack to get an event scheduled *only* if the access is
440        // a miss.  We really should add first-class support for this
441        // at some point.
442        if (result != MA_HIT && dcacheInterface->doEvents()) {
443            memReq->completionEvent = &cacheCompletionEvent;
444            lastDcacheStall = curTick;
445            unscheduleTickEvent();
446            _status = DcacheMissStall;
447        }
448    }
449
450    if (!dcacheInterface && (memReq->flags & UNCACHEABLE))
451        recordEvent("Uncached Read");
452
453    return fault;
454}
455
456#ifndef DOXYGEN_SHOULD_SKIP_THIS
457
458template
459Fault
460SimpleCPU::read(Addr addr, uint64_t &data, unsigned flags);
461
462template
463Fault
464SimpleCPU::read(Addr addr, uint32_t &data, unsigned flags);
465
466template
467Fault
468SimpleCPU::read(Addr addr, uint16_t &data, unsigned flags);
469
470template
471Fault
472SimpleCPU::read(Addr addr, uint8_t &data, unsigned flags);
473
474#endif //DOXYGEN_SHOULD_SKIP_THIS
475
476template<>
477Fault
478SimpleCPU::read(Addr addr, double &data, unsigned flags)
479{
480    return read(addr, *(uint64_t*)&data, flags);
481}
482
483template<>
484Fault
485SimpleCPU::read(Addr addr, float &data, unsigned flags)
486{
487    return read(addr, *(uint32_t*)&data, flags);
488}
489
490
491template<>
492Fault
493SimpleCPU::read(Addr addr, int32_t &data, unsigned flags)
494{
495    return read(addr, (uint32_t&)data, flags);
496}
497
498
499template <class T>
500Fault
501SimpleCPU::write(T data, Addr addr, unsigned flags, uint64_t *res)
502{
503    if (traceData) {
504        traceData->setAddr(addr);
505        traceData->setData(data);
506    }
507
508    memReq->reset(addr, sizeof(T), flags);
509
510    // translate to physical address
511    Fault fault = xc->translateDataWriteReq(memReq);
512
513    // do functional access
514    if (fault == No_Fault)
515        fault = xc->write(memReq, data);
516
517    if (fault == No_Fault && dcacheInterface) {
518        memReq->cmd = Write;
519        memcpy(memReq->data,(uint8_t *)&data,memReq->size);
520        memReq->completionEvent = NULL;
521        memReq->time = curTick;
522        MemAccessResult result = dcacheInterface->access(memReq);
523
524        // Ugly hack to get an event scheduled *only* if the access is
525        // a miss.  We really should add first-class support for this
526        // at some point.
527        if (result != MA_HIT && dcacheInterface->doEvents()) {
528            memReq->completionEvent = &cacheCompletionEvent;
529            lastDcacheStall = curTick;
530            unscheduleTickEvent();
531            _status = DcacheMissStall;
532        }
533    }
534
535    if (res && (fault == No_Fault))
536        *res = memReq->result;
537
538    if (!dcacheInterface && (memReq->flags & UNCACHEABLE))
539        recordEvent("Uncached Write");
540
541    return fault;
542}
543
544
545#ifndef DOXYGEN_SHOULD_SKIP_THIS
546template
547Fault
548SimpleCPU::write(uint64_t data, Addr addr, unsigned flags, uint64_t *res);
549
550template
551Fault
552SimpleCPU::write(uint32_t data, Addr addr, unsigned flags, uint64_t *res);
553
554template
555Fault
556SimpleCPU::write(uint16_t data, Addr addr, unsigned flags, uint64_t *res);
557
558template
559Fault
560SimpleCPU::write(uint8_t data, Addr addr, unsigned flags, uint64_t *res);
561
562#endif //DOXYGEN_SHOULD_SKIP_THIS
563
564template<>
565Fault
566SimpleCPU::write(double data, Addr addr, unsigned flags, uint64_t *res)
567{
568    return write(*(uint64_t*)&data, addr, flags, res);
569}
570
571template<>
572Fault
573SimpleCPU::write(float data, Addr addr, unsigned flags, uint64_t *res)
574{
575    return write(*(uint32_t*)&data, addr, flags, res);
576}
577
578
579template<>
580Fault
581SimpleCPU::write(int32_t data, Addr addr, unsigned flags, uint64_t *res)
582{
583    return write((uint32_t)data, addr, flags, res);
584}
585
586
587#ifdef FULL_SYSTEM
588Addr
589SimpleCPU::dbg_vtophys(Addr addr)
590{
591    return vtophys(xc, addr);
592}
593#endif // FULL_SYSTEM
594
595Tick save_cycle = 0;
596
597
598void
599SimpleCPU::processCacheCompletion()
600{
601    switch (status()) {
602      case IcacheMissStall:
603        icacheStallCycles += curTick - lastIcacheStall;
604        _status = IcacheMissComplete;
605        scheduleTickEvent(1);
606        break;
607      case DcacheMissStall:
608        dcacheStallCycles += curTick - lastDcacheStall;
609        _status = Running;
610        scheduleTickEvent(1);
611        break;
612      case SwitchedOut:
613        // If this CPU has been switched out due to sampling/warm-up,
614        // ignore any further status changes (e.g., due to cache
615        // misses outstanding at the time of the switch).
616        return;
617      default:
618        panic("SimpleCPU::processCacheCompletion: bad state");
619        break;
620    }
621}
622
623#ifdef FULL_SYSTEM
624void
625SimpleCPU::post_interrupt(int int_num, int index)
626{
627    BaseCPU::post_interrupt(int_num, index);
628
629    if (xc->status() == ExecContext::Suspended) {
630                DPRINTF(IPI,"Suspended Processor awoke\n");
631        xc->activate();
632    }
633}
634#endif // FULL_SYSTEM
635
636/* start simulation, program loaded, processor precise state initialized */
637void
638SimpleCPU::tick()
639{
640    numCycles++;
641
642    traceData = NULL;
643
644    Fault fault = No_Fault;
645
646#ifdef FULL_SYSTEM
647    if (checkInterrupts && check_interrupts() && !xc->inPalMode() &&
648        status() != IcacheMissComplete) {
649        int ipl = 0;
650        int summary = 0;
651        checkInterrupts = false;
652        IntReg *ipr = xc->regs.ipr;
653
654        if (xc->regs.ipr[TheISA::IPR_SIRR]) {
655            for (int i = TheISA::INTLEVEL_SOFTWARE_MIN;
656                 i < TheISA::INTLEVEL_SOFTWARE_MAX; i++) {
657                if (ipr[TheISA::IPR_SIRR] & (ULL(1) << i)) {
658                    // See table 4-19 of 21164 hardware reference
659                    ipl = (i - TheISA::INTLEVEL_SOFTWARE_MIN) + 1;
660                    summary |= (ULL(1) << i);
661                }
662            }
663        }
664
665        uint64_t interrupts = xc->cpu->intr_status();
666        for (int i = TheISA::INTLEVEL_EXTERNAL_MIN;
667            i < TheISA::INTLEVEL_EXTERNAL_MAX; i++) {
668            if (interrupts & (ULL(1) << i)) {
669                // See table 4-19 of 21164 hardware reference
670                ipl = i;
671                summary |= (ULL(1) << i);
672            }
673        }
674
675        if (ipr[TheISA::IPR_ASTRR])
676            panic("asynchronous traps not implemented\n");
677
678        if (ipl && ipl > xc->regs.ipr[TheISA::IPR_IPLR]) {
679            ipr[TheISA::IPR_ISR] = summary;
680            ipr[TheISA::IPR_INTID] = ipl;
681            xc->ev5_trap(Interrupt_Fault);
682
683            DPRINTF(Flow, "Interrupt! IPLR=%d ipl=%d summary=%x\n",
684                    ipr[TheISA::IPR_IPLR], ipl, summary);
685        }
686    }
687#endif
688
689    // maintain $r0 semantics
690    xc->regs.intRegFile[ZeroReg] = 0;
691#ifdef TARGET_ALPHA
692    xc->regs.floatRegFile.d[ZeroReg] = 0.0;
693#endif // TARGET_ALPHA
694
695    if (status() == IcacheMissComplete) {
696        // We've already fetched an instruction and were stalled on an
697        // I-cache miss.  No need to fetch it again.
698
699        // Set status to running; tick event will get rescheduled if
700        // necessary at end of tick() function.
701        _status = Running;
702    }
703    else {
704        // Try to fetch an instruction
705
706        // set up memory request for instruction fetch
707#ifdef FULL_SYSTEM
708#define IFETCH_FLAGS(pc)	((pc) & 1) ? PHYSICAL : 0
709#else
710#define IFETCH_FLAGS(pc)	0
711#endif
712
713        memReq->cmd = Read;
714        memReq->reset(xc->regs.pc & ~3, sizeof(uint32_t),
715                     IFETCH_FLAGS(xc->regs.pc));
716
717        fault = xc->translateInstReq(memReq);
718
719        if (fault == No_Fault)
720            fault = xc->mem->read(memReq, inst);
721
722        if (icacheInterface && fault == No_Fault) {
723            memReq->completionEvent = NULL;
724
725            memReq->time = curTick;
726            MemAccessResult result = icacheInterface->access(memReq);
727
728            // Ugly hack to get an event scheduled *only* if the access is
729            // a miss.  We really should add first-class support for this
730            // at some point.
731            if (result != MA_HIT && icacheInterface->doEvents()) {
732                memReq->completionEvent = &cacheCompletionEvent;
733                lastIcacheStall = curTick;
734                unscheduleTickEvent();
735                _status = IcacheMissStall;
736                return;
737            }
738        }
739    }
740
741    // If we've got a valid instruction (i.e., no fault on instruction
742    // fetch), then execute it.
743    if (fault == No_Fault) {
744
745        // keep an instruction count
746        numInst++;
747        numInsts++;
748
749        // check for instruction-count-based events
750        comInstEventQueue[0]->serviceEvents(numInst);
751
752        // decode the instruction
753    inst = htoa(inst);
754        StaticInstPtr<TheISA> si(inst);
755
756        traceData = Trace::getInstRecord(curTick, xc, this, si,
757                                         xc->regs.pc);
758
759#ifdef FULL_SYSTEM
760        xc->setInst(inst);
761#endif // FULL_SYSTEM
762
763        xc->func_exe_inst++;
764
765        fault = si->execute(this, traceData);
766
767#ifdef FULL_SYSTEM
768        if (xc->fnbin)
769            xc->execute(si.get());
770#endif
771
772        if (si->isMemRef()) {
773            numMemRefs++;
774        }
775
776        if (si->isLoad()) {
777            ++numLoad;
778            comLoadEventQueue[0]->serviceEvents(numLoad);
779        }
780
781        if (traceData)
782            traceData->finalize();
783
784        traceFunctions(xc->regs.pc);
785
786    }	// if (fault == No_Fault)
787
788    if (fault != No_Fault) {
789#ifdef FULL_SYSTEM
790        xc->ev5_trap(fault);
791#else // !FULL_SYSTEM
792        fatal("fault (%d) detected @ PC 0x%08p", fault, xc->regs.pc);
793#endif // FULL_SYSTEM
794    }
795    else {
796        // go to the next instruction
797        xc->regs.pc = xc->regs.npc;
798        xc->regs.npc += sizeof(MachInst);
799    }
800
801#ifdef FULL_SYSTEM
802    Addr oldpc;
803    do {
804        oldpc = xc->regs.pc;
805        system->pcEventQueue.service(xc);
806    } while (oldpc != xc->regs.pc);
807#endif
808
809    assert(status() == Running ||
810           status() == Idle ||
811           status() == DcacheMissStall);
812
813    if (status() == Running && !tickEvent.scheduled())
814        tickEvent.schedule(curTick + 1);
815}
816
817
818////////////////////////////////////////////////////////////////////////
819//
820//  SimpleCPU Simulation Object
821//
822BEGIN_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
823
824    Param<Counter> max_insts_any_thread;
825    Param<Counter> max_insts_all_threads;
826    Param<Counter> max_loads_any_thread;
827    Param<Counter> max_loads_all_threads;
828
829#ifdef FULL_SYSTEM
830    SimObjectParam<AlphaITB *> itb;
831    SimObjectParam<AlphaDTB *> dtb;
832    SimObjectParam<FunctionalMemory *> mem;
833    SimObjectParam<System *> system;
834    Param<int> mult;
835#else
836    SimObjectParam<Process *> workload;
837#endif // FULL_SYSTEM
838
839    SimObjectParam<BaseMem *> icache;
840    SimObjectParam<BaseMem *> dcache;
841
842    Param<bool> defer_registration;
843    Param<int> multiplier;
844    Param<bool> function_trace;
845    Param<Tick> function_trace_start;
846
847END_DECLARE_SIM_OBJECT_PARAMS(SimpleCPU)
848
849BEGIN_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
850
851    INIT_PARAM_DFLT(max_insts_any_thread,
852                    "terminate when any thread reaches this inst count",
853                    0),
854    INIT_PARAM_DFLT(max_insts_all_threads,
855                    "terminate when all threads have reached this inst count",
856                    0),
857    INIT_PARAM_DFLT(max_loads_any_thread,
858                    "terminate when any thread reaches this load count",
859                    0),
860    INIT_PARAM_DFLT(max_loads_all_threads,
861                    "terminate when all threads have reached this load count",
862                    0),
863
864#ifdef FULL_SYSTEM
865    INIT_PARAM(itb, "Instruction TLB"),
866    INIT_PARAM(dtb, "Data TLB"),
867    INIT_PARAM(mem, "memory"),
868    INIT_PARAM(system, "system object"),
869    INIT_PARAM_DFLT(mult, "system clock multiplier", 1),
870#else
871    INIT_PARAM(workload, "processes to run"),
872#endif // FULL_SYSTEM
873
874    INIT_PARAM_DFLT(icache, "L1 instruction cache object", NULL),
875    INIT_PARAM_DFLT(dcache, "L1 data cache object", NULL),
876    INIT_PARAM_DFLT(defer_registration, "defer registration with system "
877                    "(for sampling)", false),
878
879    INIT_PARAM_DFLT(multiplier, "clock multiplier", 1),
880    INIT_PARAM_DFLT(function_trace, "Enable function trace", false),
881    INIT_PARAM_DFLT(function_trace_start, "Cycle to start function trace", 0)
882
883END_INIT_SIM_OBJECT_PARAMS(SimpleCPU)
884
885
886CREATE_SIM_OBJECT(SimpleCPU)
887{
888    SimpleCPU *cpu;
889#ifdef FULL_SYSTEM
890    if (mult != 1)
891        panic("processor clock multiplier must be 1\n");
892
893    cpu = new SimpleCPU(getInstanceName(), system,
894                        max_insts_any_thread, max_insts_all_threads,
895                        max_loads_any_thread, max_loads_all_threads,
896                        itb, dtb, mem,
897                        (icache) ? icache->getInterface() : NULL,
898                        (dcache) ? dcache->getInterface() : NULL,
899                        defer_registration,
900                        ticksPerSecond * mult,
901                        function_trace, function_trace_start);
902#else
903
904    cpu = new SimpleCPU(getInstanceName(), workload,
905                        max_insts_any_thread, max_insts_all_threads,
906                        max_loads_any_thread, max_loads_all_threads,
907                        (icache) ? icache->getInterface() : NULL,
908                        (dcache) ? dcache->getInterface() : NULL,
909                        defer_registration,
910                        function_trace, function_trace_start);
911
912#endif // FULL_SYSTEM
913
914    cpu->setTickMultiplier(multiplier);
915
916    return cpu;
917}
918
919REGISTER_SIM_OBJECT("SimpleCPU", SimpleCPU)
920
921