iew_impl.hh revision 2669
112337Sjason@lowepower.com/*
212337Sjason@lowepower.com * Copyright (c) 2004-2006 The Regents of The University of Michigan
312337Sjason@lowepower.com * All rights reserved.
412337Sjason@lowepower.com *
512337Sjason@lowepower.com * Redistribution and use in source and binary forms, with or without
612337Sjason@lowepower.com * modification, are permitted provided that the following conditions are
712337Sjason@lowepower.com * met: redistributions of source code must retain the above copyright
812337Sjason@lowepower.com * notice, this list of conditions and the following disclaimer;
912337Sjason@lowepower.com * redistributions in binary form must reproduce the above copyright
1012337Sjason@lowepower.com * notice, this list of conditions and the following disclaimer in the
1112337Sjason@lowepower.com * documentation and/or other materials provided with the distribution;
1212337Sjason@lowepower.com * neither the name of the copyright holders nor the names of its
1312337Sjason@lowepower.com * contributors may be used to endorse or promote products derived from
1412337Sjason@lowepower.com * this software without specific prior written permission.
1512337Sjason@lowepower.com *
1612337Sjason@lowepower.com * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
1712337Sjason@lowepower.com * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
1812337Sjason@lowepower.com * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
1912337Sjason@lowepower.com * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
2012337Sjason@lowepower.com * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
2112337Sjason@lowepower.com * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
2212337Sjason@lowepower.com * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
2312337Sjason@lowepower.com * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
2412337Sjason@lowepower.com * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
2512337Sjason@lowepower.com * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
2612337Sjason@lowepower.com * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
2712337Sjason@lowepower.com */
2812337Sjason@lowepower.com
2912337Sjason@lowepower.com// @todo: Fix the instantaneous communication among all the stages within
3012337Sjason@lowepower.com// iew.  There's a clear delay between issue and execute, yet backwards
3112337Sjason@lowepower.com// communication happens simultaneously.
3212337Sjason@lowepower.com
3312337Sjason@lowepower.com#include <queue>
3412337Sjason@lowepower.com
3512337Sjason@lowepower.com#include "base/timebuf.hh"
3612337Sjason@lowepower.com#include "cpu/o3/fu_pool.hh"
3712337Sjason@lowepower.com#include "cpu/o3/iew.hh"
3812337Sjason@lowepower.com
3912337Sjason@lowepower.comusing namespace std;
4012337Sjason@lowepower.com
4112337Sjason@lowepower.comtemplate<class Impl>
4212337Sjason@lowepower.comDefaultIEW<Impl>::DefaultIEW(Params *params)
4312337Sjason@lowepower.com    : // @todo: Make this into a parameter.
4412337Sjason@lowepower.com      issueToExecQueue(5, 5),
4512337Sjason@lowepower.com      instQueue(params),
4612337Sjason@lowepower.com      ldstQueue(params),
4712337Sjason@lowepower.com      fuPool(params->fuPool),
4812337Sjason@lowepower.com      commitToIEWDelay(params->commitToIEWDelay),
4912337Sjason@lowepower.com      renameToIEWDelay(params->renameToIEWDelay),
5012337Sjason@lowepower.com      issueToExecuteDelay(params->issueToExecuteDelay),
5112337Sjason@lowepower.com      issueReadWidth(params->issueWidth),
5212337Sjason@lowepower.com      issueWidth(params->issueWidth),
5312337Sjason@lowepower.com      executeWidth(params->executeWidth),
5412337Sjason@lowepower.com      numThreads(params->numberOfThreads),
5512337Sjason@lowepower.com      switchedOut(false)
5612337Sjason@lowepower.com{
57    _status = Active;
58    exeStatus = Running;
59    wbStatus = Idle;
60
61    // Setup wire to read instructions coming from issue.
62    fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
63
64    // Instruction queue needs the queue between issue and execute.
65    instQueue.setIssueToExecuteQueue(&issueToExecQueue);
66
67    instQueue.setIEW(this);
68    ldstQueue.setIEW(this);
69
70    for (int i=0; i < numThreads; i++) {
71        dispatchStatus[i] = Running;
72        stalls[i].commit = false;
73        fetchRedirect[i] = false;
74    }
75
76    updateLSQNextCycle = false;
77
78    skidBufferMax = (3 * (renameToIEWDelay * params->renameWidth)) + issueWidth;
79}
80
81template <class Impl>
82std::string
83DefaultIEW<Impl>::name() const
84{
85    return cpu->name() + ".iew";
86}
87
88template <class Impl>
89void
90DefaultIEW<Impl>::regStats()
91{
92    using namespace Stats;
93
94    instQueue.regStats();
95
96    iewIdleCycles
97        .name(name() + ".iewIdleCycles")
98        .desc("Number of cycles IEW is idle");
99
100    iewSquashCycles
101        .name(name() + ".iewSquashCycles")
102        .desc("Number of cycles IEW is squashing");
103
104    iewBlockCycles
105        .name(name() + ".iewBlockCycles")
106        .desc("Number of cycles IEW is blocking");
107
108    iewUnblockCycles
109        .name(name() + ".iewUnblockCycles")
110        .desc("Number of cycles IEW is unblocking");
111
112    iewDispatchedInsts
113        .name(name() + ".iewDispatchedInsts")
114        .desc("Number of instructions dispatched to IQ");
115
116    iewDispSquashedInsts
117        .name(name() + ".iewDispSquashedInsts")
118        .desc("Number of squashed instructions skipped by dispatch");
119
120    iewDispLoadInsts
121        .name(name() + ".iewDispLoadInsts")
122        .desc("Number of dispatched load instructions");
123
124    iewDispStoreInsts
125        .name(name() + ".iewDispStoreInsts")
126        .desc("Number of dispatched store instructions");
127
128    iewDispNonSpecInsts
129        .name(name() + ".iewDispNonSpecInsts")
130        .desc("Number of dispatched non-speculative instructions");
131
132    iewIQFullEvents
133        .name(name() + ".iewIQFullEvents")
134        .desc("Number of times the IQ has become full, causing a stall");
135
136    iewLSQFullEvents
137        .name(name() + ".iewLSQFullEvents")
138        .desc("Number of times the LSQ has become full, causing a stall");
139
140    iewExecutedInsts
141        .name(name() + ".iewExecutedInsts")
142        .desc("Number of executed instructions");
143
144    iewExecLoadInsts
145        .init(cpu->number_of_threads)
146        .name(name() + ".iewExecLoadInsts")
147        .desc("Number of load instructions executed")
148        .flags(total);
149
150    iewExecSquashedInsts
151        .name(name() + ".iewExecSquashedInsts")
152        .desc("Number of squashed instructions skipped in execute");
153
154    memOrderViolationEvents
155        .name(name() + ".memOrderViolationEvents")
156        .desc("Number of memory order violations");
157
158    predictedTakenIncorrect
159        .name(name() + ".predictedTakenIncorrect")
160        .desc("Number of branches that were predicted taken incorrectly");
161
162    predictedNotTakenIncorrect
163        .name(name() + ".predictedNotTakenIncorrect")
164        .desc("Number of branches that were predicted not taken incorrectly");
165
166    branchMispredicts
167        .name(name() + ".branchMispredicts")
168        .desc("Number of branch mispredicts detected at execute");
169
170    branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
171
172    exeSwp
173        .init(cpu->number_of_threads)
174        .name(name() + ".EXEC:swp")
175        .desc("number of swp insts executed")
176        .flags(total)
177        ;
178
179    exeNop
180        .init(cpu->number_of_threads)
181        .name(name() + ".EXEC:nop")
182        .desc("number of nop insts executed")
183        .flags(total)
184        ;
185
186    exeRefs
187        .init(cpu->number_of_threads)
188        .name(name() + ".EXEC:refs")
189        .desc("number of memory reference insts executed")
190        .flags(total)
191        ;
192
193    exeBranches
194        .init(cpu->number_of_threads)
195        .name(name() + ".EXEC:branches")
196        .desc("Number of branches executed")
197        .flags(total)
198        ;
199
200    issueRate
201        .name(name() + ".EXEC:rate")
202        .desc("Inst execution rate")
203        .flags(total)
204        ;
205    issueRate = iewExecutedInsts / cpu->numCycles;
206
207    iewExecStoreInsts
208        .name(name() + ".EXEC:stores")
209        .desc("Number of stores executed")
210        .flags(total)
211        ;
212    iewExecStoreInsts = exeRefs - iewExecLoadInsts;
213/*
214    for (int i=0; i<Num_OpClasses; ++i) {
215        stringstream subname;
216        subname << opClassStrings[i] << "_delay";
217        issue_delay_dist.subname(i, subname.str());
218    }
219*/
220    //
221    //  Other stats
222    //
223
224    iewInstsToCommit
225        .init(cpu->number_of_threads)
226        .name(name() + ".WB:sent")
227        .desc("cumulative count of insts sent to commit")
228        .flags(total)
229        ;
230
231    writebackCount
232        .init(cpu->number_of_threads)
233        .name(name() + ".WB:count")
234        .desc("cumulative count of insts written-back")
235        .flags(total)
236        ;
237
238    producerInst
239        .init(cpu->number_of_threads)
240        .name(name() + ".WB:producers")
241        .desc("num instructions producing a value")
242        .flags(total)
243        ;
244
245    consumerInst
246        .init(cpu->number_of_threads)
247        .name(name() + ".WB:consumers")
248        .desc("num instructions consuming a value")
249        .flags(total)
250        ;
251
252    wbPenalized
253        .init(cpu->number_of_threads)
254        .name(name() + ".WB:penalized")
255        .desc("number of instrctions required to write to 'other' IQ")
256        .flags(total)
257        ;
258
259    wbPenalizedRate
260        .name(name() + ".WB:penalized_rate")
261        .desc ("fraction of instructions written-back that wrote to 'other' IQ")
262        .flags(total)
263        ;
264
265    wbPenalizedRate = wbPenalized / writebackCount;
266
267    wbFanout
268        .name(name() + ".WB:fanout")
269        .desc("average fanout of values written-back")
270        .flags(total)
271        ;
272
273    wbFanout = producerInst / consumerInst;
274
275    wbRate
276        .name(name() + ".WB:rate")
277        .desc("insts written-back per cycle")
278        .flags(total)
279        ;
280    wbRate = writebackCount / cpu->numCycles;
281}
282
283template<class Impl>
284void
285DefaultIEW<Impl>::initStage()
286{
287    for (int tid=0; tid < numThreads; tid++) {
288        toRename->iewInfo[tid].usedIQ = true;
289        toRename->iewInfo[tid].freeIQEntries =
290            instQueue.numFreeEntries(tid);
291
292        toRename->iewInfo[tid].usedLSQ = true;
293        toRename->iewInfo[tid].freeLSQEntries =
294            ldstQueue.numFreeEntries(tid);
295    }
296}
297
298template<class Impl>
299void
300DefaultIEW<Impl>::setCPU(FullCPU *cpu_ptr)
301{
302    DPRINTF(IEW, "Setting CPU pointer.\n");
303    cpu = cpu_ptr;
304
305    instQueue.setCPU(cpu_ptr);
306    ldstQueue.setCPU(cpu_ptr);
307
308    cpu->activateStage(FullCPU::IEWIdx);
309}
310
311template<class Impl>
312void
313DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
314{
315    DPRINTF(IEW, "Setting time buffer pointer.\n");
316    timeBuffer = tb_ptr;
317
318    // Setup wire to read information from time buffer, from commit.
319    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
320
321    // Setup wire to write information back to previous stages.
322    toRename = timeBuffer->getWire(0);
323
324    toFetch = timeBuffer->getWire(0);
325
326    // Instruction queue also needs main time buffer.
327    instQueue.setTimeBuffer(tb_ptr);
328}
329
330template<class Impl>
331void
332DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
333{
334    DPRINTF(IEW, "Setting rename queue pointer.\n");
335    renameQueue = rq_ptr;
336
337    // Setup wire to read information from rename queue.
338    fromRename = renameQueue->getWire(-renameToIEWDelay);
339}
340
341template<class Impl>
342void
343DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
344{
345    DPRINTF(IEW, "Setting IEW queue pointer.\n");
346    iewQueue = iq_ptr;
347
348    // Setup wire to write instructions to commit.
349    toCommit = iewQueue->getWire(0);
350}
351
352template<class Impl>
353void
354DefaultIEW<Impl>::setActiveThreads(list<unsigned> *at_ptr)
355{
356    DPRINTF(IEW, "Setting active threads list pointer.\n");
357    activeThreads = at_ptr;
358
359    ldstQueue.setActiveThreads(at_ptr);
360    instQueue.setActiveThreads(at_ptr);
361}
362
363template<class Impl>
364void
365DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
366{
367    DPRINTF(IEW, "Setting scoreboard pointer.\n");
368    scoreboard = sb_ptr;
369}
370
371#if 0
372template<class Impl>
373void
374DefaultIEW<Impl>::setPageTable(PageTable *pt_ptr)
375{
376    ldstQueue.setPageTable(pt_ptr);
377}
378#endif
379
380template <class Impl>
381void
382DefaultIEW<Impl>::switchOut()
383{
384    cpu->signalSwitched();
385}
386
387template <class Impl>
388void
389DefaultIEW<Impl>::doSwitchOut()
390{
391    switchedOut = true;
392
393    instQueue.switchOut();
394    ldstQueue.switchOut();
395    fuPool->switchOut();
396
397    for (int i = 0; i < numThreads; i++) {
398        while (!insts[i].empty())
399            insts[i].pop();
400        while (!skidBuffer[i].empty())
401            skidBuffer[i].pop();
402    }
403}
404
405template <class Impl>
406void
407DefaultIEW<Impl>::takeOverFrom()
408{
409    _status = Active;
410    exeStatus = Running;
411    wbStatus = Idle;
412    switchedOut = false;
413
414    instQueue.takeOverFrom();
415    ldstQueue.takeOverFrom();
416    fuPool->takeOverFrom();
417
418    initStage();
419    cpu->activityThisCycle();
420
421    for (int i=0; i < numThreads; i++) {
422        dispatchStatus[i] = Running;
423        stalls[i].commit = false;
424        fetchRedirect[i] = false;
425    }
426
427    updateLSQNextCycle = false;
428
429    // @todo: Fix hardcoded number
430    for (int i = 0; i < 6; ++i) {
431        issueToExecQueue.advance();
432    }
433}
434
435template<class Impl>
436void
437DefaultIEW<Impl>::squash(unsigned tid)
438{
439    DPRINTF(IEW, "[tid:%i]: Squashing all instructions.\n",
440            tid);
441
442    // Tell the IQ to start squashing.
443    instQueue.squash(tid);
444
445    // Tell the LDSTQ to start squashing.
446    ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
447
448    updatedQueues = true;
449
450    // Clear the skid buffer in case it has any data in it.
451    while (!skidBuffer[tid].empty()) {
452
453        if (skidBuffer[tid].front()->isLoad() ||
454            skidBuffer[tid].front()->isStore() ) {
455            toRename->iewInfo[tid].dispatchedToLSQ++;
456        }
457
458        toRename->iewInfo[tid].dispatched++;
459
460        skidBuffer[tid].pop();
461    }
462
463    while (!insts[tid].empty()) {
464        if (insts[tid].front()->isLoad() ||
465            insts[tid].front()->isStore() ) {
466            toRename->iewInfo[tid].dispatchedToLSQ++;
467        }
468
469        toRename->iewInfo[tid].dispatched++;
470
471        insts[tid].pop();
472    }
473}
474
475template<class Impl>
476void
477DefaultIEW<Impl>::squashDueToBranch(DynInstPtr &inst, unsigned tid)
478{
479    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, PC: %#x "
480            "[sn:%i].\n", tid, inst->readPC(), inst->seqNum);
481
482    toCommit->squash[tid] = true;
483    toCommit->squashedSeqNum[tid] = inst->seqNum;
484    toCommit->mispredPC[tid] = inst->readPC();
485    toCommit->nextPC[tid] = inst->readNextPC();
486    toCommit->branchMispredict[tid] = true;
487    toCommit->branchTaken[tid] = inst->readNextPC() !=
488        (inst->readPC() + sizeof(TheISA::MachInst));
489
490    toCommit->includeSquashInst[tid] = false;
491
492    wroteToTimeBuffer = true;
493}
494
495template<class Impl>
496void
497DefaultIEW<Impl>::squashDueToMemOrder(DynInstPtr &inst, unsigned tid)
498{
499    DPRINTF(IEW, "[tid:%i]: Squashing from a specific instruction, "
500            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
501
502    toCommit->squash[tid] = true;
503    toCommit->squashedSeqNum[tid] = inst->seqNum;
504    toCommit->nextPC[tid] = inst->readNextPC();
505
506    toCommit->includeSquashInst[tid] = false;
507
508    wroteToTimeBuffer = true;
509}
510
511template<class Impl>
512void
513DefaultIEW<Impl>::squashDueToMemBlocked(DynInstPtr &inst, unsigned tid)
514{
515    DPRINTF(IEW, "[tid:%i]: Memory blocked, squashing load and younger insts, "
516            "PC: %#x [sn:%i].\n", tid, inst->readPC(), inst->seqNum);
517
518    toCommit->squash[tid] = true;
519    toCommit->squashedSeqNum[tid] = inst->seqNum;
520    toCommit->nextPC[tid] = inst->readPC();
521
522    toCommit->includeSquashInst[tid] = true;
523
524    ldstQueue.setLoadBlockedHandled(tid);
525
526    wroteToTimeBuffer = true;
527}
528
529template<class Impl>
530void
531DefaultIEW<Impl>::block(unsigned tid)
532{
533    DPRINTF(IEW, "[tid:%u]: Blocking.\n", tid);
534
535    if (dispatchStatus[tid] != Blocked &&
536        dispatchStatus[tid] != Unblocking) {
537        toRename->iewBlock[tid] = true;
538        wroteToTimeBuffer = true;
539    }
540
541    // Add the current inputs to the skid buffer so they can be
542    // reprocessed when this stage unblocks.
543    skidInsert(tid);
544
545    dispatchStatus[tid] = Blocked;
546}
547
548template<class Impl>
549void
550DefaultIEW<Impl>::unblock(unsigned tid)
551{
552    DPRINTF(IEW, "[tid:%i]: Reading instructions out of the skid "
553            "buffer %u.\n",tid, tid);
554
555    // If the skid bufffer is empty, signal back to previous stages to unblock.
556    // Also switch status to running.
557    if (skidBuffer[tid].empty()) {
558        toRename->iewUnblock[tid] = true;
559        wroteToTimeBuffer = true;
560        DPRINTF(IEW, "[tid:%i]: Done unblocking.\n",tid);
561        dispatchStatus[tid] = Running;
562    }
563}
564
565template<class Impl>
566void
567DefaultIEW<Impl>::wakeDependents(DynInstPtr &inst)
568{
569    instQueue.wakeDependents(inst);
570}
571
572template<class Impl>
573void
574DefaultIEW<Impl>::rescheduleMemInst(DynInstPtr &inst)
575{
576    instQueue.rescheduleMemInst(inst);
577}
578
579template<class Impl>
580void
581DefaultIEW<Impl>::replayMemInst(DynInstPtr &inst)
582{
583    instQueue.replayMemInst(inst);
584}
585
586template<class Impl>
587void
588DefaultIEW<Impl>::instToCommit(DynInstPtr &inst)
589{
590    // First check the time slot that this instruction will write
591    // to.  If there are free write ports at the time, then go ahead
592    // and write the instruction to that time.  If there are not,
593    // keep looking back to see where's the first time there's a
594    // free slot.
595    while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
596        ++wbNumInst;
597        if (wbNumInst == issueWidth) {
598            ++wbCycle;
599            wbNumInst = 0;
600        }
601
602        assert(wbCycle < 5);
603    }
604
605    // Add finished instruction to queue to commit.
606    (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
607    (*iewQueue)[wbCycle].size++;
608}
609
610template <class Impl>
611unsigned
612DefaultIEW<Impl>::validInstsFromRename()
613{
614    unsigned inst_count = 0;
615
616    for (int i=0; i<fromRename->size; i++) {
617        if (!fromRename->insts[i]->squashed)
618            inst_count++;
619    }
620
621    return inst_count;
622}
623
624template<class Impl>
625void
626DefaultIEW<Impl>::skidInsert(unsigned tid)
627{
628    DynInstPtr inst = NULL;
629
630    while (!insts[tid].empty()) {
631        inst = insts[tid].front();
632
633        insts[tid].pop();
634
635        DPRINTF(Decode,"[tid:%i]: Inserting [sn:%lli] PC:%#x into "
636                "dispatch skidBuffer %i\n",tid, inst->seqNum,
637                inst->readPC(),tid);
638
639        skidBuffer[tid].push(inst);
640    }
641
642    assert(skidBuffer[tid].size() <= skidBufferMax &&
643           "Skidbuffer Exceeded Max Size");
644}
645
646template<class Impl>
647int
648DefaultIEW<Impl>::skidCount()
649{
650    int max=0;
651
652    list<unsigned>::iterator threads = (*activeThreads).begin();
653
654    while (threads != (*activeThreads).end()) {
655        unsigned thread_count = skidBuffer[*threads++].size();
656        if (max < thread_count)
657            max = thread_count;
658    }
659
660    return max;
661}
662
663template<class Impl>
664bool
665DefaultIEW<Impl>::skidsEmpty()
666{
667    list<unsigned>::iterator threads = (*activeThreads).begin();
668
669    while (threads != (*activeThreads).end()) {
670        if (!skidBuffer[*threads++].empty())
671            return false;
672    }
673
674    return true;
675}
676
677template <class Impl>
678void
679DefaultIEW<Impl>::updateStatus()
680{
681    bool any_unblocking = false;
682
683    list<unsigned>::iterator threads = (*activeThreads).begin();
684
685    threads = (*activeThreads).begin();
686
687    while (threads != (*activeThreads).end()) {
688        unsigned tid = *threads++;
689
690        if (dispatchStatus[tid] == Unblocking) {
691            any_unblocking = true;
692            break;
693        }
694    }
695
696    // If there are no ready instructions waiting to be scheduled by the IQ,
697    // and there's no stores waiting to write back, and dispatch is not
698    // unblocking, then there is no internal activity for the IEW stage.
699    if (_status == Active && !instQueue.hasReadyInsts() &&
700        !ldstQueue.willWB() && !any_unblocking) {
701        DPRINTF(IEW, "IEW switching to idle\n");
702
703        deactivateStage();
704
705        _status = Inactive;
706    } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
707                                       ldstQueue.willWB() ||
708                                       any_unblocking)) {
709        // Otherwise there is internal activity.  Set to active.
710        DPRINTF(IEW, "IEW switching to active\n");
711
712        activateStage();
713
714        _status = Active;
715    }
716}
717
718template <class Impl>
719void
720DefaultIEW<Impl>::resetEntries()
721{
722    instQueue.resetEntries();
723    ldstQueue.resetEntries();
724}
725
726template <class Impl>
727void
728DefaultIEW<Impl>::readStallSignals(unsigned tid)
729{
730    if (fromCommit->commitBlock[tid]) {
731        stalls[tid].commit = true;
732    }
733
734    if (fromCommit->commitUnblock[tid]) {
735        assert(stalls[tid].commit);
736        stalls[tid].commit = false;
737    }
738}
739
740template <class Impl>
741bool
742DefaultIEW<Impl>::checkStall(unsigned tid)
743{
744    bool ret_val(false);
745
746    if (stalls[tid].commit) {
747        DPRINTF(IEW,"[tid:%i]: Stall from Commit stage detected.\n",tid);
748        ret_val = true;
749    } else if (instQueue.isFull(tid)) {
750        DPRINTF(IEW,"[tid:%i]: Stall: IQ  is full.\n",tid);
751        ret_val = true;
752    } else if (ldstQueue.isFull(tid)) {
753        DPRINTF(IEW,"[tid:%i]: Stall: LSQ is full\n",tid);
754
755        if (ldstQueue.numLoads(tid) > 0 ) {
756
757            DPRINTF(IEW,"[tid:%i]: LSQ oldest load: [sn:%i] \n",
758                    tid,ldstQueue.getLoadHeadSeqNum(tid));
759        }
760
761        if (ldstQueue.numStores(tid) > 0) {
762
763            DPRINTF(IEW,"[tid:%i]: LSQ oldest store: [sn:%i] \n",
764                    tid,ldstQueue.getStoreHeadSeqNum(tid));
765        }
766
767        ret_val = true;
768    } else if (ldstQueue.isStalled(tid)) {
769        DPRINTF(IEW,"[tid:%i]: Stall: LSQ stall detected.\n",tid);
770        ret_val = true;
771    }
772
773    return ret_val;
774}
775
776template <class Impl>
777void
778DefaultIEW<Impl>::checkSignalsAndUpdate(unsigned tid)
779{
780    // Check if there's a squash signal, squash if there is
781    // Check stall signals, block if there is.
782    // If status was Blocked
783    //     if so then go to unblocking
784    // If status was Squashing
785    //     check if squashing is not high.  Switch to running this cycle.
786
787    readStallSignals(tid);
788
789    if (fromCommit->commitInfo[tid].squash) {
790        squash(tid);
791
792        if (dispatchStatus[tid] == Blocked ||
793            dispatchStatus[tid] == Unblocking) {
794            toRename->iewUnblock[tid] = true;
795            wroteToTimeBuffer = true;
796        }
797
798        dispatchStatus[tid] = Squashing;
799
800        fetchRedirect[tid] = false;
801        return;
802    }
803
804    if (fromCommit->commitInfo[tid].robSquashing) {
805        DPRINTF(IEW, "[tid:%i]: ROB is still squashing.\n");
806
807        dispatchStatus[tid] = Squashing;
808
809        return;
810    }
811
812    if (checkStall(tid)) {
813        block(tid);
814        dispatchStatus[tid] = Blocked;
815        return;
816    }
817
818    if (dispatchStatus[tid] == Blocked) {
819        // Status from previous cycle was blocked, but there are no more stall
820        // conditions.  Switch over to unblocking.
821        DPRINTF(IEW, "[tid:%i]: Done blocking, switching to unblocking.\n",
822                tid);
823
824        dispatchStatus[tid] = Unblocking;
825
826        unblock(tid);
827
828        return;
829    }
830
831    if (dispatchStatus[tid] == Squashing) {
832        // Switch status to running if rename isn't being told to block or
833        // squash this cycle.
834        DPRINTF(IEW, "[tid:%i]: Done squashing, switching to running.\n",
835                tid);
836
837        dispatchStatus[tid] = Running;
838
839        return;
840    }
841}
842
843template <class Impl>
844void
845DefaultIEW<Impl>::sortInsts()
846{
847    int insts_from_rename = fromRename->size;
848#ifdef DEBUG
849    for (int i = 0; i < numThreads; i++)
850        assert(insts[i].empty());
851#endif
852    for (int i = 0; i < insts_from_rename; ++i) {
853        insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
854    }
855}
856
857template <class Impl>
858void
859DefaultIEW<Impl>::wakeCPU()
860{
861    cpu->wakeCPU();
862}
863
864template <class Impl>
865void
866DefaultIEW<Impl>::activityThisCycle()
867{
868    DPRINTF(Activity, "Activity this cycle.\n");
869    cpu->activityThisCycle();
870}
871
872template <class Impl>
873inline void
874DefaultIEW<Impl>::activateStage()
875{
876    DPRINTF(Activity, "Activating stage.\n");
877    cpu->activateStage(FullCPU::IEWIdx);
878}
879
880template <class Impl>
881inline void
882DefaultIEW<Impl>::deactivateStage()
883{
884    DPRINTF(Activity, "Deactivating stage.\n");
885    cpu->deactivateStage(FullCPU::IEWIdx);
886}
887
888template<class Impl>
889void
890DefaultIEW<Impl>::dispatch(unsigned tid)
891{
892    // If status is Running or idle,
893    //     call dispatchInsts()
894    // If status is Unblocking,
895    //     buffer any instructions coming from rename
896    //     continue trying to empty skid buffer
897    //     check if stall conditions have passed
898
899    if (dispatchStatus[tid] == Blocked) {
900        ++iewBlockCycles;
901
902    } else if (dispatchStatus[tid] == Squashing) {
903        ++iewSquashCycles;
904    }
905
906    // Dispatch should try to dispatch as many instructions as its bandwidth
907    // will allow, as long as it is not currently blocked.
908    if (dispatchStatus[tid] == Running ||
909        dispatchStatus[tid] == Idle) {
910        DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
911                "dispatch.\n", tid);
912
913        dispatchInsts(tid);
914    } else if (dispatchStatus[tid] == Unblocking) {
915        // Make sure that the skid buffer has something in it if the
916        // status is unblocking.
917        assert(!skidsEmpty());
918
919        // If the status was unblocking, then instructions from the skid
920        // buffer were used.  Remove those instructions and handle
921        // the rest of unblocking.
922        dispatchInsts(tid);
923
924        ++iewUnblockCycles;
925
926        if (validInstsFromRename() && dispatchedAllInsts) {
927            // Add the current inputs to the skid buffer so they can be
928            // reprocessed when this stage unblocks.
929            skidInsert(tid);
930        }
931
932        unblock(tid);
933    }
934}
935
936template <class Impl>
937void
938DefaultIEW<Impl>::dispatchInsts(unsigned tid)
939{
940    dispatchedAllInsts = true;
941
942    // Obtain instructions from skid buffer if unblocking, or queue from rename
943    // otherwise.
944    std::queue<DynInstPtr> &insts_to_dispatch =
945        dispatchStatus[tid] == Unblocking ?
946        skidBuffer[tid] : insts[tid];
947
948    int insts_to_add = insts_to_dispatch.size();
949
950    DynInstPtr inst;
951    bool add_to_iq = false;
952    int dis_num_inst = 0;
953
954    // Loop through the instructions, putting them in the instruction
955    // queue.
956    for ( ; dis_num_inst < insts_to_add &&
957              dis_num_inst < issueReadWidth;
958          ++dis_num_inst)
959    {
960        inst = insts_to_dispatch.front();
961
962        if (dispatchStatus[tid] == Unblocking) {
963            DPRINTF(IEW, "[tid:%i]: Issue: Examining instruction from skid "
964                    "buffer\n", tid);
965        }
966
967        // Make sure there's a valid instruction there.
968        assert(inst);
969
970        DPRINTF(IEW, "[tid:%i]: Issue: Adding PC %#x [sn:%lli] [tid:%i] to "
971                "IQ.\n",
972                tid, inst->readPC(), inst->seqNum, inst->threadNumber);
973
974        // Be sure to mark these instructions as ready so that the
975        // commit stage can go ahead and execute them, and mark
976        // them as issued so the IQ doesn't reprocess them.
977
978        // Check for squashed instructions.
979        if (inst->isSquashed()) {
980            DPRINTF(IEW, "[tid:%i]: Issue: Squashed instruction encountered, "
981                    "not adding to IQ.\n", tid);
982
983            ++iewDispSquashedInsts;
984
985            insts_to_dispatch.pop();
986
987            //Tell Rename That An Instruction has been processed
988            if (inst->isLoad() || inst->isStore()) {
989                toRename->iewInfo[tid].dispatchedToLSQ++;
990            }
991            toRename->iewInfo[tid].dispatched++;
992
993            continue;
994        }
995
996        // Check for full conditions.
997        if (instQueue.isFull(tid)) {
998            DPRINTF(IEW, "[tid:%i]: Issue: IQ has become full.\n", tid);
999
1000            // Call function to start blocking.
1001            block(tid);
1002
1003            // Set unblock to false. Special case where we are using
1004            // skidbuffer (unblocking) instructions but then we still
1005            // get full in the IQ.
1006            toRename->iewUnblock[tid] = false;
1007
1008            dispatchedAllInsts = false;
1009
1010            ++iewIQFullEvents;
1011            break;
1012        } else if (ldstQueue.isFull(tid)) {
1013            DPRINTF(IEW, "[tid:%i]: Issue: LSQ has become full.\n",tid);
1014
1015            // Call function to start blocking.
1016            block(tid);
1017
1018            // Set unblock to false. Special case where we are using
1019            // skidbuffer (unblocking) instructions but then we still
1020            // get full in the IQ.
1021            toRename->iewUnblock[tid] = false;
1022
1023            dispatchedAllInsts = false;
1024
1025            ++iewLSQFullEvents;
1026            break;
1027        }
1028
1029        // Otherwise issue the instruction just fine.
1030        if (inst->isLoad()) {
1031            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1032                    "encountered, adding to LSQ.\n", tid);
1033
1034            // Reserve a spot in the load store queue for this
1035            // memory access.
1036            ldstQueue.insertLoad(inst);
1037
1038            ++iewDispLoadInsts;
1039
1040            add_to_iq = true;
1041
1042            toRename->iewInfo[tid].dispatchedToLSQ++;
1043        } else if (inst->isStore()) {
1044            DPRINTF(IEW, "[tid:%i]: Issue: Memory instruction "
1045                    "encountered, adding to LSQ.\n", tid);
1046
1047            ldstQueue.insertStore(inst);
1048
1049            ++iewDispStoreInsts;
1050
1051            if (inst->isStoreConditional()) {
1052                // Store conditionals need to be set as "canCommit()"
1053                // so that commit can process them when they reach the
1054                // head of commit.
1055                inst->setCanCommit();
1056                instQueue.insertNonSpec(inst);
1057                add_to_iq = false;
1058
1059                ++iewDispNonSpecInsts;
1060            } else {
1061                add_to_iq = true;
1062            }
1063
1064            toRename->iewInfo[tid].dispatchedToLSQ++;
1065#if FULL_SYSTEM
1066        } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1067            // Same as non-speculative stores.
1068            inst->setCanCommit();
1069            instQueue.insertBarrier(inst);
1070            add_to_iq = false;
1071#endif
1072        } else if (inst->isNonSpeculative()) {
1073            DPRINTF(IEW, "[tid:%i]: Issue: Nonspeculative instruction "
1074                    "encountered, skipping.\n", tid);
1075
1076            // Same as non-speculative stores.
1077            inst->setCanCommit();
1078
1079            // Specifically insert it as nonspeculative.
1080            instQueue.insertNonSpec(inst);
1081
1082            ++iewDispNonSpecInsts;
1083
1084            add_to_iq = false;
1085        } else if (inst->isNop()) {
1086            DPRINTF(IEW, "[tid:%i]: Issue: Nop instruction encountered, "
1087                    "skipping.\n", tid);
1088
1089            inst->setIssued();
1090            inst->setExecuted();
1091            inst->setCanCommit();
1092
1093            instQueue.recordProducer(inst);
1094
1095            exeNop[tid]++;
1096
1097            add_to_iq = false;
1098        } else if (inst->isExecuted()) {
1099            assert(0 && "Instruction shouldn't be executed.\n");
1100            DPRINTF(IEW, "Issue: Executed branch encountered, "
1101                    "skipping.\n");
1102
1103            inst->setIssued();
1104            inst->setCanCommit();
1105
1106            instQueue.recordProducer(inst);
1107
1108            add_to_iq = false;
1109        } else {
1110            add_to_iq = true;
1111        }
1112
1113        // If the instruction queue is not full, then add the
1114        // instruction.
1115        if (add_to_iq) {
1116            instQueue.insert(inst);
1117        }
1118
1119        insts_to_dispatch.pop();
1120
1121        toRename->iewInfo[tid].dispatched++;
1122
1123        ++iewDispatchedInsts;
1124    }
1125
1126    if (!insts_to_dispatch.empty()) {
1127        DPRINTF(IEW,"[tid:%i]: Issue: Bandwidth Full. Blocking.\n");
1128        block(tid);
1129        toRename->iewUnblock[tid] = false;
1130    }
1131
1132    if (dispatchStatus[tid] == Idle && dis_num_inst) {
1133        dispatchStatus[tid] = Running;
1134
1135        updatedQueues = true;
1136    }
1137
1138    dis_num_inst = 0;
1139}
1140
1141template <class Impl>
1142void
1143DefaultIEW<Impl>::printAvailableInsts()
1144{
1145    int inst = 0;
1146
1147    cout << "Available Instructions: ";
1148
1149    while (fromIssue->insts[inst]) {
1150
1151        if (inst%3==0) cout << "\n\t";
1152
1153        cout << "PC: " << fromIssue->insts[inst]->readPC()
1154             << " TN: " << fromIssue->insts[inst]->threadNumber
1155             << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1156
1157        inst++;
1158
1159    }
1160
1161    cout << "\n";
1162}
1163
1164template <class Impl>
1165void
1166DefaultIEW<Impl>::executeInsts()
1167{
1168    wbNumInst = 0;
1169    wbCycle = 0;
1170
1171    list<unsigned>::iterator threads = (*activeThreads).begin();
1172
1173    while (threads != (*activeThreads).end()) {
1174        unsigned tid = *threads++;
1175        fetchRedirect[tid] = false;
1176    }
1177
1178#if 0
1179    printAvailableInsts();
1180#endif
1181
1182    // Execute/writeback any instructions that are available.
1183    int insts_to_execute = fromIssue->size;
1184    int inst_num = 0;
1185    for (; inst_num < insts_to_execute;
1186          ++inst_num) {
1187
1188        DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1189
1190        DynInstPtr inst = instQueue.getInstToExecute();
1191
1192        DPRINTF(IEW, "Execute: Processing PC %#x, [tid:%i] [sn:%i].\n",
1193                inst->readPC(), inst->threadNumber,inst->seqNum);
1194
1195        // Check if the instruction is squashed; if so then skip it
1196        if (inst->isSquashed()) {
1197            DPRINTF(IEW, "Execute: Instruction was squashed.\n");
1198
1199            // Consider this instruction executed so that commit can go
1200            // ahead and retire the instruction.
1201            inst->setExecuted();
1202
1203            // Not sure if I should set this here or just let commit try to
1204            // commit any squashed instructions.  I like the latter a bit more.
1205            inst->setCanCommit();
1206
1207            ++iewExecSquashedInsts;
1208
1209            continue;
1210        }
1211
1212        Fault fault = NoFault;
1213
1214        // Execute instruction.
1215        // Note that if the instruction faults, it will be handled
1216        // at the commit stage.
1217        if (inst->isMemRef() &&
1218            (!inst->isDataPrefetch() && !inst->isInstPrefetch())) {
1219            DPRINTF(IEW, "Execute: Calculating address for memory "
1220                    "reference.\n");
1221
1222            // Tell the LDSTQ to execute this instruction (if it is a load).
1223            if (inst->isLoad()) {
1224                // Loads will mark themselves as executed, and their writeback
1225                // event adds the instruction to the queue to commit
1226                fault = ldstQueue.executeLoad(inst);
1227            } else if (inst->isStore()) {
1228                ldstQueue.executeStore(inst);
1229
1230                // If the store had a fault then it may not have a mem req
1231                if (inst->req && !(inst->req->getFlags() & LOCKED)) {
1232                    inst->setExecuted();
1233
1234                    instToCommit(inst);
1235                }
1236
1237                // Store conditionals will mark themselves as
1238                // executed, and their writeback event will add the
1239                // instruction to the queue to commit.
1240            } else {
1241                panic("Unexpected memory type!\n");
1242            }
1243
1244        } else {
1245            inst->execute();
1246
1247            inst->setExecuted();
1248
1249            instToCommit(inst);
1250        }
1251
1252        updateExeInstStats(inst);
1253
1254        // Check if branch prediction was correct, if not then we need
1255        // to tell commit to squash in flight instructions.  Only
1256        // handle this if there hasn't already been something that
1257        // redirects fetch in this group of instructions.
1258
1259        // This probably needs to prioritize the redirects if a different
1260        // scheduler is used.  Currently the scheduler schedules the oldest
1261        // instruction first, so the branch resolution order will be correct.
1262        unsigned tid = inst->threadNumber;
1263
1264        if (!fetchRedirect[tid]) {
1265
1266            if (inst->mispredicted()) {
1267                fetchRedirect[tid] = true;
1268
1269                DPRINTF(IEW, "Execute: Branch mispredict detected.\n");
1270                DPRINTF(IEW, "Execute: Redirecting fetch to PC: %#x.\n",
1271                        inst->nextPC);
1272
1273                // If incorrect, then signal the ROB that it must be squashed.
1274                squashDueToBranch(inst, tid);
1275
1276                if (inst->predTaken()) {
1277                    predictedTakenIncorrect++;
1278                } else {
1279                    predictedNotTakenIncorrect++;
1280                }
1281            } else if (ldstQueue.violation(tid)) {
1282                fetchRedirect[tid] = true;
1283
1284                // If there was an ordering violation, then get the
1285                // DynInst that caused the violation.  Note that this
1286                // clears the violation signal.
1287                DynInstPtr violator;
1288                violator = ldstQueue.getMemDepViolator(tid);
1289
1290                DPRINTF(IEW, "LDSTQ detected a violation.  Violator PC: "
1291                        "%#x, inst PC: %#x.  Addr is: %#x.\n",
1292                        violator->readPC(), inst->readPC(), inst->physEffAddr);
1293
1294                // Tell the instruction queue that a violation has occured.
1295                instQueue.violation(inst, violator);
1296
1297                // Squash.
1298                squashDueToMemOrder(inst,tid);
1299
1300                ++memOrderViolationEvents;
1301            } else if (ldstQueue.loadBlocked(tid) &&
1302                       !ldstQueue.isLoadBlockedHandled(tid)) {
1303                fetchRedirect[tid] = true;
1304
1305                DPRINTF(IEW, "Load operation couldn't execute because the "
1306                        "memory system is blocked.  PC: %#x [sn:%lli]\n",
1307                        inst->readPC(), inst->seqNum);
1308
1309                squashDueToMemBlocked(inst, tid);
1310            }
1311        }
1312    }
1313
1314    if (inst_num) {
1315        if (exeStatus == Idle) {
1316            exeStatus = Running;
1317        }
1318
1319        updatedQueues = true;
1320
1321        cpu->activityThisCycle();
1322    }
1323
1324    // Need to reset this in case a writeback event needs to write into the
1325    // iew queue.  That way the writeback event will write into the correct
1326    // spot in the queue.
1327    wbNumInst = 0;
1328}
1329
1330template <class Impl>
1331void
1332DefaultIEW<Impl>::writebackInsts()
1333{
1334    // Loop through the head of the time buffer and wake any
1335    // dependents.  These instructions are about to write back.  Also
1336    // mark scoreboard that this instruction is finally complete.
1337    // Either have IEW have direct access to scoreboard, or have this
1338    // as part of backwards communication.
1339    for (int inst_num = 0; inst_num < issueWidth &&
1340             toCommit->insts[inst_num]; inst_num++) {
1341        DynInstPtr inst = toCommit->insts[inst_num];
1342        int tid = inst->threadNumber;
1343
1344        DPRINTF(IEW, "Sending instructions to commit, PC %#x.\n",
1345                inst->readPC());
1346
1347        iewInstsToCommit[tid]++;
1348
1349        // Some instructions will be sent to commit without having
1350        // executed because they need commit to handle them.
1351        // E.g. Uncached loads have not actually executed when they
1352        // are first sent to commit.  Instead commit must tell the LSQ
1353        // when it's ready to execute the uncached load.
1354        if (!inst->isSquashed() && inst->isExecuted()) {
1355            int dependents = instQueue.wakeDependents(inst);
1356
1357            for (int i = 0; i < inst->numDestRegs(); i++) {
1358                //mark as Ready
1359                DPRINTF(IEW,"Setting Destination Register %i\n",
1360                        inst->renamedDestRegIdx(i));
1361                scoreboard->setReg(inst->renamedDestRegIdx(i));
1362            }
1363
1364            producerInst[tid]++;
1365            consumerInst[tid]+= dependents;
1366            writebackCount[tid]++;
1367        }
1368    }
1369}
1370
1371template<class Impl>
1372void
1373DefaultIEW<Impl>::tick()
1374{
1375    wbNumInst = 0;
1376    wbCycle = 0;
1377
1378    wroteToTimeBuffer = false;
1379    updatedQueues = false;
1380
1381    sortInsts();
1382
1383    // Free function units marked as being freed this cycle.
1384    fuPool->processFreeUnits();
1385
1386    list<unsigned>::iterator threads = (*activeThreads).begin();
1387
1388    // Check stall and squash signals, dispatch any instructions.
1389    while (threads != (*activeThreads).end()) {
1390           unsigned tid = *threads++;
1391
1392        DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1393
1394        checkSignalsAndUpdate(tid);
1395        dispatch(tid);
1396    }
1397
1398    if (exeStatus != Squashing) {
1399        executeInsts();
1400
1401        writebackInsts();
1402
1403        // Have the instruction queue try to schedule any ready instructions.
1404        // (In actuality, this scheduling is for instructions that will
1405        // be executed next cycle.)
1406        instQueue.scheduleReadyInsts();
1407
1408        // Also should advance its own time buffers if the stage ran.
1409        // Not the best place for it, but this works (hopefully).
1410        issueToExecQueue.advance();
1411    }
1412
1413    bool broadcast_free_entries = false;
1414
1415    if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1416        exeStatus = Idle;
1417        updateLSQNextCycle = false;
1418
1419        broadcast_free_entries = true;
1420    }
1421
1422    // Writeback any stores using any leftover bandwidth.
1423    ldstQueue.writebackStores();
1424
1425    // Check the committed load/store signals to see if there's a load
1426    // or store to commit.  Also check if it's being told to execute a
1427    // nonspeculative instruction.
1428    // This is pretty inefficient...
1429
1430    threads = (*activeThreads).begin();
1431    while (threads != (*activeThreads).end()) {
1432        unsigned tid = (*threads++);
1433
1434        DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1435
1436        if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1437            !fromCommit->commitInfo[tid].squash &&
1438            !fromCommit->commitInfo[tid].robSquashing) {
1439
1440            ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1441
1442            ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1443
1444            updateLSQNextCycle = true;
1445            instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1446        }
1447
1448        if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1449
1450            //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1451            if (fromCommit->commitInfo[tid].uncached) {
1452                instQueue.replayMemInst(fromCommit->commitInfo[tid].uncachedLoad);
1453            } else {
1454                instQueue.scheduleNonSpec(
1455                    fromCommit->commitInfo[tid].nonSpecSeqNum);
1456            }
1457        }
1458
1459        if (broadcast_free_entries) {
1460            toFetch->iewInfo[tid].iqCount =
1461                instQueue.getCount(tid);
1462            toFetch->iewInfo[tid].ldstqCount =
1463                ldstQueue.getCount(tid);
1464
1465            toRename->iewInfo[tid].usedIQ = true;
1466            toRename->iewInfo[tid].freeIQEntries =
1467                instQueue.numFreeEntries();
1468            toRename->iewInfo[tid].usedLSQ = true;
1469            toRename->iewInfo[tid].freeLSQEntries =
1470                ldstQueue.numFreeEntries(tid);
1471
1472            wroteToTimeBuffer = true;
1473        }
1474
1475        DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1476                tid, toRename->iewInfo[tid].dispatched);
1477    }
1478
1479    DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i).  "
1480            "LSQ has %i free entries.\n",
1481            instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1482            ldstQueue.numFreeEntries());
1483
1484    updateStatus();
1485
1486    if (wroteToTimeBuffer) {
1487        DPRINTF(Activity, "Activity this cycle.\n");
1488        cpu->activityThisCycle();
1489    }
1490}
1491
1492template <class Impl>
1493void
1494DefaultIEW<Impl>::updateExeInstStats(DynInstPtr &inst)
1495{
1496    int thread_number = inst->threadNumber;
1497
1498    //
1499    //  Pick off the software prefetches
1500    //
1501#ifdef TARGET_ALPHA
1502    if (inst->isDataPrefetch())
1503        exeSwp[thread_number]++;
1504    else
1505        iewExecutedInsts++;
1506#else
1507    iewExecutedInsts++;
1508#endif
1509
1510    //
1511    //  Control operations
1512    //
1513    if (inst->isControl())
1514        exeBranches[thread_number]++;
1515
1516    //
1517    //  Memory operations
1518    //
1519    if (inst->isMemRef()) {
1520        exeRefs[thread_number]++;
1521
1522        if (inst->isLoad()) {
1523            iewExecLoadInsts[thread_number]++;
1524        }
1525    }
1526}
1527