History log of /gem5/tests/configs/switcheroo.py
Revision Date Author Comments
# 12575:16ada03839d9 09-Mar-2018 Giacomo Travaglini <giacomo.travaglini@arm.com>

tests: Python regression scripts using new print function

Change-Id: I92060da4537e4ff1c0ff665f2f6ffc3850c50e88
Signed-off-by: Giacomo Travaglini <giacomo.travaglini@arm.com>
Reviewed-by: Giacomo Gabrielli <giacomo.gabrielli@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/8892
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>
Reviewed-by: Gabe Black <gabeblack@google.com>
Maintainer: Jason Lowe-Power <jason@lowepower.com>


# 11988:665cd5f8b52b 27-Feb-2017 Andreas Sandberg <andreas.sandberg@arm.com>

python: Use PyBind11 instead of SWIG for Python wrappers

Use the PyBind11 wrapping infrastructure instead of SWIG to generate
wrappers for functionality that needs to be exported to Python. This
has several benefits:

* PyBind11 can be redistributed with gem5, which means that we have
full control of the version used. This avoid a large number of
hard-to-debug SWIG issues we have seen in the past.

* PyBind11 doesn't rely on a custom C++ parser, instead it relies on
wrappers being explicitly declared in C++. The leads to slightly
more boiler-plate code in manually created wrappers, but doesn't
doesn't increase the overall code size. A big benefit is that this
avoids strange compilation errors when SWIG doesn't understand
modern language features.

* Unlike SWIG, there is no risk that the wrapper code incorporates
incorrect type casts (this has happened on numerous occasions in
the past) since these will result in compile-time errors.

As a part of this change, the mechanism to define exported methods has
been redesigned slightly. New methods can be exported either by
declaring them in the SimObject declaration and decorating them with
the cxxMethod decorator or by adding an instance of
PyBindMethod/PyBindProperty to the cxx_exports class variable. The
decorator has the added benefit of making it possible to add a
docstring and naming the method's parameters.

The new wrappers have the following known issues:

* Global events can't be memory managed correctly. This was the
case in SWIG as well.

Change-Id: I88c5a95b6cf6c32fa9e1ad31dfc08b2e8199a763
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Andreas Hansson <andreas.hansson@arm.com>
Reviewed-by: Andrew Bardsley <andrew.bardsley@arm.com>
Reviewed-on: https://gem5-review.googlesource.com/2231
Reviewed-by: Tony Gutierrez <anthony.gutierrez@amd.com>
Reviewed-by: Pierre-Yves PĂ©neau <pierre-yves.peneau@lirmm.fr>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>


# 11880:8c369af31b6c 27-Feb-2017 Andreas Sandberg <andreas.sandberg@arm.com>

base: Refactor logging to make log level selection cleaner

It's currently possible to change the log level in gem5 by tweaking a
set of global variables. These variables are currently exposed to
Python using SWIG. This mechanism is far from ideal for two reasons:
First, changing the log level requires that the Python world enables
or disables individual levels. Ideally, this should be a single call
where a log level is selected. Second, exporting global variables is
poorly supported by most Python frameworks. SWIG puts variables in
their own namespace and PyBind doesn't seem to support it at all.

This changeset refactors the logging code to create a more abstract
interface. Each log level is associated with an instance of a Logger
class. This class contains common functionality, an enable flag, and a
verbose flag.

Available LogLevels are described by the LogLevel class. Lower log
levels are used for more critical messages (PANIC being level 0) and
higher levels for less critical messages. The highest log level that
is printed is controlled by calling Logger:setLevel().

Change-Id: I31e44299d242d953197a8e62679250c91d6ef776
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Gabor Dozsa <gabor.dozsa@arm.com>
Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>


# 11802:be62996c95d1 26-Jan-2017 Andreas Sandberg <andreas.sandberg@arm.com>

python: Move native wrappers to the _m5 namespace

Swig wrappers for native objects currently share the _m5.internal name
space with Python code. This is undesirable if we ever want to switch
from Swig to some other framework for native binding (e.g., PyBind11
or Boost::Python). This changeset moves all of such wrappers to the
_m5 namespace, which is now reserved for native code.

Change-Id: I2d2bc12dbc05b57b7c5a75f072e08124413d77f3
Signed-off-by: Andreas Sandberg <andreas.sandberg@arm.com>
Reviewed-by: Curtis Dunham <curtis.dunham@arm.com>
Reviewed-by: Jason Lowe-Power <jason@lowepower.com>


# 11682:612f75cf36a0 14-Oct-2016 Andreas Hansson <andreas.hansson@arm.com>

config: Make configs/common a Python package

Continue along the same line as the recent patch that made the
Ruby-related config scripts Python packages and make also the
configs/common directory a package.

All affected config scripts are updated (hopefully).

Note that this change makes it apparent that the current organisation
and naming of the config directory and its subdirectories is rather
chaotic. We mix scripts that are directly invoked with scripts that
merely contain convenience functions. While it is not addressed in
this patch we should follow up with a re-organisation of the
config structure, and renaming of some of the packages.


# 10912:b99a6662d7c2 07-Jul-2015 Andreas Sandberg <andreas.sandberg@arm.com>

sim: Decouple draining from the SimObject hierarchy

Draining is currently done by traversing the SimObject graph and
calling drain()/drainResume() on the SimObjects. This is not ideal
when non-SimObjects (e.g., ports) need draining since this means that
SimObjects owning those objects need to be aware of this.

This changeset moves the responsibility for finding objects that need
draining from SimObjects and the Python-side of the simulator to the
DrainManager. The DrainManager now maintains a set of all objects that
need draining. To reduce the overhead in classes owning non-SimObjects
that need draining, objects inheriting from Drainable now
automatically register with the DrainManager. If such an object is
destroyed, it is automatically unregistered. This means that drain()
and drainResume() should never be called directly on a Drainable
object.

While implementing the new functionality, the DrainManager has now
been made thread safe. In practice, this means that it takes a lock
whenever it manipulates the set of Drainable objects since SimObjects
in different threads may create Drainable objects
dynamically. Similarly, the drain counter is now an atomic_uint, which
ensures that it is manipulated correctly when objects signal that they
are done draining.

A nice side effect of these changes is that it makes the drain state
changes stricter, which the simulation scripts can exploit to avoid
redundant drains.


# 9980:cc02ad629b36 14-Nov-2013 Steve Reinhardt <steve.reinhardt@amd.com>

tests: suppress output on switcheroo tests

The output from the switcheroo tests is voluminous and
(because it includes timestamps) highly sensitive to
minor changes, leading to extremely large updates to the
reference outputs. This patch addresses this problem
by suppressing output from the tests. An internal
parameter can be set to enable the output. Wiring that
up to a command-line flag (perhaps even the rudimantary
-v/-q options in m5/main.py) is left for future work.


# 9521:1cd02decbfd3 15-Feb-2013 Andreas Sandberg <Andreas.Sandberg@ARM.com>

config: Move CPU handover logic to m5.switchCpus()

CPU switching consists of the following steps:
1. Drain the system
2. Switch out old CPUs (cpu.switchOut())
3. Change the system timing mode to the mode the new CPUs require
4. Flush caches if switching to hardware virtualization
5. Inform new CPUs of the handover (cpu.takeOverFrom())
6. Resume the system

m5.switchCpus() previously only did step 2 & 5. Since information
about the new processors' memory system requirements is now exposed,
do all of the steps above.

This patch adds automatic memory system switching and flush (if
needed) to switchCpus(). Additionally, it adds optional draining to
switchCpus(). This has the following implications:

* changeToTiming and changeToAtomic are no longer needed, so they have
been removed.

* changeMemoryMode is only used internally, so it is has been renamed
to be private.

* switchCpus requires a reference to the system containing the CPUs as
its first parameter.

WARNING: This changeset breaks compatibility with existing
configuration scripts since it changes the signature of
m5.switchCpus().


# 9447:156f74caf0d4 07-Jan-2013 Andreas Sandberg <Andreas.Sandberg@ARM.com>

tests: Add CPU switching tests

This changeset adds a set of tests that stress the CPU switching
code. It adds the following test configurations:

* tsunami-switcheroo-full -- Alpha system (atomic, timing, O3)
* realview-switcheroo-atomic -- ARM system (atomic<->atomic)
* realview-switcheroo-timing -- ARM system (timing<->timing)
* realview-switcheroo-o3 -- ARM system (O3<->O3)
* realview-switcheroo-full -- ARM system (atomic, timing, O3)

Reference data is provided for the 10.linux-boot test case. All of the
tests trigger a CPU switch once per millisecond during the boot
process.

The in-order CPU model was not included in any of the tests as it does
not support CPU handover.