1/*
2 * Copyright 2018 Google, Inc.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are
6 * met: redistributions of source code must retain the above copyright
7 * notice, this list of conditions and the following disclaimer;
8 * redistributions in binary form must reproduce the above copyright
9 * notice, this list of conditions and the following disclaimer in the
10 * documentation and/or other materials provided with the distribution;
11 * neither the name of the copyright holders nor the names of its
12 * contributors may be used to endorse or promote products derived from
13 * this software without specific prior written permission.
14 *
15 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
19 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
20 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
21 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
22 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
23 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 *
27 * Authors: Gabe Black
28 */
29
30#ifndef __SYSTEMC_CORE_SCHEDULER_HH__
31#define __SYSTEMC_CORE_SCHEDULER_HH__
32
33#include <functional>
34#include <map>
35#include <mutex>
36#include <set>
37#include <vector>
38
39#include "base/logging.hh"
40#include "sim/core.hh"
41#include "sim/eventq.hh"
42#include "systemc/core/channel.hh"
43#include "systemc/core/list.hh"
44#include "systemc/core/process.hh"
45#include "systemc/core/sched_event.hh"
46
47class Fiber;
48
49namespace sc_gem5
50{
51
52class TraceFile;
53
54typedef NodeList<Process> ProcessList;
55typedef NodeList<Channel> ChannelList;
56
57/*
58 * The scheduler supports three different mechanisms, the initialization phase,
59 * delta cycles, and timed notifications.
60 *
61 * INITIALIZATION PHASE
62 *
63 * The initialization phase has three parts:
64 * 1. Run requested channel updates.
65 * 2. Make processes which need to initialize runnable (methods and threads
66 *    which didn't have dont_initialize called on them).
67 * 3. Process delta notifications.
68 *
69 * First, the Kernel SimObject calls the update() method during its startup()
70 * callback which handles the requested channel updates. The Kernel also
71 * schedules an event to be run at time 0 with a slightly elevated priority
72 * so that it happens before any "normal" event.
73 *
74 * When that t0 event happens, it calls the schedulers prepareForInit method
75 * which performs step 2 above. That indirectly causes the scheduler's
76 * readyEvent to be scheduled with slightly lowered priority, ensuring it
77 * happens after any "normal" event.
78 *
79 * Because delta notifications are scheduled at the standard priority, all
80 * of those events will happen next, performing step 3 above. Once they finish,
81 * if the readyEvent was scheduled above, there shouldn't be any higher
82 * priority events in front of it. When it runs, it will start the first
83 * evaluate phase of the first delta cycle.
84 *
85 * DELTA CYCLE
86 *
87 * A delta cycle has three phases within it.
88 * 1. The evaluate phase where runnable processes are allowed to run.
89 * 2. The update phase where requested channel updates hapen.
90 * 3. The delta notification phase where delta notifications happen.
91 *
92 * The readyEvent runs all three steps of the delta cycle. It first goes
93 * through the list of runnable processes and executes them until the set is
94 * empty, and then immediately runs the update phase. Since these are all part
95 * of the same event, there's no chance for other events to intervene and
96 * break the required order above.
97 *
98 * During the update phase above, the spec forbids any action which would make
99 * a process runnable. That means that once the update phase finishes, the set
100 * of runnable processes will be empty. There may, however, have been some
101 * delta notifications/timeouts which will have been scheduled during either
102 * the evaluate or update phase above. Those will have been accumulated in the
103 * scheduler, and are now all executed.
104 *
105 * If any processes became runnable during the delta notification phase, the
106 * readyEvent will have been scheduled and will be waiting and ready to run
107 * again, effectively starting the next delta cycle.
108 *
109 * TIMED NOTIFICATION PHASE
110 *
111 * If no processes became runnable, the event queue will continue to process
112 * events until it comes across an event which represents all the timed
113 * notifications which are supposed to happen at a particular time. The object
114 * which tracks them will execute all those notifications, and then destroy
115 * itself. If the readyEvent is now ready to run, the next delta cycle will
116 * start.
117 *
118 * PAUSE/STOP
119 *
120 * To inject a pause from sc_pause which should happen after the current delta
121 * cycle's delta notification phase, an event is scheduled with a lower than
122 * normal priority, but higher than the readyEvent. That ensures that any
123 * delta notifications which are scheduled with normal priority will happen
124 * first, since those are part of the current delta cycle. Then the pause
125 * event will happen before the next readyEvent which would start the next
126 * delta cycle. All of these events are scheduled for the current time, and so
127 * would happen before any timed notifications went off.
128 *
129 * To inject a stop from sc_stop, the delta cycles should stop before even the
130 * delta notifications have happened, but after the evaluate and update phases.
131 * For that, a stop event with slightly higher than normal priority will be
132 * scheduled so that it happens before any of the delta notification events
133 * which are at normal priority.
134 *
135 * MAX RUN TIME
136 *
137 * When sc_start is called, it's possible to pass in a maximum time the
138 * simulation should run to, at which point sc_pause is implicitly called. The
139 * simulation is supposed to run up to the latest timed notification phase
140 * which is less than or equal to the maximum time. In other words it should
141 * run timed notifications at the maximum time, but not the subsequent evaluate
142 * phase. That's implemented by scheduling an event at the max time with a
143 * priority which is lower than all the others except the ready event. Timed
144 * notifications will happen before it fires, but it will override any ready
145 * event and prevent the evaluate phase from starting.
146 */
147
148class Scheduler
149{
150  public:
151    typedef std::list<ScEvent *> ScEvents;
152
153    class TimeSlot : public ::Event
154    {
155      public:
156        TimeSlot() : ::Event(Default_Pri, AutoDelete) {}
157
158        ScEvents events;
159        void process();
160    };
161
162    typedef std::map<Tick, TimeSlot *> TimeSlots;
163
164    Scheduler();
165    ~Scheduler();
166
167    void clear();
168
169    const std::string name() const { return "systemc_scheduler"; }
170
171    uint64_t numCycles() { return _numCycles; }
172    Process *current() { return _current; }
173
174    void initPhase();
175
176    // Register a process with the scheduler.
177    void reg(Process *p);
178
179    // Run the next process, if there is one.
180    void yield();
181
182    // Put a process on the ready list.
183    void ready(Process *p);
184
185    // Mark a process as ready if init is finished, or put it on the list of
186    // processes to be initialized.
187    void resume(Process *p);
188
189    // Remove a process from the ready/init list if it was on one of them, and
190    // return if it was.
191    bool suspend(Process *p);
192
193    // Schedule an update for a given channel.
194    void requestUpdate(Channel *c);
195    // Same as above, but may be called from a different thread.
196    void asyncRequestUpdate(Channel *c);
197
198    // Run the given process immediately, preempting whatever may be running.
199    void
200    runNow(Process *p)
201    {
202        // This function may put a process on the wrong list, ie a thread
203        // the method list. That's fine since that's just a performance
204        // optimization, and the important thing here is how the processes are
205        // ordered.
206
207        // If a process is running, schedule it/us to run again.
208        if (_current)
209            readyListMethods.pushFirst(_current);
210        // Schedule p to run first.
211        readyListMethods.pushFirst(p);
212        yield();
213    }
214
215    // Run this process at the next opportunity.
216    void
217    runNext(Process *p)
218    {
219        // Like above, it's ok if this isn't a method. Putting it on this list
220        // just gives it priority.
221        readyListMethods.pushFirst(p);
222        if (!inEvaluate())
223            scheduleReadyEvent();
224    }
225
226    // Set an event queue for scheduling events.
227    void setEventQueue(EventQueue *_eq) { eq = _eq; }
228
229    // Get the current time according to gem5.
230    Tick getCurTick() { return eq ? eq->getCurTick() : 0; }
231
232    Tick
233    delayed(const ::sc_core::sc_time &delay)
234    {
235        return getCurTick() + delay.value();
236    }
237
238    // For scheduling delayed/timed notifications/timeouts.
239    void
240    schedule(ScEvent *event, const ::sc_core::sc_time &delay)
241    {
242        Tick tick = delayed(delay);
243        if (tick < getCurTick())
244            tick = getCurTick();
245
246        // Delta notification/timeout.
247        if (delay.value() == 0) {
248            event->schedule(deltas, tick);
249            if (!inEvaluate() && !inUpdate())
250                scheduleReadyEvent();
251            return;
252        }
253
254        // Timed notification/timeout.
255        TimeSlot *&ts = timeSlots[tick];
256        if (!ts) {
257            ts = new TimeSlot;
258            schedule(ts, tick);
259        }
260        event->schedule(ts->events, tick);
261    }
262
263    // For descheduling delayed/timed notifications/timeouts.
264    void
265    deschedule(ScEvent *event)
266    {
267        ScEvents *on = event->scheduledOn();
268
269        if (on == &deltas) {
270            event->deschedule();
271            return;
272        }
273
274        // Timed notification/timeout.
275        auto tsit = timeSlots.find(event->when());
276        panic_if(tsit == timeSlots.end(),
277                "Descheduling event at time with no events.");
278        TimeSlot *ts = tsit->second;
279        ScEvents &events = ts->events;
280        assert(on == &events);
281        event->deschedule();
282
283        // If no more events are happening at this time slot, get rid of it.
284        if (events.empty()) {
285            deschedule(ts);
286            timeSlots.erase(tsit);
287        }
288    }
289
290    void
291    completeTimeSlot(TimeSlot *ts)
292    {
293        assert(ts == timeSlots.begin()->second);
294        timeSlots.erase(timeSlots.begin());
295        if (!runToTime && starved())
296            scheduleStarvationEvent();
297        scheduleTimeAdvancesEvent();
298    }
299
300    // Pending activity ignores gem5 activity, much like how a systemc
301    // simulation wouldn't know about asynchronous external events (socket IO
302    // for instance) that might happen before time advances in a pure
303    // systemc simulation. Also the spec lists what specific types of pending
304    // activity needs to be counted, which obviously doesn't include gem5
305    // events.
306
307    // Return whether there's pending systemc activity at this time.
308    bool
309    pendingCurr()
310    {
311        return !readyListMethods.empty() || !readyListThreads.empty() ||
312            !updateList.empty() || !deltas.empty();
313    }
314
315    // Return whether there are pending timed notifications or timeouts.
316    bool
317    pendingFuture()
318    {
319        return !timeSlots.empty();
320    }
321
322    // Return how many ticks there are until the first pending event, if any.
323    Tick
324    timeToPending()
325    {
326        if (pendingCurr())
327            return 0;
328        if (pendingFuture())
329            return timeSlots.begin()->first - getCurTick();
330        return MaxTick - getCurTick();
331    }
332
333    // Run scheduled channel updates.
334    void runUpdate();
335
336    // Run delta events.
337    void runDelta();
338
339    void start(Tick max_tick, bool run_to_time);
340    void oneCycle();
341
342    void schedulePause();
343    void scheduleStop(bool finish_delta);
344
345    enum Status
346    {
347        StatusOther = 0,
348        StatusEvaluate,
349        StatusUpdate,
350        StatusDelta,
351        StatusTiming,
352        StatusPaused,
353        StatusStopped
354    };
355
356    bool elaborationDone() { return _elaborationDone; }
357    void elaborationDone(bool b) { _elaborationDone = b; }
358
359    bool paused() { return status() == StatusPaused; }
360    bool stopped() { return status() == StatusStopped; }
361    bool inEvaluate() { return status() == StatusEvaluate; }
362    bool inUpdate() { return status() == StatusUpdate; }
363    bool inDelta() { return status() == StatusDelta; }
364    bool inTiming() { return status() == StatusTiming; }
365
366    uint64_t changeStamp() { return _changeStamp; }
367    void stepChangeStamp() { _changeStamp++; }
368
369    // Throw upwards, either to sc_main or to the report handler if sc_main
370    // isn't running.
371    void throwUp();
372
373    Status status() { return _status; }
374    void status(Status s) { _status = s; }
375
376    void registerTraceFile(TraceFile *tf) { traceFiles.insert(tf); }
377    void unregisterTraceFile(TraceFile *tf) { traceFiles.erase(tf); }
378
379  private:
380    typedef const EventBase::Priority Priority;
381    static Priority DefaultPriority = EventBase::Default_Pri;
382
383    static Priority StopPriority = DefaultPriority - 1;
384    static Priority PausePriority = DefaultPriority + 1;
385    static Priority MaxTickPriority = DefaultPriority + 2;
386    static Priority ReadyPriority = DefaultPriority + 3;
387    static Priority StarvationPriority = ReadyPriority;
388    static Priority TimeAdvancesPriority = EventBase::Maximum_Pri;
389
390    EventQueue *eq;
391
392    // For gem5 style events.
393    void
394    schedule(::Event *event, Tick tick)
395    {
396        if (initDone)
397            eq->schedule(event, tick);
398        else
399            eventsToSchedule[event] = tick;
400    }
401
402    void schedule(::Event *event) { schedule(event, getCurTick()); }
403
404    void
405    deschedule(::Event *event)
406    {
407        if (initDone)
408            eq->deschedule(event);
409        else
410            eventsToSchedule.erase(event);
411    }
412
413    ScEvents deltas;
414    TimeSlots timeSlots;
415
416    Process *
417    getNextReady()
418    {
419        Process *p = readyListMethods.getNext();
420        return p ? p : readyListThreads.getNext();
421    }
422
423    void runReady();
424    EventWrapper<Scheduler, &Scheduler::runReady> readyEvent;
425    void scheduleReadyEvent();
426
427    void pause();
428    void stop();
429    EventWrapper<Scheduler, &Scheduler::pause> pauseEvent;
430    EventWrapper<Scheduler, &Scheduler::stop> stopEvent;
431
432    const ::sc_core::sc_report *_throwUp;
433
434    bool
435    starved()
436    {
437        return (readyListMethods.empty() && readyListThreads.empty() &&
438                updateList.empty() && deltas.empty() &&
439                (timeSlots.empty() || timeSlots.begin()->first > maxTick) &&
440                initList.empty());
441    }
442    EventWrapper<Scheduler, &Scheduler::pause> starvationEvent;
443    void scheduleStarvationEvent();
444
445    bool _elaborationDone;
446    bool _started;
447    bool _stopNow;
448
449    Status _status;
450
451    Tick maxTick;
452    Tick lastReadyTick;
453    void
454    maxTickFunc()
455    {
456        if (lastReadyTick != getCurTick())
457            _changeStamp++;
458        pause();
459    }
460    EventWrapper<Scheduler, &Scheduler::maxTickFunc> maxTickEvent;
461
462    void timeAdvances() { trace(false); }
463    EventWrapper<Scheduler, &Scheduler::timeAdvances> timeAdvancesEvent;
464    void
465    scheduleTimeAdvancesEvent()
466    {
467        if (!traceFiles.empty() && !timeAdvancesEvent.scheduled())
468            schedule(&timeAdvancesEvent);
469    }
470
471    uint64_t _numCycles;
472    uint64_t _changeStamp;
473
474    Process *_current;
475
476    bool initDone;
477    bool runToTime;
478    bool runOnce;
479
480    ProcessList initList;
481
482    ProcessList readyListMethods;
483    ProcessList readyListThreads;
484
485    ChannelList updateList;
486
487    ChannelList asyncUpdateList;
488    std::mutex asyncListMutex;
489
490    std::map<::Event *, Tick> eventsToSchedule;
491
492    std::set<TraceFile *> traceFiles;
493
494    void trace(bool delta);
495};
496
497extern Scheduler scheduler;
498
499// A proxy function to avoid having to expose the scheduler in header files.
500Process *getCurrentProcess();
501
502inline void
503Scheduler::TimeSlot::process()
504{
505    scheduler.stepChangeStamp();
506    scheduler.status(StatusTiming);
507
508    try {
509        while (!events.empty())
510            events.front()->run();
511    } catch (...) {
512        if (events.empty())
513            scheduler.completeTimeSlot(this);
514        else
515            scheduler.schedule(this);
516        scheduler.throwUp();
517    }
518
519    scheduler.status(StatusOther);
520    scheduler.completeTimeSlot(this);
521}
522
523const ::sc_core::sc_report reportifyException();
524
525} // namespace sc_gem5
526
527#endif // __SYSTEMC_CORE_SCHEDULER_H__
528