#
12616:4b463b4dc098 |
|
23-Mar-2018 |
Gabe Black <gabeblack@google.com> |
arch: Fix all override related warnings.
Clang has started(?) reporting override related warnings, something gcc apparently did before, but was disabled in the SConstruct. Rather than disable the warnings in for clang as well, this change fixes the warnings. A future change will re-enable the warnings for gcc.
Change-Id: I3cc79e45749b2ae0f9bebb1acadc56a3d3a942da Reviewed-on: https://gem5-review.googlesource.com/9343 Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Maintainer: Gabe Black <gabeblack@google.com>
|
#
12420:f5c80f4ed41f |
|
05-Jan-2018 |
Gabe Black <gabeblack@google.com> |
cpu, power: Get rid of the remnants of the EA computation insts.
Get rid of some remnants of a system which was intended to separate address computation into its own instruction object.
Change-Id: I23f9ffd70fcb89a8ea5bbb934507fb00da9a0b7f Reviewed-on: https://gem5-review.googlesource.com/7122 Reviewed-by: Jason Lowe-Power <jason@lowepower.com> Maintainer: Gabe Black <gabeblack@google.com>
|
#
12236:126ac9da6050 |
|
04-Nov-2017 |
Gabe Black <gabeblack@google.com> |
alpha,arm,mips,power,riscv,sparc,x86: Merge exec decl templates.
In the ISA instruction definitions, some classes were declared with execute, etc., functions outside of the main template because they had CPU specific signatures and would need to be duplicated with each CPU plugged into them. Now that the instructions always just use an ExecContext, there's no reason for those templates to be separate. This change folds those templates together.
Change-Id: I13bda247d3d1cc07c0ea06968e48aa5b4aace7fa Reviewed-on: https://gem5-review.googlesource.com/5401 Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Reviewed-by: Alec Roelke <ar4jc@virginia.edu> Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
#
12234:78ece221f9f5 |
|
02-Nov-2017 |
Gabe Black <gabeblack@google.com> |
alpha,arm,mips,power,riscv,sparc,x86,isa: De-specialize ExecContexts.
The ISA parser used to generate different copies of exec functions for each exec context class a particular CPU wanted to use. That's since been changed so that those functions take a pointer to the base ExecContext, so the code which would generate those extra functions can be removed, and some functions which used to be templated on an ExecContext subclass can be untemplated, or minimally less templated.
Now that some functions aren't going to be instantiated multiple times with different signatures, there are also opportunities to collapse templates and make many instruction definitions simpler within the parser. Since those changes will be less mechanical, they're left for later changes and will probably be done in smaller increments.
Change-Id: I0015307bb02dfb9c60380b56d2a820f12169ebea Reviewed-on: https://gem5-review.googlesource.com/5381 Reviewed-by: Andreas Sandberg <andreas.sandberg@arm.com> Maintainer: Andreas Sandberg <andreas.sandberg@arm.com>
|
#
11303:f694764d656d |
|
17-Jan-2016 |
Steve Reinhardt <steve.reinhardt@amd.com> |
cpu. arch: add initiateMemRead() to ExecContext interface
For historical reasons, the ExecContext interface had a single function, readMem(), that did two different things depending on whether the ExecContext supported atomic memory mode (i.e., AtomicSimpleCPU) or timing memory mode (all the other models). In the former case, it actually performed a memory read; in the latter case, it merely initiated a read access, and the read completion did not happen until later when a response packet arrived from the memory system.
This led to some confusing things, including timing accesses being required to provide a pointer for the return data even though that pointer was only used in atomic mode.
This patch splits this interface, adding a new initiateMemRead() function to the ExecContext interface to replace the timing-mode use of readMem().
For consistency and clarity, the readMemTiming() helper function in the ISA definitions is renamed to initiateMemRead() as well. For x86, where the access size is passed in explicitly, we can also get rid of the data parameter at this level. For other ISAs, where the access size is determined from the type of the data parameter, we have to keep the parameter for that purpose.
|
#
10196:be0e1724eb39 |
|
09-May-2014 |
Curtis Dunham <Curtis.Dunham@arm.com> |
arch: teach ISA parser how to split code across files
This patch encompasses several interrelated and interdependent changes to the ISA generation step. The end goal is to reduce the size of the generated compilation units for instruction execution and decoding so that batch compilation can proceed with all CPUs active without exhausting physical memory.
The ISA parser (src/arch/isa_parser.py) has been improved so that it can accept 'split [output_type];' directives at the top level of the grammar and 'split(output_type)' python calls within 'exec {{ ... }}' blocks. This has the effect of "splitting" the files into smaller compilation units. I use air-quotes around "splitting" because the files themselves are not split, but preprocessing directives are inserted to have the same effect.
Architecturally, the ISA parser has had some changes in how it works. In general, it emits code sooner. It doesn't generate per-CPU files, and instead defers to the C preprocessor to create the duplicate copies for each CPU type. Likewise there are more files emitted and the C preprocessor does more substitution that used to be done by the ISA parser.
Finally, the build system (SCons) needs to be able to cope with a dynamic list of source files coming out of the ISA parser. The changes to the SCons{cript,truct} files support this. In broad strokes, the targets requested on the command line are hidden from SCons until all the build dependencies are determined, otherwise it would try, realize it can't reach the goal, and terminate in failure. Since build steps (i.e. running the ISA parser) must be taken to determine the file list, several new build stages have been inserted at the very start of the build. First, the build dependencies from the ISA parser will be emitted to arch/$ISA/generated/inc.d, which is then read by a new SCons builder to finalize the dependencies. (Once inc.d exists, the ISA parser will not need to be run to complete this step.) Once the dependencies are known, the 'Environments' are made by the makeEnv() function. This function used to be called before the build began but now happens during the build. It is easy to see that this step is quite slow; this is a known issue and it's important to realize that it was already slow, but there was no obvious cause to attribute it to since nothing was displayed to the terminal. Since new steps that used to be performed serially are now in a potentially-parallel build phase, the pathname handling in the SCons scripts has been tightened up to deal with chdir() race conditions. In general, pathnames are computed earlier and more likely to be stored, passed around, and processed as absolute paths rather than relative paths. In the end, some of these issues had to be fixed by inserting serializing dependencies in the build.
Minor note: For the null ISA, we just provide a dummy inc.d so SCons is never compelled to try to generate it. While it seems slightly wrong to have anything in src/arch/*/generated (i.e. a non-generated 'generated' file), it's by far the simplest solution.
|
#
10184:bbfa3152bdea |
|
09-May-2014 |
Curtis Dunham <Curtis.Dunham@arm.com> |
arch: remove inline specifiers on all inst constrs, all ISAs
With (upcoming) separate compilation, they are useless. Only link-time optimization could re-inline them, but ideally feedback-directed optimization would choose to do so only for profitable (i.e. common) instructions.
|
#
8607:5fb918115c07 |
|
31-Oct-2011 |
Gabe Black <gblack@eecs.umich.edu> |
GCC: Get everything working with gcc 4.6.1.
And by "everything" I mean all the quick regressions.
|
#
8450:40e10746b049 |
|
05-Jul-2011 |
Gabe Black <gblack@eecs.umich.edu> |
ISAs: Streamline some spots where Mem is used in the ISA descriptions.
|
#
8448:86ed97566b23 |
|
05-Jul-2011 |
Gabe Black <gblack@eecs.umich.edu> |
ISA parser: Simplify operand type handling.
This change simplifies the code surrounding operand type handling and makes it depend only on the ctype that goes with each operand type. Future changes will allow defining operand types by their ctypes directly, convert the ISAs over to that style of definition, and then remove support for the old style. These changes are to make it easier to use non-builtin types like classes or structures as the type for operands.
|
#
8442:b1f3dfae06f1 |
|
03-Jul-2011 |
Gabe Black <gblack@eecs.umich.edu> |
ISA: Use readBytes/writeBytes for all instruction level memory operations.
|
#
7712:7733c562e5e3 |
|
22-Oct-2010 |
Gabe Black <gblack@eecs.umich.edu> |
ISA: Simplify various implementations of completeAcc.
|
#
7045:e21fe6a62b1c |
|
23-Mar-2010 |
Steve Reinhardt <steve.reinhardt@amd.com> |
cpu: fix exec tracing memory corruption bug Accessing traceData (to call setAddress() and/or setData()) after initiating a timing translation was causing crashes, since a failed translation could delete the traceData object before returning.
It turns out that there was never a need to access traceData after initiating the translation, as the traced data was always available earlier; this ordering was merely historical. Furthermore, traceData->setAddress() and traceData->setData() were being called both from the CPU model and the ISA definition, often redundantly.
This patch standardizes all setAddress and setData calls for memory instructions to be in the CPU models and not in the ISA definition. It also moves those calls above the translation calls to eliminate the crashes.
|
#
6691:cd68b6ecd68d |
|
27-Oct-2009 |
Timothy M. Jones <tjones1@inf.ed.ac.uk> |
POWER: Add support for the Power ISA
This adds support for the 32-bit, big endian Power ISA. This supports both integer and floating point instructions based on the Power ISA Book I v2.06.
|