1/*
2 * Copyright (c) 2010-2013, 2018 ARM Limited
3 * Copyright (c) 2013 Advanced Micro Devices, Inc.
4 * All rights reserved.
5 *
6 * The license below extends only to copyright in the software and shall
7 * not be construed as granting a license to any other intellectual
8 * property including but not limited to intellectual property relating
9 * to a hardware implementation of the functionality of the software
10 * licensed hereunder.  You may use the software subject to the license
11 * terms below provided that you ensure that this notice is replicated
12 * unmodified and in its entirety in all distributions of the software,
13 * modified or unmodified, in source code or in binary form.
14 *
15 * Copyright (c) 2004-2006 The Regents of The University of Michigan
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 *
41 * Authors: Kevin Lim
42 */
43
44#ifndef __CPU_O3_IEW_IMPL_IMPL_HH__
45#define __CPU_O3_IEW_IMPL_IMPL_HH__
46
47// @todo: Fix the instantaneous communication among all the stages within
48// iew.  There's a clear delay between issue and execute, yet backwards
49// communication happens simultaneously.
50
51#include <queue>
52
53#include "arch/utility.hh"
54#include "config/the_isa.hh"
55#include "cpu/checker/cpu.hh"
56#include "cpu/o3/fu_pool.hh"
57#include "cpu/o3/iew.hh"
58#include "cpu/timebuf.hh"
59#include "debug/Activity.hh"
60#include "debug/Drain.hh"
61#include "debug/IEW.hh"
62#include "debug/O3PipeView.hh"
63#include "params/DerivO3CPU.hh"
64
65using namespace std;
66
67template<class Impl>
68DefaultIEW<Impl>::DefaultIEW(O3CPU *_cpu, DerivO3CPUParams *params)
69    : issueToExecQueue(params->backComSize, params->forwardComSize),
70      cpu(_cpu),
71      instQueue(_cpu, this, params),
72      ldstQueue(_cpu, this, params),
73      fuPool(params->fuPool),
74      commitToIEWDelay(params->commitToIEWDelay),
75      renameToIEWDelay(params->renameToIEWDelay),
76      issueToExecuteDelay(params->issueToExecuteDelay),
77      dispatchWidth(params->dispatchWidth),
78      issueWidth(params->issueWidth),
79      wbNumInst(0),
80      wbCycle(0),
81      wbWidth(params->wbWidth),
82      numThreads(params->numThreads)
83{
84    if (dispatchWidth > Impl::MaxWidth)
85        fatal("dispatchWidth (%d) is larger than compiled limit (%d),\n"
86             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
87             dispatchWidth, static_cast<int>(Impl::MaxWidth));
88    if (issueWidth > Impl::MaxWidth)
89        fatal("issueWidth (%d) is larger than compiled limit (%d),\n"
90             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
91             issueWidth, static_cast<int>(Impl::MaxWidth));
92    if (wbWidth > Impl::MaxWidth)
93        fatal("wbWidth (%d) is larger than compiled limit (%d),\n"
94             "\tincrease MaxWidth in src/cpu/o3/impl.hh\n",
95             wbWidth, static_cast<int>(Impl::MaxWidth));
96
97    _status = Active;
98    exeStatus = Running;
99    wbStatus = Idle;
100
101    // Setup wire to read instructions coming from issue.
102    fromIssue = issueToExecQueue.getWire(-issueToExecuteDelay);
103
104    // Instruction queue needs the queue between issue and execute.
105    instQueue.setIssueToExecuteQueue(&issueToExecQueue);
106
107    for (ThreadID tid = 0; tid < Impl::MaxThreads; tid++) {
108        dispatchStatus[tid] = Running;
109        fetchRedirect[tid] = false;
110    }
111
112    updateLSQNextCycle = false;
113
114    skidBufferMax = (renameToIEWDelay + 1) * params->renameWidth;
115}
116
117template <class Impl>
118std::string
119DefaultIEW<Impl>::name() const
120{
121    return cpu->name() + ".iew";
122}
123
124template <class Impl>
125void
126DefaultIEW<Impl>::regProbePoints()
127{
128    ppDispatch = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Dispatch");
129    ppMispredict = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(), "Mispredict");
130    /**
131     * Probe point with dynamic instruction as the argument used to probe when
132     * an instruction starts to execute.
133     */
134    ppExecute = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(),
135                                              "Execute");
136    /**
137     * Probe point with dynamic instruction as the argument used to probe when
138     * an instruction execution completes and it is marked ready to commit.
139     */
140    ppToCommit = new ProbePointArg<DynInstPtr>(cpu->getProbeManager(),
141                                               "ToCommit");
142}
143
144template <class Impl>
145void
146DefaultIEW<Impl>::regStats()
147{
148    using namespace Stats;
149
150    instQueue.regStats();
151    ldstQueue.regStats();
152
153    iewIdleCycles
154        .name(name() + ".iewIdleCycles")
155        .desc("Number of cycles IEW is idle");
156
157    iewSquashCycles
158        .name(name() + ".iewSquashCycles")
159        .desc("Number of cycles IEW is squashing");
160
161    iewBlockCycles
162        .name(name() + ".iewBlockCycles")
163        .desc("Number of cycles IEW is blocking");
164
165    iewUnblockCycles
166        .name(name() + ".iewUnblockCycles")
167        .desc("Number of cycles IEW is unblocking");
168
169    iewDispatchedInsts
170        .name(name() + ".iewDispatchedInsts")
171        .desc("Number of instructions dispatched to IQ");
172
173    iewDispSquashedInsts
174        .name(name() + ".iewDispSquashedInsts")
175        .desc("Number of squashed instructions skipped by dispatch");
176
177    iewDispLoadInsts
178        .name(name() + ".iewDispLoadInsts")
179        .desc("Number of dispatched load instructions");
180
181    iewDispStoreInsts
182        .name(name() + ".iewDispStoreInsts")
183        .desc("Number of dispatched store instructions");
184
185    iewDispNonSpecInsts
186        .name(name() + ".iewDispNonSpecInsts")
187        .desc("Number of dispatched non-speculative instructions");
188
189    iewIQFullEvents
190        .name(name() + ".iewIQFullEvents")
191        .desc("Number of times the IQ has become full, causing a stall");
192
193    iewLSQFullEvents
194        .name(name() + ".iewLSQFullEvents")
195        .desc("Number of times the LSQ has become full, causing a stall");
196
197    memOrderViolationEvents
198        .name(name() + ".memOrderViolationEvents")
199        .desc("Number of memory order violations");
200
201    predictedTakenIncorrect
202        .name(name() + ".predictedTakenIncorrect")
203        .desc("Number of branches that were predicted taken incorrectly");
204
205    predictedNotTakenIncorrect
206        .name(name() + ".predictedNotTakenIncorrect")
207        .desc("Number of branches that were predicted not taken incorrectly");
208
209    branchMispredicts
210        .name(name() + ".branchMispredicts")
211        .desc("Number of branch mispredicts detected at execute");
212
213    branchMispredicts = predictedTakenIncorrect + predictedNotTakenIncorrect;
214
215    iewExecutedInsts
216        .name(name() + ".iewExecutedInsts")
217        .desc("Number of executed instructions");
218
219    iewExecLoadInsts
220        .init(cpu->numThreads)
221        .name(name() + ".iewExecLoadInsts")
222        .desc("Number of load instructions executed")
223        .flags(total);
224
225    iewExecSquashedInsts
226        .name(name() + ".iewExecSquashedInsts")
227        .desc("Number of squashed instructions skipped in execute");
228
229    iewExecutedSwp
230        .init(cpu->numThreads)
231        .name(name() + ".exec_swp")
232        .desc("number of swp insts executed")
233        .flags(total);
234
235    iewExecutedNop
236        .init(cpu->numThreads)
237        .name(name() + ".exec_nop")
238        .desc("number of nop insts executed")
239        .flags(total);
240
241    iewExecutedRefs
242        .init(cpu->numThreads)
243        .name(name() + ".exec_refs")
244        .desc("number of memory reference insts executed")
245        .flags(total);
246
247    iewExecutedBranches
248        .init(cpu->numThreads)
249        .name(name() + ".exec_branches")
250        .desc("Number of branches executed")
251        .flags(total);
252
253    iewExecStoreInsts
254        .name(name() + ".exec_stores")
255        .desc("Number of stores executed")
256        .flags(total);
257    iewExecStoreInsts = iewExecutedRefs - iewExecLoadInsts;
258
259    iewExecRate
260        .name(name() + ".exec_rate")
261        .desc("Inst execution rate")
262        .flags(total);
263
264    iewExecRate = iewExecutedInsts / cpu->numCycles;
265
266    iewInstsToCommit
267        .init(cpu->numThreads)
268        .name(name() + ".wb_sent")
269        .desc("cumulative count of insts sent to commit")
270        .flags(total);
271
272    writebackCount
273        .init(cpu->numThreads)
274        .name(name() + ".wb_count")
275        .desc("cumulative count of insts written-back")
276        .flags(total);
277
278    producerInst
279        .init(cpu->numThreads)
280        .name(name() + ".wb_producers")
281        .desc("num instructions producing a value")
282        .flags(total);
283
284    consumerInst
285        .init(cpu->numThreads)
286        .name(name() + ".wb_consumers")
287        .desc("num instructions consuming a value")
288        .flags(total);
289
290    wbFanout
291        .name(name() + ".wb_fanout")
292        .desc("average fanout of values written-back")
293        .flags(total);
294
295    wbFanout = producerInst / consumerInst;
296
297    wbRate
298        .name(name() + ".wb_rate")
299        .desc("insts written-back per cycle")
300        .flags(total);
301    wbRate = writebackCount / cpu->numCycles;
302}
303
304template<class Impl>
305void
306DefaultIEW<Impl>::startupStage()
307{
308    for (ThreadID tid = 0; tid < numThreads; tid++) {
309        toRename->iewInfo[tid].usedIQ = true;
310        toRename->iewInfo[tid].freeIQEntries =
311            instQueue.numFreeEntries(tid);
312
313        toRename->iewInfo[tid].usedLSQ = true;
314        toRename->iewInfo[tid].freeLQEntries = ldstQueue.numFreeLoadEntries(tid);
315        toRename->iewInfo[tid].freeSQEntries = ldstQueue.numFreeStoreEntries(tid);
316    }
317
318    // Initialize the checker's dcache port here
319    if (cpu->checker) {
320        cpu->checker->setDcachePort(&ldstQueue.getDataPort());
321    }
322
323    cpu->activateStage(O3CPU::IEWIdx);
324}
325
326template<class Impl>
327void
328DefaultIEW<Impl>::clearStates(ThreadID tid)
329{
330    toRename->iewInfo[tid].usedIQ = true;
331    toRename->iewInfo[tid].freeIQEntries =
332        instQueue.numFreeEntries(tid);
333
334    toRename->iewInfo[tid].usedLSQ = true;
335    toRename->iewInfo[tid].freeLQEntries = ldstQueue.numFreeLoadEntries(tid);
336    toRename->iewInfo[tid].freeSQEntries = ldstQueue.numFreeStoreEntries(tid);
337}
338
339template<class Impl>
340void
341DefaultIEW<Impl>::setTimeBuffer(TimeBuffer<TimeStruct> *tb_ptr)
342{
343    timeBuffer = tb_ptr;
344
345    // Setup wire to read information from time buffer, from commit.
346    fromCommit = timeBuffer->getWire(-commitToIEWDelay);
347
348    // Setup wire to write information back to previous stages.
349    toRename = timeBuffer->getWire(0);
350
351    toFetch = timeBuffer->getWire(0);
352
353    // Instruction queue also needs main time buffer.
354    instQueue.setTimeBuffer(tb_ptr);
355}
356
357template<class Impl>
358void
359DefaultIEW<Impl>::setRenameQueue(TimeBuffer<RenameStruct> *rq_ptr)
360{
361    renameQueue = rq_ptr;
362
363    // Setup wire to read information from rename queue.
364    fromRename = renameQueue->getWire(-renameToIEWDelay);
365}
366
367template<class Impl>
368void
369DefaultIEW<Impl>::setIEWQueue(TimeBuffer<IEWStruct> *iq_ptr)
370{
371    iewQueue = iq_ptr;
372
373    // Setup wire to write instructions to commit.
374    toCommit = iewQueue->getWire(0);
375}
376
377template<class Impl>
378void
379DefaultIEW<Impl>::setActiveThreads(list<ThreadID> *at_ptr)
380{
381    activeThreads = at_ptr;
382
383    ldstQueue.setActiveThreads(at_ptr);
384    instQueue.setActiveThreads(at_ptr);
385}
386
387template<class Impl>
388void
389DefaultIEW<Impl>::setScoreboard(Scoreboard *sb_ptr)
390{
391    scoreboard = sb_ptr;
392}
393
394template <class Impl>
395bool
396DefaultIEW<Impl>::isDrained() const
397{
398    bool drained = ldstQueue.isDrained() && instQueue.isDrained();
399
400    for (ThreadID tid = 0; tid < numThreads; tid++) {
401        if (!insts[tid].empty()) {
402            DPRINTF(Drain, "%i: Insts not empty.\n", tid);
403            drained = false;
404        }
405        if (!skidBuffer[tid].empty()) {
406            DPRINTF(Drain, "%i: Skid buffer not empty.\n", tid);
407            drained = false;
408        }
409        drained = drained && dispatchStatus[tid] == Running;
410    }
411
412    // Also check the FU pool as instructions are "stored" in FU
413    // completion events until they are done and not accounted for
414    // above
415    if (drained && !fuPool->isDrained()) {
416        DPRINTF(Drain, "FU pool still busy.\n");
417        drained = false;
418    }
419
420    return drained;
421}
422
423template <class Impl>
424void
425DefaultIEW<Impl>::drainSanityCheck() const
426{
427    assert(isDrained());
428
429    instQueue.drainSanityCheck();
430    ldstQueue.drainSanityCheck();
431}
432
433template <class Impl>
434void
435DefaultIEW<Impl>::takeOverFrom()
436{
437    // Reset all state.
438    _status = Active;
439    exeStatus = Running;
440    wbStatus = Idle;
441
442    instQueue.takeOverFrom();
443    ldstQueue.takeOverFrom();
444    fuPool->takeOverFrom();
445
446    startupStage();
447    cpu->activityThisCycle();
448
449    for (ThreadID tid = 0; tid < numThreads; tid++) {
450        dispatchStatus[tid] = Running;
451        fetchRedirect[tid] = false;
452    }
453
454    updateLSQNextCycle = false;
455
456    for (int i = 0; i < issueToExecQueue.getSize(); ++i) {
457        issueToExecQueue.advance();
458    }
459}
460
461template<class Impl>
462void
463DefaultIEW<Impl>::squash(ThreadID tid)
464{
465    DPRINTF(IEW, "[tid:%i] Squashing all instructions.\n", tid);
466
467    // Tell the IQ to start squashing.
468    instQueue.squash(tid);
469
470    // Tell the LDSTQ to start squashing.
471    ldstQueue.squash(fromCommit->commitInfo[tid].doneSeqNum, tid);
472    updatedQueues = true;
473
474    // Clear the skid buffer in case it has any data in it.
475    DPRINTF(IEW,
476            "Removing skidbuffer instructions until "
477            "[sn:%llu] [tid:%i]\n",
478            fromCommit->commitInfo[tid].doneSeqNum, tid);
479
480    while (!skidBuffer[tid].empty()) {
481        if (skidBuffer[tid].front()->isLoad()) {
482            toRename->iewInfo[tid].dispatchedToLQ++;
483        }
484        if (skidBuffer[tid].front()->isStore() ||
485            skidBuffer[tid].front()->isAtomic()) {
486            toRename->iewInfo[tid].dispatchedToSQ++;
487        }
488
489        toRename->iewInfo[tid].dispatched++;
490
491        skidBuffer[tid].pop();
492    }
493
494    emptyRenameInsts(tid);
495}
496
497template<class Impl>
498void
499DefaultIEW<Impl>::squashDueToBranch(const DynInstPtr& inst, ThreadID tid)
500{
501    DPRINTF(IEW, "[tid:%i] [sn:%llu] Squashing from a specific instruction,"
502            " PC: %s "
503            "\n", tid, inst->seqNum, inst->pcState() );
504
505    if (!toCommit->squash[tid] ||
506            inst->seqNum < toCommit->squashedSeqNum[tid]) {
507        toCommit->squash[tid] = true;
508        toCommit->squashedSeqNum[tid] = inst->seqNum;
509        toCommit->branchTaken[tid] = inst->pcState().branching();
510
511        TheISA::PCState pc = inst->pcState();
512        TheISA::advancePC(pc, inst->staticInst);
513
514        toCommit->pc[tid] = pc;
515        toCommit->mispredictInst[tid] = inst;
516        toCommit->includeSquashInst[tid] = false;
517
518        wroteToTimeBuffer = true;
519    }
520
521}
522
523template<class Impl>
524void
525DefaultIEW<Impl>::squashDueToMemOrder(const DynInstPtr& inst, ThreadID tid)
526{
527    DPRINTF(IEW, "[tid:%i] Memory violation, squashing violator and younger "
528            "insts, PC: %s [sn:%llu].\n", tid, inst->pcState(), inst->seqNum);
529    // Need to include inst->seqNum in the following comparison to cover the
530    // corner case when a branch misprediction and a memory violation for the
531    // same instruction (e.g. load PC) are detected in the same cycle.  In this
532    // case the memory violator should take precedence over the branch
533    // misprediction because it requires the violator itself to be included in
534    // the squash.
535    if (!toCommit->squash[tid] ||
536            inst->seqNum <= toCommit->squashedSeqNum[tid]) {
537        toCommit->squash[tid] = true;
538
539        toCommit->squashedSeqNum[tid] = inst->seqNum;
540        toCommit->pc[tid] = inst->pcState();
541        toCommit->mispredictInst[tid] = NULL;
542
543        // Must include the memory violator in the squash.
544        toCommit->includeSquashInst[tid] = true;
545
546        wroteToTimeBuffer = true;
547    }
548}
549
550template<class Impl>
551void
552DefaultIEW<Impl>::block(ThreadID tid)
553{
554    DPRINTF(IEW, "[tid:%i] Blocking.\n", tid);
555
556    if (dispatchStatus[tid] != Blocked &&
557        dispatchStatus[tid] != Unblocking) {
558        toRename->iewBlock[tid] = true;
559        wroteToTimeBuffer = true;
560    }
561
562    // Add the current inputs to the skid buffer so they can be
563    // reprocessed when this stage unblocks.
564    skidInsert(tid);
565
566    dispatchStatus[tid] = Blocked;
567}
568
569template<class Impl>
570void
571DefaultIEW<Impl>::unblock(ThreadID tid)
572{
573    DPRINTF(IEW, "[tid:%i] Reading instructions out of the skid "
574            "buffer %u.\n",tid, tid);
575
576    // If the skid bufffer is empty, signal back to previous stages to unblock.
577    // Also switch status to running.
578    if (skidBuffer[tid].empty()) {
579        toRename->iewUnblock[tid] = true;
580        wroteToTimeBuffer = true;
581        DPRINTF(IEW, "[tid:%i] Done unblocking.\n",tid);
582        dispatchStatus[tid] = Running;
583    }
584}
585
586template<class Impl>
587void
588DefaultIEW<Impl>::wakeDependents(const DynInstPtr& inst)
589{
590    instQueue.wakeDependents(inst);
591}
592
593template<class Impl>
594void
595DefaultIEW<Impl>::rescheduleMemInst(const DynInstPtr& inst)
596{
597    instQueue.rescheduleMemInst(inst);
598}
599
600template<class Impl>
601void
602DefaultIEW<Impl>::replayMemInst(const DynInstPtr& inst)
603{
604    instQueue.replayMemInst(inst);
605}
606
607template<class Impl>
608void
609DefaultIEW<Impl>::blockMemInst(const DynInstPtr& inst)
610{
611    instQueue.blockMemInst(inst);
612}
613
614template<class Impl>
615void
616DefaultIEW<Impl>::cacheUnblocked()
617{
618    instQueue.cacheUnblocked();
619}
620
621template<class Impl>
622void
623DefaultIEW<Impl>::instToCommit(const DynInstPtr& inst)
624{
625    // This function should not be called after writebackInsts in a
626    // single cycle.  That will cause problems with an instruction
627    // being added to the queue to commit without being processed by
628    // writebackInsts prior to being sent to commit.
629
630    // First check the time slot that this instruction will write
631    // to.  If there are free write ports at the time, then go ahead
632    // and write the instruction to that time.  If there are not,
633    // keep looking back to see where's the first time there's a
634    // free slot.
635    while ((*iewQueue)[wbCycle].insts[wbNumInst]) {
636        ++wbNumInst;
637        if (wbNumInst == wbWidth) {
638            ++wbCycle;
639            wbNumInst = 0;
640        }
641    }
642
643    DPRINTF(IEW, "Current wb cycle: %i, width: %i, numInst: %i\nwbActual:%i\n",
644            wbCycle, wbWidth, wbNumInst, wbCycle * wbWidth + wbNumInst);
645    // Add finished instruction to queue to commit.
646    (*iewQueue)[wbCycle].insts[wbNumInst] = inst;
647    (*iewQueue)[wbCycle].size++;
648}
649
650template <class Impl>
651unsigned
652DefaultIEW<Impl>::validInstsFromRename()
653{
654    unsigned inst_count = 0;
655
656    for (int i=0; i<fromRename->size; i++) {
657        if (!fromRename->insts[i]->isSquashed())
658            inst_count++;
659    }
660
661    return inst_count;
662}
663
664template<class Impl>
665void
666DefaultIEW<Impl>::skidInsert(ThreadID tid)
667{
668    DynInstPtr inst = NULL;
669
670    while (!insts[tid].empty()) {
671        inst = insts[tid].front();
672
673        insts[tid].pop();
674
675        DPRINTF(IEW,"[tid:%i] Inserting [sn:%lli] PC:%s into "
676                "dispatch skidBuffer %i\n",tid, inst->seqNum,
677                inst->pcState(),tid);
678
679        skidBuffer[tid].push(inst);
680    }
681
682    assert(skidBuffer[tid].size() <= skidBufferMax &&
683           "Skidbuffer Exceeded Max Size");
684}
685
686template<class Impl>
687int
688DefaultIEW<Impl>::skidCount()
689{
690    int max=0;
691
692    list<ThreadID>::iterator threads = activeThreads->begin();
693    list<ThreadID>::iterator end = activeThreads->end();
694
695    while (threads != end) {
696        ThreadID tid = *threads++;
697        unsigned thread_count = skidBuffer[tid].size();
698        if (max < thread_count)
699            max = thread_count;
700    }
701
702    return max;
703}
704
705template<class Impl>
706bool
707DefaultIEW<Impl>::skidsEmpty()
708{
709    list<ThreadID>::iterator threads = activeThreads->begin();
710    list<ThreadID>::iterator end = activeThreads->end();
711
712    while (threads != end) {
713        ThreadID tid = *threads++;
714
715        if (!skidBuffer[tid].empty())
716            return false;
717    }
718
719    return true;
720}
721
722template <class Impl>
723void
724DefaultIEW<Impl>::updateStatus()
725{
726    bool any_unblocking = false;
727
728    list<ThreadID>::iterator threads = activeThreads->begin();
729    list<ThreadID>::iterator end = activeThreads->end();
730
731    while (threads != end) {
732        ThreadID tid = *threads++;
733
734        if (dispatchStatus[tid] == Unblocking) {
735            any_unblocking = true;
736            break;
737        }
738    }
739
740    // If there are no ready instructions waiting to be scheduled by the IQ,
741    // and there's no stores waiting to write back, and dispatch is not
742    // unblocking, then there is no internal activity for the IEW stage.
743    instQueue.intInstQueueReads++;
744    if (_status == Active && !instQueue.hasReadyInsts() &&
745        !ldstQueue.willWB() && !any_unblocking) {
746        DPRINTF(IEW, "IEW switching to idle\n");
747
748        deactivateStage();
749
750        _status = Inactive;
751    } else if (_status == Inactive && (instQueue.hasReadyInsts() ||
752                                       ldstQueue.willWB() ||
753                                       any_unblocking)) {
754        // Otherwise there is internal activity.  Set to active.
755        DPRINTF(IEW, "IEW switching to active\n");
756
757        activateStage();
758
759        _status = Active;
760    }
761}
762
763template <class Impl>
764bool
765DefaultIEW<Impl>::checkStall(ThreadID tid)
766{
767    bool ret_val(false);
768
769    if (fromCommit->commitInfo[tid].robSquashing) {
770        DPRINTF(IEW,"[tid:%i] Stall from Commit stage detected.\n",tid);
771        ret_val = true;
772    } else if (instQueue.isFull(tid)) {
773        DPRINTF(IEW,"[tid:%i] Stall: IQ  is full.\n",tid);
774        ret_val = true;
775    }
776
777    return ret_val;
778}
779
780template <class Impl>
781void
782DefaultIEW<Impl>::checkSignalsAndUpdate(ThreadID tid)
783{
784    // Check if there's a squash signal, squash if there is
785    // Check stall signals, block if there is.
786    // If status was Blocked
787    //     if so then go to unblocking
788    // If status was Squashing
789    //     check if squashing is not high.  Switch to running this cycle.
790
791    if (fromCommit->commitInfo[tid].squash) {
792        squash(tid);
793
794        if (dispatchStatus[tid] == Blocked ||
795            dispatchStatus[tid] == Unblocking) {
796            toRename->iewUnblock[tid] = true;
797            wroteToTimeBuffer = true;
798        }
799
800        dispatchStatus[tid] = Squashing;
801        fetchRedirect[tid] = false;
802        return;
803    }
804
805    if (fromCommit->commitInfo[tid].robSquashing) {
806        DPRINTF(IEW, "[tid:%i] ROB is still squashing.\n", tid);
807
808        dispatchStatus[tid] = Squashing;
809        emptyRenameInsts(tid);
810        wroteToTimeBuffer = true;
811    }
812
813    if (checkStall(tid)) {
814        block(tid);
815        dispatchStatus[tid] = Blocked;
816        return;
817    }
818
819    if (dispatchStatus[tid] == Blocked) {
820        // Status from previous cycle was blocked, but there are no more stall
821        // conditions.  Switch over to unblocking.
822        DPRINTF(IEW, "[tid:%i] Done blocking, switching to unblocking.\n",
823                tid);
824
825        dispatchStatus[tid] = Unblocking;
826
827        unblock(tid);
828
829        return;
830    }
831
832    if (dispatchStatus[tid] == Squashing) {
833        // Switch status to running if rename isn't being told to block or
834        // squash this cycle.
835        DPRINTF(IEW, "[tid:%i] Done squashing, switching to running.\n",
836                tid);
837
838        dispatchStatus[tid] = Running;
839
840        return;
841    }
842}
843
844template <class Impl>
845void
846DefaultIEW<Impl>::sortInsts()
847{
848    int insts_from_rename = fromRename->size;
849#ifdef DEBUG
850    for (ThreadID tid = 0; tid < numThreads; tid++)
851        assert(insts[tid].empty());
852#endif
853    for (int i = 0; i < insts_from_rename; ++i) {
854        insts[fromRename->insts[i]->threadNumber].push(fromRename->insts[i]);
855    }
856}
857
858template <class Impl>
859void
860DefaultIEW<Impl>::emptyRenameInsts(ThreadID tid)
861{
862    DPRINTF(IEW, "[tid:%i] Removing incoming rename instructions\n", tid);
863
864    while (!insts[tid].empty()) {
865
866        if (insts[tid].front()->isLoad()) {
867            toRename->iewInfo[tid].dispatchedToLQ++;
868        }
869        if (insts[tid].front()->isStore() ||
870            insts[tid].front()->isAtomic()) {
871            toRename->iewInfo[tid].dispatchedToSQ++;
872        }
873
874        toRename->iewInfo[tid].dispatched++;
875
876        insts[tid].pop();
877    }
878}
879
880template <class Impl>
881void
882DefaultIEW<Impl>::wakeCPU()
883{
884    cpu->wakeCPU();
885}
886
887template <class Impl>
888void
889DefaultIEW<Impl>::activityThisCycle()
890{
891    DPRINTF(Activity, "Activity this cycle.\n");
892    cpu->activityThisCycle();
893}
894
895template <class Impl>
896inline void
897DefaultIEW<Impl>::activateStage()
898{
899    DPRINTF(Activity, "Activating stage.\n");
900    cpu->activateStage(O3CPU::IEWIdx);
901}
902
903template <class Impl>
904inline void
905DefaultIEW<Impl>::deactivateStage()
906{
907    DPRINTF(Activity, "Deactivating stage.\n");
908    cpu->deactivateStage(O3CPU::IEWIdx);
909}
910
911template<class Impl>
912void
913DefaultIEW<Impl>::dispatch(ThreadID tid)
914{
915    // If status is Running or idle,
916    //     call dispatchInsts()
917    // If status is Unblocking,
918    //     buffer any instructions coming from rename
919    //     continue trying to empty skid buffer
920    //     check if stall conditions have passed
921
922    if (dispatchStatus[tid] == Blocked) {
923        ++iewBlockCycles;
924
925    } else if (dispatchStatus[tid] == Squashing) {
926        ++iewSquashCycles;
927    }
928
929    // Dispatch should try to dispatch as many instructions as its bandwidth
930    // will allow, as long as it is not currently blocked.
931    if (dispatchStatus[tid] == Running ||
932        dispatchStatus[tid] == Idle) {
933        DPRINTF(IEW, "[tid:%i] Not blocked, so attempting to run "
934                "dispatch.\n", tid);
935
936        dispatchInsts(tid);
937    } else if (dispatchStatus[tid] == Unblocking) {
938        // Make sure that the skid buffer has something in it if the
939        // status is unblocking.
940        assert(!skidsEmpty());
941
942        // If the status was unblocking, then instructions from the skid
943        // buffer were used.  Remove those instructions and handle
944        // the rest of unblocking.
945        dispatchInsts(tid);
946
947        ++iewUnblockCycles;
948
949        if (validInstsFromRename()) {
950            // Add the current inputs to the skid buffer so they can be
951            // reprocessed when this stage unblocks.
952            skidInsert(tid);
953        }
954
955        unblock(tid);
956    }
957}
958
959template <class Impl>
960void
961DefaultIEW<Impl>::dispatchInsts(ThreadID tid)
962{
963    // Obtain instructions from skid buffer if unblocking, or queue from rename
964    // otherwise.
965    std::queue<DynInstPtr> &insts_to_dispatch =
966        dispatchStatus[tid] == Unblocking ?
967        skidBuffer[tid] : insts[tid];
968
969    int insts_to_add = insts_to_dispatch.size();
970
971    DynInstPtr inst;
972    bool add_to_iq = false;
973    int dis_num_inst = 0;
974
975    // Loop through the instructions, putting them in the instruction
976    // queue.
977    for ( ; dis_num_inst < insts_to_add &&
978              dis_num_inst < dispatchWidth;
979          ++dis_num_inst)
980    {
981        inst = insts_to_dispatch.front();
982
983        if (dispatchStatus[tid] == Unblocking) {
984            DPRINTF(IEW, "[tid:%i] Issue: Examining instruction from skid "
985                    "buffer\n", tid);
986        }
987
988        // Make sure there's a valid instruction there.
989        assert(inst);
990
991        DPRINTF(IEW, "[tid:%i] Issue: Adding PC %s [sn:%lli] [tid:%i] to "
992                "IQ.\n",
993                tid, inst->pcState(), inst->seqNum, inst->threadNumber);
994
995        // Be sure to mark these instructions as ready so that the
996        // commit stage can go ahead and execute them, and mark
997        // them as issued so the IQ doesn't reprocess them.
998
999        // Check for squashed instructions.
1000        if (inst->isSquashed()) {
1001            DPRINTF(IEW, "[tid:%i] Issue: Squashed instruction encountered, "
1002                    "not adding to IQ.\n", tid);
1003
1004            ++iewDispSquashedInsts;
1005
1006            insts_to_dispatch.pop();
1007
1008            //Tell Rename That An Instruction has been processed
1009            if (inst->isLoad()) {
1010                toRename->iewInfo[tid].dispatchedToLQ++;
1011            }
1012            if (inst->isStore() || inst->isAtomic()) {
1013                toRename->iewInfo[tid].dispatchedToSQ++;
1014            }
1015
1016            toRename->iewInfo[tid].dispatched++;
1017
1018            continue;
1019        }
1020
1021        // Check for full conditions.
1022        if (instQueue.isFull(tid)) {
1023            DPRINTF(IEW, "[tid:%i] Issue: IQ has become full.\n", tid);
1024
1025            // Call function to start blocking.
1026            block(tid);
1027
1028            // Set unblock to false. Special case where we are using
1029            // skidbuffer (unblocking) instructions but then we still
1030            // get full in the IQ.
1031            toRename->iewUnblock[tid] = false;
1032
1033            ++iewIQFullEvents;
1034            break;
1035        }
1036
1037        // Check LSQ if inst is LD/ST
1038        if ((inst->isAtomic() && ldstQueue.sqFull(tid)) ||
1039            (inst->isLoad() && ldstQueue.lqFull(tid)) ||
1040            (inst->isStore() && ldstQueue.sqFull(tid))) {
1041            DPRINTF(IEW, "[tid:%i] Issue: %s has become full.\n",tid,
1042                    inst->isLoad() ? "LQ" : "SQ");
1043
1044            // Call function to start blocking.
1045            block(tid);
1046
1047            // Set unblock to false. Special case where we are using
1048            // skidbuffer (unblocking) instructions but then we still
1049            // get full in the IQ.
1050            toRename->iewUnblock[tid] = false;
1051
1052            ++iewLSQFullEvents;
1053            break;
1054        }
1055
1056        // Otherwise issue the instruction just fine.
1057        if (inst->isAtomic()) {
1058            DPRINTF(IEW, "[tid:%i] Issue: Memory instruction "
1059                    "encountered, adding to LSQ.\n", tid);
1060
1061            ldstQueue.insertStore(inst);
1062
1063            ++iewDispStoreInsts;
1064
1065            // AMOs need to be set as "canCommit()"
1066            // so that commit can process them when they reach the
1067            // head of commit.
1068            inst->setCanCommit();
1069            instQueue.insertNonSpec(inst);
1070            add_to_iq = false;
1071
1072            ++iewDispNonSpecInsts;
1073
1074            toRename->iewInfo[tid].dispatchedToSQ++;
1075        } else if (inst->isLoad()) {
1076            DPRINTF(IEW, "[tid:%i] Issue: Memory instruction "
1077                    "encountered, adding to LSQ.\n", tid);
1078
1079            // Reserve a spot in the load store queue for this
1080            // memory access.
1081            ldstQueue.insertLoad(inst);
1082
1083            ++iewDispLoadInsts;
1084
1085            add_to_iq = true;
1086
1087            toRename->iewInfo[tid].dispatchedToLQ++;
1088        } else if (inst->isStore()) {
1089            DPRINTF(IEW, "[tid:%i] Issue: Memory instruction "
1090                    "encountered, adding to LSQ.\n", tid);
1091
1092            ldstQueue.insertStore(inst);
1093
1094            ++iewDispStoreInsts;
1095
1096            if (inst->isStoreConditional()) {
1097                // Store conditionals need to be set as "canCommit()"
1098                // so that commit can process them when they reach the
1099                // head of commit.
1100                // @todo: This is somewhat specific to Alpha.
1101                inst->setCanCommit();
1102                instQueue.insertNonSpec(inst);
1103                add_to_iq = false;
1104
1105                ++iewDispNonSpecInsts;
1106            } else {
1107                add_to_iq = true;
1108            }
1109
1110            toRename->iewInfo[tid].dispatchedToSQ++;
1111        } else if (inst->isMemBarrier() || inst->isWriteBarrier()) {
1112            // Same as non-speculative stores.
1113            inst->setCanCommit();
1114            instQueue.insertBarrier(inst);
1115            add_to_iq = false;
1116        } else if (inst->isNop()) {
1117            DPRINTF(IEW, "[tid:%i] Issue: Nop instruction encountered, "
1118                    "skipping.\n", tid);
1119
1120            inst->setIssued();
1121            inst->setExecuted();
1122            inst->setCanCommit();
1123
1124            instQueue.recordProducer(inst);
1125
1126            iewExecutedNop[tid]++;
1127
1128            add_to_iq = false;
1129        } else {
1130            assert(!inst->isExecuted());
1131            add_to_iq = true;
1132        }
1133
1134        if (add_to_iq && inst->isNonSpeculative()) {
1135            DPRINTF(IEW, "[tid:%i] Issue: Nonspeculative instruction "
1136                    "encountered, skipping.\n", tid);
1137
1138            // Same as non-speculative stores.
1139            inst->setCanCommit();
1140
1141            // Specifically insert it as nonspeculative.
1142            instQueue.insertNonSpec(inst);
1143
1144            ++iewDispNonSpecInsts;
1145
1146            add_to_iq = false;
1147        }
1148
1149        // If the instruction queue is not full, then add the
1150        // instruction.
1151        if (add_to_iq) {
1152            instQueue.insert(inst);
1153        }
1154
1155        insts_to_dispatch.pop();
1156
1157        toRename->iewInfo[tid].dispatched++;
1158
1159        ++iewDispatchedInsts;
1160
1161#if TRACING_ON
1162        inst->dispatchTick = curTick() - inst->fetchTick;
1163#endif
1164        ppDispatch->notify(inst);
1165    }
1166
1167    if (!insts_to_dispatch.empty()) {
1168        DPRINTF(IEW,"[tid:%i] Issue: Bandwidth Full. Blocking.\n", tid);
1169        block(tid);
1170        toRename->iewUnblock[tid] = false;
1171    }
1172
1173    if (dispatchStatus[tid] == Idle && dis_num_inst) {
1174        dispatchStatus[tid] = Running;
1175
1176        updatedQueues = true;
1177    }
1178
1179    dis_num_inst = 0;
1180}
1181
1182template <class Impl>
1183void
1184DefaultIEW<Impl>::printAvailableInsts()
1185{
1186    int inst = 0;
1187
1188    std::cout << "Available Instructions: ";
1189
1190    while (fromIssue->insts[inst]) {
1191
1192        if (inst%3==0) std::cout << "\n\t";
1193
1194        std::cout << "PC: " << fromIssue->insts[inst]->pcState()
1195             << " TN: " << fromIssue->insts[inst]->threadNumber
1196             << " SN: " << fromIssue->insts[inst]->seqNum << " | ";
1197
1198        inst++;
1199
1200    }
1201
1202    std::cout << "\n";
1203}
1204
1205template <class Impl>
1206void
1207DefaultIEW<Impl>::executeInsts()
1208{
1209    wbNumInst = 0;
1210    wbCycle = 0;
1211
1212    list<ThreadID>::iterator threads = activeThreads->begin();
1213    list<ThreadID>::iterator end = activeThreads->end();
1214
1215    while (threads != end) {
1216        ThreadID tid = *threads++;
1217        fetchRedirect[tid] = false;
1218    }
1219
1220    // Uncomment this if you want to see all available instructions.
1221    // @todo This doesn't actually work anymore, we should fix it.
1222//    printAvailableInsts();
1223
1224    // Execute/writeback any instructions that are available.
1225    int insts_to_execute = fromIssue->size;
1226    int inst_num = 0;
1227    for (; inst_num < insts_to_execute;
1228          ++inst_num) {
1229
1230        DPRINTF(IEW, "Execute: Executing instructions from IQ.\n");
1231
1232        DynInstPtr inst = instQueue.getInstToExecute();
1233
1234        DPRINTF(IEW, "Execute: Processing PC %s, [tid:%i] [sn:%llu].\n",
1235                inst->pcState(), inst->threadNumber,inst->seqNum);
1236
1237        // Notify potential listeners that this instruction has started
1238        // executing
1239        ppExecute->notify(inst);
1240
1241        // Check if the instruction is squashed; if so then skip it
1242        if (inst->isSquashed()) {
1243            DPRINTF(IEW, "Execute: Instruction was squashed. PC: %s, [tid:%i]"
1244                         " [sn:%llu]\n", inst->pcState(), inst->threadNumber,
1245                         inst->seqNum);
1246
1247            // Consider this instruction executed so that commit can go
1248            // ahead and retire the instruction.
1249            inst->setExecuted();
1250
1251            // Not sure if I should set this here or just let commit try to
1252            // commit any squashed instructions.  I like the latter a bit more.
1253            inst->setCanCommit();
1254
1255            ++iewExecSquashedInsts;
1256
1257            continue;
1258        }
1259
1260        Fault fault = NoFault;
1261
1262        // Execute instruction.
1263        // Note that if the instruction faults, it will be handled
1264        // at the commit stage.
1265        if (inst->isMemRef()) {
1266            DPRINTF(IEW, "Execute: Calculating address for memory "
1267                    "reference.\n");
1268
1269            // Tell the LDSTQ to execute this instruction (if it is a load).
1270            if (inst->isAtomic()) {
1271                // AMOs are treated like store requests
1272                fault = ldstQueue.executeStore(inst);
1273
1274                if (inst->isTranslationDelayed() &&
1275                    fault == NoFault) {
1276                    // A hw page table walk is currently going on; the
1277                    // instruction must be deferred.
1278                    DPRINTF(IEW, "Execute: Delayed translation, deferring "
1279                            "store.\n");
1280                    instQueue.deferMemInst(inst);
1281                    continue;
1282                }
1283            } else if (inst->isLoad()) {
1284                // Loads will mark themselves as executed, and their writeback
1285                // event adds the instruction to the queue to commit
1286                fault = ldstQueue.executeLoad(inst);
1287
1288                if (inst->isTranslationDelayed() &&
1289                    fault == NoFault) {
1290                    // A hw page table walk is currently going on; the
1291                    // instruction must be deferred.
1292                    DPRINTF(IEW, "Execute: Delayed translation, deferring "
1293                            "load.\n");
1294                    instQueue.deferMemInst(inst);
1295                    continue;
1296                }
1297
1298                if (inst->isDataPrefetch() || inst->isInstPrefetch()) {
1299                    inst->fault = NoFault;
1300                }
1301            } else if (inst->isStore()) {
1302                fault = ldstQueue.executeStore(inst);
1303
1304                if (inst->isTranslationDelayed() &&
1305                    fault == NoFault) {
1306                    // A hw page table walk is currently going on; the
1307                    // instruction must be deferred.
1308                    DPRINTF(IEW, "Execute: Delayed translation, deferring "
1309                            "store.\n");
1310                    instQueue.deferMemInst(inst);
1311                    continue;
1312                }
1313
1314                // If the store had a fault then it may not have a mem req
1315                if (fault != NoFault || !inst->readPredicate() ||
1316                        !inst->isStoreConditional()) {
1317                    // If the instruction faulted, then we need to send it along
1318                    // to commit without the instruction completing.
1319                    // Send this instruction to commit, also make sure iew stage
1320                    // realizes there is activity.
1321                    inst->setExecuted();
1322                    instToCommit(inst);
1323                    activityThisCycle();
1324                }
1325
1326                // Store conditionals will mark themselves as
1327                // executed, and their writeback event will add the
1328                // instruction to the queue to commit.
1329            } else {
1330                panic("Unexpected memory type!\n");
1331            }
1332
1333        } else {
1334            // If the instruction has already faulted, then skip executing it.
1335            // Such case can happen when it faulted during ITLB translation.
1336            // If we execute the instruction (even if it's a nop) the fault
1337            // will be replaced and we will lose it.
1338            if (inst->getFault() == NoFault) {
1339                inst->execute();
1340                if (!inst->readPredicate())
1341                    inst->forwardOldRegs();
1342            }
1343
1344            inst->setExecuted();
1345
1346            instToCommit(inst);
1347        }
1348
1349        updateExeInstStats(inst);
1350
1351        // Check if branch prediction was correct, if not then we need
1352        // to tell commit to squash in flight instructions.  Only
1353        // handle this if there hasn't already been something that
1354        // redirects fetch in this group of instructions.
1355
1356        // This probably needs to prioritize the redirects if a different
1357        // scheduler is used.  Currently the scheduler schedules the oldest
1358        // instruction first, so the branch resolution order will be correct.
1359        ThreadID tid = inst->threadNumber;
1360
1361        if (!fetchRedirect[tid] ||
1362            !toCommit->squash[tid] ||
1363            toCommit->squashedSeqNum[tid] > inst->seqNum) {
1364
1365            // Prevent testing for misprediction on load instructions,
1366            // that have not been executed.
1367            bool loadNotExecuted = !inst->isExecuted() && inst->isLoad();
1368
1369            if (inst->mispredicted() && !loadNotExecuted) {
1370                fetchRedirect[tid] = true;
1371
1372                DPRINTF(IEW, "[tid:%i] [sn:%llu] Execute: "
1373                        "Branch mispredict detected.\n",
1374                        tid,inst->seqNum);
1375                DPRINTF(IEW, "[tid:%i] [sn:%llu] "
1376                        "Predicted target was PC: %s\n",
1377                        tid,inst->seqNum,inst->readPredTarg());
1378                DPRINTF(IEW, "[tid:%i] [sn:%llu] Execute: "
1379                        "Redirecting fetch to PC: %s\n",
1380                        tid,inst->seqNum,inst->pcState());
1381                // If incorrect, then signal the ROB that it must be squashed.
1382                squashDueToBranch(inst, tid);
1383
1384                ppMispredict->notify(inst);
1385
1386                if (inst->readPredTaken()) {
1387                    predictedTakenIncorrect++;
1388                } else {
1389                    predictedNotTakenIncorrect++;
1390                }
1391            } else if (ldstQueue.violation(tid)) {
1392                assert(inst->isMemRef());
1393                // If there was an ordering violation, then get the
1394                // DynInst that caused the violation.  Note that this
1395                // clears the violation signal.
1396                DynInstPtr violator;
1397                violator = ldstQueue.getMemDepViolator(tid);
1398
1399                DPRINTF(IEW, "LDSTQ detected a violation. Violator PC: %s "
1400                        "[sn:%lli], inst PC: %s [sn:%lli]. Addr is: %#x.\n",
1401                        violator->pcState(), violator->seqNum,
1402                        inst->pcState(), inst->seqNum, inst->physEffAddr);
1403
1404                fetchRedirect[tid] = true;
1405
1406                // Tell the instruction queue that a violation has occured.
1407                instQueue.violation(inst, violator);
1408
1409                // Squash.
1410                squashDueToMemOrder(violator, tid);
1411
1412                ++memOrderViolationEvents;
1413            }
1414        } else {
1415            // Reset any state associated with redirects that will not
1416            // be used.
1417            if (ldstQueue.violation(tid)) {
1418                assert(inst->isMemRef());
1419
1420                DynInstPtr violator = ldstQueue.getMemDepViolator(tid);
1421
1422                DPRINTF(IEW, "LDSTQ detected a violation.  Violator PC: "
1423                        "%s, inst PC: %s.  Addr is: %#x.\n",
1424                        violator->pcState(), inst->pcState(),
1425                        inst->physEffAddr);
1426                DPRINTF(IEW, "Violation will not be handled because "
1427                        "already squashing\n");
1428
1429                ++memOrderViolationEvents;
1430            }
1431        }
1432    }
1433
1434    // Update and record activity if we processed any instructions.
1435    if (inst_num) {
1436        if (exeStatus == Idle) {
1437            exeStatus = Running;
1438        }
1439
1440        updatedQueues = true;
1441
1442        cpu->activityThisCycle();
1443    }
1444
1445    // Need to reset this in case a writeback event needs to write into the
1446    // iew queue.  That way the writeback event will write into the correct
1447    // spot in the queue.
1448    wbNumInst = 0;
1449
1450}
1451
1452template <class Impl>
1453void
1454DefaultIEW<Impl>::writebackInsts()
1455{
1456    // Loop through the head of the time buffer and wake any
1457    // dependents.  These instructions are about to write back.  Also
1458    // mark scoreboard that this instruction is finally complete.
1459    // Either have IEW have direct access to scoreboard, or have this
1460    // as part of backwards communication.
1461    for (int inst_num = 0; inst_num < wbWidth &&
1462             toCommit->insts[inst_num]; inst_num++) {
1463        DynInstPtr inst = toCommit->insts[inst_num];
1464        ThreadID tid = inst->threadNumber;
1465
1466        DPRINTF(IEW, "Sending instructions to commit, [sn:%lli] PC %s.\n",
1467                inst->seqNum, inst->pcState());
1468
1469        iewInstsToCommit[tid]++;
1470        // Notify potential listeners that execution is complete for this
1471        // instruction.
1472        ppToCommit->notify(inst);
1473
1474        // Some instructions will be sent to commit without having
1475        // executed because they need commit to handle them.
1476        // E.g. Strictly ordered loads have not actually executed when they
1477        // are first sent to commit.  Instead commit must tell the LSQ
1478        // when it's ready to execute the strictly ordered load.
1479        if (!inst->isSquashed() && inst->isExecuted() && inst->getFault() == NoFault) {
1480            int dependents = instQueue.wakeDependents(inst);
1481
1482            for (int i = 0; i < inst->numDestRegs(); i++) {
1483                // Mark register as ready if not pinned
1484                if (inst->renamedDestRegIdx(i)->
1485                        getNumPinnedWritesToComplete() == 0) {
1486                    DPRINTF(IEW,"Setting Destination Register %i (%s)\n",
1487                            inst->renamedDestRegIdx(i)->index(),
1488                            inst->renamedDestRegIdx(i)->className());
1489                    scoreboard->setReg(inst->renamedDestRegIdx(i));
1490                }
1491            }
1492
1493            if (dependents) {
1494                producerInst[tid]++;
1495                consumerInst[tid]+= dependents;
1496            }
1497            writebackCount[tid]++;
1498        }
1499    }
1500}
1501
1502template<class Impl>
1503void
1504DefaultIEW<Impl>::tick()
1505{
1506    wbNumInst = 0;
1507    wbCycle = 0;
1508
1509    wroteToTimeBuffer = false;
1510    updatedQueues = false;
1511
1512    ldstQueue.tick();
1513
1514    sortInsts();
1515
1516    // Free function units marked as being freed this cycle.
1517    fuPool->processFreeUnits();
1518
1519    list<ThreadID>::iterator threads = activeThreads->begin();
1520    list<ThreadID>::iterator end = activeThreads->end();
1521
1522    // Check stall and squash signals, dispatch any instructions.
1523    while (threads != end) {
1524        ThreadID tid = *threads++;
1525
1526        DPRINTF(IEW,"Issue: Processing [tid:%i]\n",tid);
1527
1528        checkSignalsAndUpdate(tid);
1529        dispatch(tid);
1530    }
1531
1532    if (exeStatus != Squashing) {
1533        executeInsts();
1534
1535        writebackInsts();
1536
1537        // Have the instruction queue try to schedule any ready instructions.
1538        // (In actuality, this scheduling is for instructions that will
1539        // be executed next cycle.)
1540        instQueue.scheduleReadyInsts();
1541
1542        // Also should advance its own time buffers if the stage ran.
1543        // Not the best place for it, but this works (hopefully).
1544        issueToExecQueue.advance();
1545    }
1546
1547    bool broadcast_free_entries = false;
1548
1549    if (updatedQueues || exeStatus == Running || updateLSQNextCycle) {
1550        exeStatus = Idle;
1551        updateLSQNextCycle = false;
1552
1553        broadcast_free_entries = true;
1554    }
1555
1556    // Writeback any stores using any leftover bandwidth.
1557    ldstQueue.writebackStores();
1558
1559    // Check the committed load/store signals to see if there's a load
1560    // or store to commit.  Also check if it's being told to execute a
1561    // nonspeculative instruction.
1562    // This is pretty inefficient...
1563
1564    threads = activeThreads->begin();
1565    while (threads != end) {
1566        ThreadID tid = (*threads++);
1567
1568        DPRINTF(IEW,"Processing [tid:%i]\n",tid);
1569
1570        // Update structures based on instructions committed.
1571        if (fromCommit->commitInfo[tid].doneSeqNum != 0 &&
1572            !fromCommit->commitInfo[tid].squash &&
1573            !fromCommit->commitInfo[tid].robSquashing) {
1574
1575            ldstQueue.commitStores(fromCommit->commitInfo[tid].doneSeqNum,tid);
1576
1577            ldstQueue.commitLoads(fromCommit->commitInfo[tid].doneSeqNum,tid);
1578
1579            updateLSQNextCycle = true;
1580            instQueue.commit(fromCommit->commitInfo[tid].doneSeqNum,tid);
1581        }
1582
1583        if (fromCommit->commitInfo[tid].nonSpecSeqNum != 0) {
1584
1585            //DPRINTF(IEW,"NonspecInst from thread %i",tid);
1586            if (fromCommit->commitInfo[tid].strictlyOrdered) {
1587                instQueue.replayMemInst(
1588                    fromCommit->commitInfo[tid].strictlyOrderedLoad);
1589                fromCommit->commitInfo[tid].strictlyOrderedLoad->setAtCommit();
1590            } else {
1591                instQueue.scheduleNonSpec(
1592                    fromCommit->commitInfo[tid].nonSpecSeqNum);
1593            }
1594        }
1595
1596        if (broadcast_free_entries) {
1597            toFetch->iewInfo[tid].iqCount =
1598                instQueue.getCount(tid);
1599            toFetch->iewInfo[tid].ldstqCount =
1600                ldstQueue.getCount(tid);
1601
1602            toRename->iewInfo[tid].usedIQ = true;
1603            toRename->iewInfo[tid].freeIQEntries =
1604                instQueue.numFreeEntries(tid);
1605            toRename->iewInfo[tid].usedLSQ = true;
1606
1607            toRename->iewInfo[tid].freeLQEntries =
1608                ldstQueue.numFreeLoadEntries(tid);
1609            toRename->iewInfo[tid].freeSQEntries =
1610                ldstQueue.numFreeStoreEntries(tid);
1611
1612            wroteToTimeBuffer = true;
1613        }
1614
1615        DPRINTF(IEW, "[tid:%i], Dispatch dispatched %i instructions.\n",
1616                tid, toRename->iewInfo[tid].dispatched);
1617    }
1618
1619    DPRINTF(IEW, "IQ has %i free entries (Can schedule: %i).  "
1620            "LQ has %i free entries. SQ has %i free entries.\n",
1621            instQueue.numFreeEntries(), instQueue.hasReadyInsts(),
1622            ldstQueue.numFreeLoadEntries(), ldstQueue.numFreeStoreEntries());
1623
1624    updateStatus();
1625
1626    if (wroteToTimeBuffer) {
1627        DPRINTF(Activity, "Activity this cycle.\n");
1628        cpu->activityThisCycle();
1629    }
1630}
1631
1632template <class Impl>
1633void
1634DefaultIEW<Impl>::updateExeInstStats(const DynInstPtr& inst)
1635{
1636    ThreadID tid = inst->threadNumber;
1637
1638    iewExecutedInsts++;
1639
1640#if TRACING_ON
1641    if (DTRACE(O3PipeView)) {
1642        inst->completeTick = curTick() - inst->fetchTick;
1643    }
1644#endif
1645
1646    //
1647    //  Control operations
1648    //
1649    if (inst->isControl())
1650        iewExecutedBranches[tid]++;
1651
1652    //
1653    //  Memory operations
1654    //
1655    if (inst->isMemRef()) {
1656        iewExecutedRefs[tid]++;
1657
1658        if (inst->isLoad()) {
1659            iewExecLoadInsts[tid]++;
1660        }
1661    }
1662}
1663
1664template <class Impl>
1665void
1666DefaultIEW<Impl>::checkMisprediction(const DynInstPtr& inst)
1667{
1668    ThreadID tid = inst->threadNumber;
1669
1670    if (!fetchRedirect[tid] ||
1671        !toCommit->squash[tid] ||
1672        toCommit->squashedSeqNum[tid] > inst->seqNum) {
1673
1674        if (inst->mispredicted()) {
1675            fetchRedirect[tid] = true;
1676
1677            DPRINTF(IEW, "[tid:%i] [sn:%llu] Execute: "
1678                    "Branch mispredict detected.\n",
1679                    tid,inst->seqNum);
1680            DPRINTF(IEW, "[tid:%i] [sn:%llu] Predicted target "
1681                    "was PC:%#x, NPC:%#x\n",
1682                    tid,inst->seqNum,
1683                    inst->predInstAddr(), inst->predNextInstAddr());
1684            DPRINTF(IEW, "[tid:%i] [sn:%llu] Execute: "
1685                    "Redirecting fetch to PC: %#x, "
1686                    "NPC: %#x.\n",
1687                    tid,inst->seqNum,
1688                    inst->nextInstAddr(),
1689                    inst->nextInstAddr());
1690            // If incorrect, then signal the ROB that it must be squashed.
1691            squashDueToBranch(inst, tid);
1692
1693            if (inst->readPredTaken()) {
1694                predictedTakenIncorrect++;
1695            } else {
1696                predictedNotTakenIncorrect++;
1697            }
1698        }
1699    }
1700}
1701
1702#endif//__CPU_O3_IEW_IMPL_IMPL_HH__
1703