1/* 2 * Copyright (c) 2012-2013, 2015-2016 ARM Limited 3 * Copyright (c) 2013 Cornell University 4 * All rights reserved 5 * 6 * The license below extends only to copyright in the software and shall 7 * not be construed as granting a license to any other intellectual 8 * property including but not limited to intellectual property relating 9 * to a hardware implementation of the functionality of the software 10 * licensed hereunder. You may use the software subject to the license 11 * terms below provided that you ensure that this notice is replicated 12 * unmodified and in its entirety in all distributions of the software, 13 * modified or unmodified, in source code or in binary form. 14 * 15 * Redistribution and use in source and binary forms, with or without 16 * modification, are permitted provided that the following conditions are 17 * met: redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer; 19 * redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution; 22 * neither the name of the copyright holders nor the names of its 23 * contributors may be used to endorse or promote products derived from 24 * this software without specific prior written permission. 25 * 26 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 27 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 28 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 29 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 30 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 31 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 32 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 33 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 34 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 35 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 36 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 37 * 38 * Authors: Andreas Hansson 39 * Christopher Torng 40 * Akash Bagdia 41 * David Guillen Fandos 42 */ 43 44/** 45 * @file 46 * ClockedObject declaration and implementation. 47 */ 48 49#ifndef __SIM_CLOCKED_OBJECT_HH__ 50#define __SIM_CLOCKED_OBJECT_HH__ 51 52#include "base/callback.hh" 53#include "base/intmath.hh" 54#include "enums/PwrState.hh" 55#include "params/ClockedObject.hh" 56#include "sim/core.hh" 57#include "sim/clock_domain.hh" 58#include "sim/sim_object.hh" 59 60/** 61 * Helper class for objects that need to be clocked. Clocked objects 62 * typically inherit from this class. Objects that need SimObject 63 * functionality as well should inherit from ClockedObject. 64 */ 65class Clocked 66{ 67 68 private: 69 // the tick value of the next clock edge (>= curTick()) at the 70 // time of the last call to update() 71 mutable Tick tick; 72 73 // The cycle counter value corresponding to the current value of 74 // 'tick' 75 mutable Cycles cycle; 76 77 /** 78 * Align cycle and tick to the next clock edge if not already done. When 79 * complete, tick must be at least curTick(). 80 */ 81 void 82 update() const 83 { 84 // both tick and cycle are up-to-date and we are done, note 85 // that the >= is important as it captures cases where tick 86 // has already passed curTick() 87 if (tick >= curTick()) 88 return; 89 90 // optimise for the common case and see if the tick should be 91 // advanced by a single clock period 92 tick += clockPeriod(); 93 ++cycle; 94 95 // see if we are done at this point 96 if (tick >= curTick()) 97 return; 98 99 // if not, we have to recalculate the cycle and tick, we 100 // perform the calculations in terms of relative cycles to 101 // allow changes to the clock period in the future 102 Cycles elapsedCycles(divCeil(curTick() - tick, clockPeriod())); 103 cycle += elapsedCycles; 104 tick += elapsedCycles * clockPeriod(); 105 } 106 107 /** 108 * The clock domain this clocked object belongs to 109 */ 110 ClockDomain &clockDomain; 111 112 protected: 113 114 /** 115 * Create a clocked object and set the clock domain based on the 116 * parameters. 117 */ 118 Clocked(ClockDomain &clk_domain) 119 : tick(0), cycle(0), clockDomain(clk_domain) 120 { 121 // Register with the clock domain, so that if the clock domain 122 // frequency changes, we can update this object's tick. 123 clockDomain.registerWithClockDomain(this); 124 } 125 126 Clocked(Clocked &) = delete; 127 Clocked &operator=(Clocked &) = delete; 128 129 /** 130 * Virtual destructor due to inheritance. 131 */ 132 virtual ~Clocked() { } 133 134 /** 135 * Reset the object's clock using the current global tick value. Likely 136 * to be used only when the global clock is reset. Currently, this done 137 * only when Ruby is done warming up the memory system. 138 */ 139 void 140 resetClock() const 141 { 142 Cycles elapsedCycles(divCeil(curTick(), clockPeriod())); 143 cycle = elapsedCycles; 144 tick = elapsedCycles * clockPeriod(); 145 } 146 147 /** 148 * A hook subclasses can implement so they can do any extra work that's 149 * needed when the clock rate is changed. 150 */ 151 virtual void clockPeriodUpdated() {} 152 153 public: 154 155 /** 156 * Update the tick to the current tick. 157 */ 158 void 159 updateClockPeriod() 160 { 161 update(); 162 clockPeriodUpdated(); 163 } 164 165 /** 166 * Determine the tick when a cycle begins, by default the current one, but 167 * the argument also enables the caller to determine a future cycle. When 168 * curTick() is on a clock edge, the number of cycles in the parameter is 169 * added to curTick() to be returned. When curTick() is not aligned to a 170 * clock edge, the number of cycles in the parameter is added to the next 171 * clock edge. 172 * 173 * @param cycles The number of cycles into the future 174 * 175 * @return The start tick when the requested clock edge occurs. Precisely, 176 * this tick can be 177 * curTick() + [0, clockPeriod()) + clockPeriod() * cycles 178 */ 179 Tick 180 clockEdge(Cycles cycles=Cycles(0)) const 181 { 182 // align tick to the next clock edge 183 update(); 184 185 // figure out when this future cycle is 186 return tick + clockPeriod() * cycles; 187 } 188 189 /** 190 * Determine the current cycle, corresponding to a tick aligned to 191 * a clock edge. 192 * 193 * @return When curTick() is on a clock edge, return the Cycle corresponding 194 * to that clock edge. When curTick() is not on a clock edge, return the 195 * Cycle corresponding to the next clock edge. 196 */ 197 Cycles 198 curCycle() const 199 { 200 // align cycle to the next clock edge. 201 update(); 202 203 return cycle; 204 } 205 206 /** 207 * Based on the clock of the object, determine the start tick of the first 208 * cycle that is at least one cycle in the future. When curTick() is at the 209 * current cycle edge, this returns the next clock edge. When calling this 210 * during the middle of a cycle, this returns 2 clock edges in the future. 211 * 212 * @return The start tick of the first cycle that is at least one cycle in 213 * the future. Precisely, the returned tick can be in the range 214 * curTick() + [clockPeriod(), 2 * clockPeriod()) 215 */ 216 Tick nextCycle() const { return clockEdge(Cycles(1)); } 217 218 uint64_t frequency() const { return SimClock::Frequency / clockPeriod(); } 219 220 Tick clockPeriod() const { return clockDomain.clockPeriod(); } 221 222 double voltage() const { return clockDomain.voltage(); } 223 224 Cycles 225 ticksToCycles(Tick t) const 226 { 227 return Cycles(divCeil(t, clockPeriod())); 228 } 229 230 Tick cyclesToTicks(Cycles c) const { return clockPeriod() * c; } 231}; 232 233/** 234 * The ClockedObject class extends the SimObject with a clock and 235 * accessor functions to relate ticks to the cycles of the object. 236 */ 237class ClockedObject : public SimObject, public Clocked 238{ 239 public: 240 ClockedObject(const ClockedObjectParams *p); 241 242 /** Parameters of ClockedObject */ 243 typedef ClockedObjectParams Params; 244 const Params * 245 params() const 246 { 247 return reinterpret_cast<const Params*>(_params); 248 } 249 250 void serialize(CheckpointOut &cp) const override; 251 void unserialize(CheckpointIn &cp) override; 252 253 Enums::PwrState pwrState() const { return _currPwrState; } 254 255 std::string 256 pwrStateName() const 257 { 258 return Enums::PwrStateStrings[_currPwrState]; 259 } 260 261 /** Returns the percentage residency for each power state */ 262 std::vector<double> pwrStateWeights() const; 263 264 /** 265 * Record stats values like state residency by computing the time 266 * difference from previous update. Also, updates the previous evaluation 267 * tick once all stats are recorded. 268 * Usually called on power state change and stats dump callback. 269 */ 270 void computeStats(); 271 272 void pwrState(Enums::PwrState); 273 void regStats() override; 274 275 protected: 276 277 /** To keep track of the current power state */ 278 Enums::PwrState _currPwrState; 279 280 Tick prvEvalTick; 281 282 Stats::Scalar numPwrStateTransitions; 283 Stats::Distribution pwrStateClkGateDist; 284 Stats::Vector pwrStateResidencyTicks; 285 286}; 287 288class ClockedObjectDumpCallback : public Callback 289{ 290 ClockedObject *co; 291 public: 292 ClockedObjectDumpCallback(ClockedObject *co_t) : co(co_t) {} 293 virtual void process() { co->computeStats(); }; 294}; 295 296#endif //__SIM_CLOCKED_OBJECT_HH__ 297