dot_writer.py revision 13714
1# Copyright (c) 2012-2013 ARM Limited
2# All rights reserved.
3#
4# The license below extends only to copyright in the software and shall
5# not be construed as granting a license to any other intellectual
6# property including but not limited to intellectual property relating
7# to a hardware implementation of the functionality of the software
8# licensed hereunder.  You may use the software subject to the license
9# terms below provided that you ensure that this notice is replicated
10# unmodified and in its entirety in all distributions of the software,
11# modified or unmodified, in source code or in binary form.
12#
13# Redistribution and use in source and binary forms, with or without
14# modification, are permitted provided that the following conditions are
15# met: redistributions of source code must retain the above copyright
16# notice, this list of conditions and the following disclaimer;
17# redistributions in binary form must reproduce the above copyright
18# notice, this list of conditions and the following disclaimer in the
19# documentation and/or other materials provided with the distribution;
20# neither the name of the copyright holders nor the names of its
21# contributors may be used to endorse or promote products derived from
22# this software without specific prior written permission.
23#
24# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
25# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
26# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
27# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
28# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
29# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
30# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
31# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
32# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
33# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
34# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
35#
36# Authors: Andreas Hansson
37#          Uri Wiener
38#          Sascha Bischoff
39
40#####################################################################
41#
42# System visualization using DOT
43#
44# While config.ini and config.json provide an almost complete listing
45# of a system's components and connectivity, they lack a birds-eye
46# view. The output generated by do_dot() is a DOT-based figure (as a
47# pdf and an editable svg file) and its source dot code. Nodes are
48# components, and edges represent the memory hierarchy: the edges are
49# directed, from a master to slave. Initially all nodes are
50# generated, and then all edges are added. do_dot should be called
51# with the top-most SimObject (namely root but not necessarily), the
52# output folder and the output dot source filename. From the given
53# node, both processes (node and edge creation) is performed
54# recursivly, traversing all children of the given root.
55#
56# pydot is required. When missing, no output will be generated.
57#
58#####################################################################
59
60from __future__ import print_function
61from __future__ import absolute_import
62
63import m5, os, re
64from m5.SimObject import isRoot, isSimObjectVector
65from m5.params import PortRef, isNullPointer
66from m5.util import warn
67try:
68    import pydot
69except:
70    pydot = False
71
72def simnode_children(simNode):
73    for child in simNode._children.values():
74        if isNullPointer(child):
75            continue
76        if isSimObjectVector(child):
77            for obj in child:
78                if not isNullPointer(obj):
79                    yield obj
80        else:
81            yield child
82
83# need to create all nodes (components) before creating edges (memory channels)
84def dot_create_nodes(simNode, callgraph):
85    if isRoot(simNode):
86        label = "root"
87    else:
88        label = simNode._name
89    full_path = re.sub('\.', '_', simNode.path())
90    # add class name under the label
91    label = "\"" + label + " \\n: " + simNode.__class__.__name__ + "\""
92
93    # each component is a sub-graph (cluster)
94    cluster = dot_create_cluster(simNode, full_path, label)
95
96    # create nodes per port
97    for port_name in simNode._ports.keys():
98        port = simNode._port_refs.get(port_name, None)
99        if port != None:
100            full_port_name = full_path + "_" + port_name
101            port_node = dot_create_node(simNode, full_port_name, port_name)
102            cluster.add_node(port_node)
103
104    # recurse to children
105    for child in simnode_children(simNode):
106        dot_create_nodes(child, cluster)
107
108    callgraph.add_subgraph(cluster)
109
110# create all edges according to memory hierarchy
111def dot_create_edges(simNode, callgraph):
112    for port_name in simNode._ports.keys():
113        port = simNode._port_refs.get(port_name, None)
114        if port != None:
115            full_path = re.sub('\.', '_', simNode.path())
116            full_port_name = full_path + "_" + port_name
117            port_node = dot_create_node(simNode, full_port_name, port_name)
118            # create edges
119            if isinstance(port, PortRef):
120                dot_add_edge(simNode, callgraph, full_port_name, port)
121            else:
122                for p in port.elements:
123                    dot_add_edge(simNode, callgraph, full_port_name, p)
124
125    # recurse to children
126    for child in simnode_children(simNode):
127        dot_create_edges(child, callgraph)
128
129def dot_add_edge(simNode, callgraph, full_port_name, peerPort):
130    if peerPort.role == "MASTER":
131        peer_port_name = re.sub('\.', '_', peerPort.peer.simobj.path() \
132                + "." + peerPort.peer.name)
133        callgraph.add_edge(pydot.Edge(full_port_name, peer_port_name))
134
135def dot_create_cluster(simNode, full_path, label):
136    # get the parameter values of the node and use them as a tooltip
137    ini_strings = []
138    for param in sorted(simNode._params.keys()):
139        value = simNode._values.get(param)
140        if value != None:
141            # parameter name = value in HTML friendly format
142            ini_strings.append(str(param) + "=" +
143                               simNode._values[param].ini_str())
144    # join all the parameters with an HTML newline
145    tooltip = "
".join(ini_strings)
146
147    return pydot.Cluster( \
148                         full_path, \
149                         shape = "Mrecord", \
150                         label = label, \
151                         tooltip = "\"" + tooltip + "\"", \
152                         style = "\"rounded, filled\"", \
153                         color = "#000000", \
154                         fillcolor = dot_gen_colour(simNode), \
155                         fontname = "Arial", \
156                         fontsize = "14", \
157                         fontcolor = "#000000" \
158                         )
159
160def dot_create_node(simNode, full_path, label):
161    return pydot.Node( \
162                         full_path, \
163                         shape = "Mrecord", \
164                         label = label, \
165                         style = "\"rounded, filled\"", \
166                         color = "#000000", \
167                         fillcolor = dot_gen_colour(simNode, True), \
168                         fontname = "Arial", \
169                         fontsize = "14", \
170                         fontcolor = "#000000" \
171                         )
172
173# an enumerator for different kinds of node types, at the moment we
174# discern the majority of node types, with the caches being the
175# notable exception
176class NodeType:
177    SYS = 0
178    CPU = 1
179    XBAR = 2
180    MEM = 3
181    DEV = 4
182    OTHER = 5
183
184# based on the sim object, determine the node type
185def get_node_type(simNode):
186    if isinstance(simNode, m5.objects.System):
187        return NodeType.SYS
188    # NULL ISA has no BaseCPU or PioDevice, so check if these names
189    # exists before using them
190    elif 'BaseCPU' in dir(m5.objects) and \
191            isinstance(simNode, m5.objects.BaseCPU):
192        return NodeType.CPU
193    elif 'PioDevice' in dir(m5.objects) and \
194            isinstance(simNode, m5.objects.PioDevice):
195        return NodeType.DEV
196    elif isinstance(simNode, m5.objects.BaseXBar):
197        return NodeType.XBAR
198    elif isinstance(simNode, m5.objects.AbstractMemory):
199        return NodeType.MEM
200    else:
201        return NodeType.OTHER
202
203# based on the node type, determine the colour as an RGB tuple, the
204# palette is rather arbitrary at this point (some coherent natural
205# tones), and someone that feels artistic should probably have a look
206def get_type_colour(nodeType):
207    if nodeType == NodeType.SYS:
208        return (228, 231, 235)
209    elif nodeType == NodeType.CPU:
210        return (187, 198, 217)
211    elif nodeType == NodeType.XBAR:
212        return (111, 121, 140)
213    elif nodeType == NodeType.MEM:
214        return (94, 89, 88)
215    elif nodeType == NodeType.DEV:
216        return (199, 167, 147)
217    elif nodeType == NodeType.OTHER:
218        # use a relatively gray shade
219        return (186, 182, 174)
220
221# generate colour for a node, either corresponding to a sim object or a
222# port
223def dot_gen_colour(simNode, isPort = False):
224    # determine the type of the current node, and also its parent, if
225    # the node is not the same type as the parent then we use the base
226    # colour for its type
227    node_type = get_node_type(simNode)
228    if simNode._parent:
229        parent_type = get_node_type(simNode._parent)
230    else:
231        parent_type = NodeType.OTHER
232
233    # if this node is the same type as the parent, then scale the
234    # colour based on the depth such that the deeper levels in the
235    # hierarchy get darker colours
236    if node_type == parent_type:
237        # start out with a depth of zero
238        depth = 0
239        parent = simNode._parent
240        # find the closes parent that is not the same type
241        while parent and get_node_type(parent) == parent_type:
242            depth = depth + 1
243            parent = parent._parent
244        node_colour = get_type_colour(parent_type)
245        # slightly arbitrary, but assume that the depth is less than
246        # five levels
247        r, g, b = map(lambda x: x * max(1 - depth / 7.0, 0.3), node_colour)
248    else:
249        node_colour = get_type_colour(node_type)
250        r, g, b = node_colour
251
252    # if we are colouring a port, then make it a slightly darker shade
253    # than the node that encapsulates it, once again use a magic constant
254    if isPort:
255        r, g, b = map(lambda x: 0.8 * x, (r, g, b))
256
257    return dot_rgb_to_html(r, g, b)
258
259def dot_rgb_to_html(r, g, b):
260    return "#%.2x%.2x%.2x" % (r, g, b)
261
262# We need to create all of the clock domains. We abuse the alpha channel to get
263# the correct domain colouring.
264def dot_add_clk_domain(c_dom, v_dom):
265    label = "\"" + str(c_dom) + "\ :\ " + str(v_dom) + "\""
266    label = re.sub('\.', '_', str(label))
267    full_path = re.sub('\.', '_', str(c_dom))
268    return pydot.Cluster( \
269                     full_path, \
270                     shape = "Mrecord", \
271                     label = label, \
272                     style = "\"rounded, filled, dashed\"", \
273                     color = "#000000", \
274                     fillcolor = "#AFC8AF8F", \
275                     fontname = "Arial", \
276                     fontsize = "14", \
277                     fontcolor = "#000000" \
278                     )
279
280def dot_create_dvfs_nodes(simNode, callgraph, domain=None):
281    if isRoot(simNode):
282        label = "root"
283    else:
284        label = simNode._name
285    full_path = re.sub('\.', '_', simNode.path())
286    # add class name under the label
287    label = "\"" + label + " \\n: " + simNode.__class__.__name__ + "\""
288
289    # each component is a sub-graph (cluster)
290    cluster = dot_create_cluster(simNode, full_path, label)
291
292    # create nodes per port
293    for port_name in simNode._ports.keys():
294        port = simNode._port_refs.get(port_name, None)
295        if port != None:
296            full_port_name = full_path + "_" + port_name
297            port_node = dot_create_node(simNode, full_port_name, port_name)
298            cluster.add_node(port_node)
299
300    # Dictionary of DVFS domains
301    dvfs_domains = {}
302
303    # recurse to children
304    for child in simnode_children(simNode):
305        try:
306            c_dom = child.__getattr__('clk_domain')
307            v_dom = c_dom.__getattr__('voltage_domain')
308        except AttributeError:
309            # Just re-use the domain from above
310            c_dom = domain
311            v_dom = c_dom.__getattr__('voltage_domain')
312            pass
313
314        if c_dom == domain or c_dom == None:
315            dot_create_dvfs_nodes(child, cluster, domain)
316        else:
317            if c_dom not in dvfs_domains:
318                dvfs_cluster = dot_add_clk_domain(c_dom, v_dom)
319                dvfs_domains[c_dom] = dvfs_cluster
320            else:
321                dvfs_cluster = dvfs_domains[c_dom]
322            dot_create_dvfs_nodes(child, dvfs_cluster, c_dom)
323
324    for key in dvfs_domains:
325        cluster.add_subgraph(dvfs_domains[key])
326
327    callgraph.add_subgraph(cluster)
328
329def do_dot(root, outdir, dotFilename):
330    if not pydot:
331        return
332    # * use ranksep > 1.0 for for vertical separation between nodes
333    # especially useful if you need to annotate edges using e.g. visio
334    # which accepts svg format
335    # * no need for hoizontal separation as nothing moves horizonally
336    callgraph = pydot.Dot(graph_type='digraph', ranksep='1.3')
337    dot_create_nodes(root, callgraph)
338    dot_create_edges(root, callgraph)
339    dot_filename = os.path.join(outdir, dotFilename)
340    callgraph.write(dot_filename)
341    try:
342        # dot crashes if the figure is extremely wide.
343        # So avoid terminating simulation unnecessarily
344        callgraph.write_svg(dot_filename + ".svg")
345        callgraph.write_pdf(dot_filename + ".pdf")
346    except:
347        warn("failed to generate dot output from %s", dot_filename)
348
349def do_dvfs_dot(root, outdir, dotFilename):
350    if not pydot:
351        return
352
353    # There is a chance that we are unable to resolve the clock or
354    # voltage domains. If so, we fail silently.
355    try:
356        dvfsgraph = pydot.Dot(graph_type='digraph', ranksep='1.3')
357        dot_create_dvfs_nodes(root, dvfsgraph)
358        dot_create_edges(root, dvfsgraph)
359        dot_filename = os.path.join(outdir, dotFilename)
360        dvfsgraph.write(dot_filename)
361    except:
362        warn("Failed to generate dot graph for DVFS domains")
363        return
364
365    try:
366        # dot crashes if the figure is extremely wide.
367        # So avoid terminating simulation unnecessarily
368        dvfsgraph.write_svg(dot_filename + ".svg")
369        dvfsgraph.write_pdf(dot_filename + ".pdf")
370    except:
371        warn("failed to generate dot output from %s", dot_filename)
372