1/*
2 * Copyright (c) 2014-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Kanishk Sugand
38 */
39
40#include "mem/stack_dist_calc.hh"
41
42#include "base/chunk_generator.hh"
43#include "base/intmath.hh"
44#include "base/trace.hh"
45#include "debug/StackDist.hh"
46
47StackDistCalc::StackDistCalc(bool verify_stack)
48    : index(0),
49      verifyStack(verify_stack)
50{
51    // Instantiate a new root and leaf layer
52    // Map type variable, representing a layer in the tree
53    IndexNodeMap tree_level;
54
55    // Initialize tree count for leaves
56    nextIndex.push_back(0);
57
58    // Add the initial leaf layer to the tree
59    tree.push_back(tree_level);
60
61    // Create a root node. Node type variable in the topmost layer
62    Node* root_node = new Node();
63
64    // Initialize tree count for root
65    nextIndex.push_back(1);
66
67    // Add the empty root layer to the tree
68    tree.push_back(tree_level);
69
70    // Add the initial root to the tree
71    tree[1][root_node->nodeIndex] = root_node;
72}
73
74StackDistCalc::~StackDistCalc()
75{
76    // Walk through each layer and destroy the nodes
77    for (auto& layer : tree) {
78        for (auto& index_node : layer) {
79            // each map entry contains an index and a node
80            delete index_node.second;
81        }
82        // Clear each layer in the tree
83        layer.clear();
84    }
85
86    // Clear the tree
87    tree.clear();
88    aiMap.clear();
89    nextIndex.clear();
90
91    // For verification
92    stack.clear();
93}
94
95// The updateSum method is a recursive function which updates
96// the node sums till the root. It also deletes the nodes that
97// are not used anymore.
98uint64_t
99StackDistCalc::updateSum(Node* node, bool from_left,
100                         uint64_t sum_from_below, uint64_t level,
101                         uint64_t stack_dist, bool discard_node)
102{
103    ++level;
104
105    // Make a copy of the node variables and work on them
106    // as a node may be deleted by this function
107    uint64_t node_sum_l = node->sumLeft;
108    uint64_t node_sum_r = node->sumRight;
109    bool node_left = node->isLeftNode;
110    bool node_discard_left = node->discardLeft;
111    bool node_discard_right = node->discardRight;
112    uint64_t node_n_index = node->nodeIndex;
113    Node* node_parent_ptr = node->parent;
114
115    // For verification
116    if (verifyStack) {
117        // This sanity check makes sure that the left_sum and
118        // right_sum of the node is not greater than the
119        // maximum possible value given by the leaves below it
120        // for example a node in layer 3 (tree[3]) can at most
121        // have 8 leaves (4 to the left and 4 to the right)
122        // thus left_sum and right_sum should be <= 4
123        panic_if(node_sum_l > (1 << (level - 1)),
124                 "Error in sum left of level %ul, node index %ull, "
125                 "Sum =  %ull \n", level, node_n_index, node_sum_l);
126
127        panic_if(node_sum_r > (1 << (level - 1)),
128                 "Error in sum right of level %ul, node index %ull, "
129                 "Sum =  %ull \n", level, node_n_index, node_sum_r);
130    }
131
132    // Update the left sum or the right sum depending on the
133    // from_left flag. Variable stack_dist is updated only
134    // when arriving from Left.
135    if (from_left) {
136        // update sumLeft
137        node_sum_l = sum_from_below;
138        stack_dist +=  node_sum_r;
139    } else {
140        // update sum_r
141        node_sum_r = sum_from_below;
142    }
143
144    // sum_from_below == 0 can be a leaf discard operation
145    if (discard_node && !sum_from_below) {
146        if (from_left)
147            node_discard_left = true;
148        else
149            node_discard_right = true;
150    }
151
152    // Update the node variables with new values
153    node->nodeIndex = node_n_index;
154    node->sumLeft = node_sum_l;
155    node->sumRight = node_sum_r;
156    node->isLeftNode = node_left;
157    node->discardLeft = node_discard_left;
158    node->discardRight = node_discard_right;
159
160    // Delete the node if it is not required anymore
161    if (node_discard_left && node_discard_right &&
162        discard_node && node_parent_ptr && !sum_from_below) {
163        delete node;
164        tree[level].erase(node_n_index);
165        discard_node = true;
166    } else {
167        // propogate discard_node as false upwards if the
168        // above conditions are not met.
169        discard_node = false;
170    }
171
172    // Recursively call the updateSum operation till the
173    // root node is reached
174    if (node_parent_ptr) {
175        stack_dist = updateSum(node_parent_ptr, node_left,
176                               node_sum_l + node_sum_r,
177                               level, stack_dist, discard_node);
178    }
179
180    return stack_dist;
181}
182
183// This function is called by the calcStackDistAndUpdate function
184// If is_new_leaf is true then a new leaf is added otherwise a leaf
185// removed from the tree. In both cases the tree is updated using
186// the updateSum operation.
187uint64_t
188StackDistCalc::updateSumsLeavesToRoot(Node* node, bool is_new_leaf)
189{
190    uint64_t level = 0;
191    uint64_t stack_dist = 0;
192
193    if (is_new_leaf) {
194        node->sumLeft = 1;
195        updateSum(node->parent,
196                  node->isLeftNode, node->sumLeft,
197                  level, 0, false);
198
199        stack_dist = Infinity;
200    } else {
201        node->sumLeft = 0;
202        stack_dist = updateSum(node->parent,
203                                  node->isLeftNode, 0,
204                                  level, stack_dist, true);
205    }
206
207    return stack_dist;
208}
209
210// This method is a recursive function which calculates
211// the node sums till the root.
212uint64_t
213StackDistCalc::getSum(Node* node, bool from_left, uint64_t sum_from_below,
214                      uint64_t stack_dist, uint64_t level) const
215{
216    ++level;
217    // Variable stack_dist is updated only
218    // when arriving from Left.
219    if (from_left) {
220        stack_dist += node->sumRight;
221    }
222
223    // Recursively call the getSum operation till the
224    // root node is reached
225    if (node->parent) {
226        stack_dist = getSum(node->parent, node->isLeftNode,
227                            node->sumLeft + node->sumRight,
228                            stack_dist, level);
229    }
230
231    return stack_dist;
232}
233
234// This function is called by the calcStackDistance function
235uint64_t
236StackDistCalc::getSumsLeavesToRoot(Node* node) const
237{
238    return  getSum(node->parent, node->isLeftNode, 0, 0, 0);
239}
240
241// Update tree is a tree balancing operation which maintains
242// the binary tree structure. This method is called whenever
243// index%2 == 0 (i.e. every alternate cycle)
244// The two main operation are :
245// OP1. moving the root node one layer up if index counter
246//    crosses power of 2
247// OP2. Addition of intermediate nodes as and when required
248//      and linking them to their parents in the layer above.
249void
250StackDistCalc::updateTree()
251{
252    uint64_t i;
253
254    if (isPowerOf2(index)) {
255        // OP1. moving the root node one layer up if index counter
256        //    crosses power of 2
257        // If index counter crosses a power of 2, then add a
258        // new tree layer above and create a new Root node in it.
259        // After the root is created the old node
260        // in the layer below is updated to point to this
261        // newly created root node. The sum_l of this new root node
262        // becomes the sum_l + sum_r of the old node.
263        //
264        // After this root update operation a chain of intermediate
265        // nodes is created from root layer to tree[1](one layer
266        // above the leaf layer)
267
268        // Create a new root node
269        Node* newRootNode = new Node();
270
271        // Update its sum_l as the sum_l+sum_r from below
272        newRootNode->sumLeft = tree[getTreeDepth()][0]->sumRight +
273            tree[getTreeDepth()][0]->sumLeft;
274        // Update its discard left flag if the node below has
275        // has both discardLeft and discardRight set.
276        newRootNode->discardLeft = tree[getTreeDepth()][0]->discardLeft &&
277            tree[getTreeDepth()][0]->discardRight;
278
279        // Map type variable, representing a layer in the tree
280        IndexNodeMap treeLevel;
281        // Add a new layer to the tree
282        tree.push_back(treeLevel);
283        nextIndex.push_back(1);
284        tree[getTreeDepth()][newRootNode->nodeIndex] = newRootNode;
285
286        // Update the parent pointer at lower layer to
287        // point to newly created root node
288        tree[getTreeDepth() - 1][0]->parent = tree[getTreeDepth()][0];
289
290        // Add intermediate nodes from root till bottom (one layer above the
291        // leaf layer)
292        for (i = getTreeDepth() - 1; i >= 1; --i) {
293            Node* newINode = new Node();
294            // newNode is left or right child depending on the number of nodes
295            // in that layer
296            if (nextIndex[i] % 2 == 0) {
297                newINode->isLeftNode = true;
298            } else {
299                newINode->isLeftNode = false;
300            }
301
302            newINode->parent = tree[i + 1][nextIndex[i + 1] - 1];
303            newINode->nodeIndex = ++nextIndex[i] - 1;
304            tree[i][newINode->nodeIndex] = newINode;
305        }
306    } else {
307        // OP2. Addition of intermediate nodes as and when required
308        //      and linking them to their parents in the layer above.
309        //
310        // At layer 1 a new INode is added whenever index%(2^1)==0
311        // (multiples of 2)
312        //
313        // At layer 2 a new INode is added whenever index%(2^2)==0
314        // (multiples of 4)
315        //
316        // At layer 3 a new INode is added whenever index%(2^3)==0
317        // (multiples of 8)
318        //...
319        //
320        // At layer N a new INode is added whenever index%(2^N)==0
321        // (multiples of 2^N)
322        for (i = getTreeDepth() - 1; i >= 1; --i) {
323            // Traverse each layer from root to leaves and add a new
324            // intermediate node if required. Link the parent_ptr of
325            // the new node to the parent in the above layer.
326
327            if ((index % (1 << i)) == 0) {
328                // Checks if current (index % 2^treeDepth) == 0 if true
329                // a new node at that layer is created
330                Node* newINode = new Node();
331
332                // newNode is left or right child depending on the
333                // number of nodes in that layer.
334                if (nextIndex[i] % 2 == 0) {
335                    newINode->isLeftNode = true;
336                } else {
337                    newINode->isLeftNode = false;
338                }
339
340                // Pointing to its parent in the upper layer
341                newINode->parent = tree[i + 1][nextIndex[i + 1] - 1];
342                newINode->nodeIndex = ++nextIndex[i] - 1;
343                tree[i][newINode->nodeIndex] = newINode;
344            }
345        }
346    }
347}
348
349// This function is called everytime to get the stack distance and add
350// a new node. A feature to mark an old node in the tree is
351// added. This is useful if it is required to see the reuse
352// pattern. For example, BackInvalidates from the lower level (Membus)
353// to L2, can be marked (isMarked flag of Node set to True). And then
354// later if this same address is accessed by L1, the value of the
355// isMarked flag would be True. This would give some insight on how
356// the BackInvalidates policy of the lower level affect the read/write
357// accesses in an application.
358std::pair< uint64_t, bool>
359StackDistCalc::calcStackDistAndUpdate(const Addr r_address, bool addNewNode)
360{
361    Node* newLeafNode;
362
363    auto ai = aiMap.lower_bound(r_address);
364
365    // Default value of flag indicating as the left or right leaf
366    bool isLeft     = true;
367    // Default value of isMarked flag for each node.
368    bool _mark = false;
369    // By default stackDistacne is treated as infinity
370    uint64_t stack_dist;
371
372    // Lookup aiMap by giving address as the key:
373    // If found take address and Lookup in tree
374    // Update tree from leaves by making B(found index) = 0
375    // Add sums to right till root while Updating them
376    // Stack Distance of that address sums to right
377    if (ai != aiMap.end() && !(aiMap.key_comp()(r_address, ai->first))) {
378        // key already exists
379        // save the index counter value when this address was
380        // encountered before and update it to the current index value
381        uint64_t r_index = ai->second;
382
383        if (addNewNode) {
384            // Update aiMap aiMap(Address) = current index
385            ai->second   = index;
386        } else {
387            aiMap.erase(r_address);
388        }
389
390        // Call update tree operation on the tree starting with
391        // the r_index value found above. This function would return
392        // the value of the stack distcance.
393        stack_dist = updateSumsLeavesToRoot(tree[0][r_index], false);
394        newLeafNode = tree[0][r_index];
395        // determine if this node was marked earlier
396        _mark = newLeafNode->isMarked;
397        delete newLeafNode;
398        tree[0].erase(r_index);
399    } else {
400        if (addNewNode) {
401            // Update aiMap aiMap(Address) = current index
402            aiMap[r_address] = index;
403        }
404        // Update infinity bin count
405        // By default stackDistacne is treated as infinity
406        stack_dist = Infinity;
407    }
408
409    if (addNewNode) {
410        // If index%2 == 0 then update tree
411        if (index % 2 == 0) {
412            updateTree();
413        } else {
414            // At odd values of index counter, a new right-type node is
415            // added to the leaf layer, else a left-type node is added
416            isLeft = false;
417        }
418
419        // Add new leaf node in the leaf layer (tree[0])
420        // set n_index = current index
421        newLeafNode = new Node();
422        ++nextIndex[0];
423        newLeafNode->nodeIndex=index;
424        newLeafNode->isLeftNode=isLeft;
425        // Point the parent pointer to the intermediate node above
426        newLeafNode->parent = tree[1][nextIndex[1] - 1];
427        tree[0][index] = newLeafNode;
428        // call an update operation which would update the tree after
429        // addition of this new leaf node.
430        updateSumsLeavesToRoot(tree[0][index], true);
431
432        // For verification
433        if (verifyStack) {
434            // This function checks the sanity of the tree to make sure the
435            // last node in the link of parent pointers is the root node.
436            // It takes a leaf node as an argument and traveses upwards till
437            // the root layer to check if the last parent is null
438            sanityCheckTree(tree[0][index]);
439
440            // Push the same element in debug stack, and check
441            uint64_t verify_stack_dist = verifyStackDist(r_address, true);
442            panic_if(verify_stack_dist != stack_dist,
443                     "Expected stack-distance for address \
444                             %#lx is %#lx but found %#lx",
445                     r_address, verify_stack_dist, stack_dist);
446            printStack();
447        }
448
449        // The index counter is updated at the end of each transaction
450        // (unique or non-unique)
451        ++index;
452    }
453
454    return (std::make_pair(stack_dist, _mark));
455}
456
457// This function is called everytime to get the stack distance
458// no new node is added. It can be used to mark a previous access
459// and inspect the value of the mark flag.
460std::pair< uint64_t, bool>
461StackDistCalc::calcStackDist(const Addr r_address, bool mark)
462{
463    // Default value of isMarked flag for each node.
464    bool _mark = false;
465
466    auto ai = aiMap.lower_bound(r_address);
467
468    // By default stackDistacne is treated as infinity
469    uint64_t stack_dist = 0;
470
471    // Lookup aiMap by giving address as the key:
472    // If found take address and Lookup in tree
473    // Add sums to right till root
474    // Stack Distance of that address sums to right
475    if (ai != aiMap.end() && !(aiMap.key_comp()(r_address, ai->first))) {
476        // key already exists
477        // save the index counter value when this address was
478        // encountered before
479        uint64_t r_index = ai->second;
480
481        // Get the value of mark flag if previously marked
482        _mark = tree[0][r_index]->isMarked;
483        // Mark the leaf node if required
484        tree[0][r_index]->isMarked = mark;
485
486        // Call get sums operation on the tree starting with
487        // the r_index value found above. This function would return
488        // the value of the stack distcance.
489        stack_dist = getSumsLeavesToRoot(tree[0][r_index]);
490    } else {
491        // Update infinity bin count
492        // By default stackDistacne is treated as infinity
493        stack_dist = Infinity;
494    }
495
496    // For verification
497    if (verifyStack) {
498        // Calculate the SD of the same address in the debug stack
499        uint64_t verify_stack_dist = verifyStackDist(r_address);
500        panic_if(verify_stack_dist != stack_dist,
501                 "Expected stack-distance for address \
502                             %#lx is %#lx but found %#lx",
503                 r_address, verify_stack_dist, stack_dist);
504
505        printStack();
506    }
507
508    return std::make_pair(stack_dist, _mark);
509}
510
511// For verification
512// Simple sanity check for the tree
513void
514StackDistCalc::sanityCheckTree(const Node* node, uint64_t level) const
515{
516    const Node* next_up = node->parent;
517
518    for (uint64_t i = level + 1; i < getTreeDepth() - level; ++i) {
519        next_up = next_up->parent;
520        panic_if(!next_up, "Sanity check failed for node %ull \n",
521                 node->nodeIndex);
522    }
523
524    // At the root layer the parent_ptr should be null
525    panic_if(next_up->parent, "Sanity check failed for node %ull \n",
526             node->nodeIndex);
527}
528
529// This method can be called to compute the stack distance in a naive
530// way It can be used to verify the functionality of the stack
531// distance calculator. It uses std::vector to compute the stack
532// distance using a naive stack.
533uint64_t
534StackDistCalc::verifyStackDist(const Addr r_address, bool update_stack)
535{
536    bool found = false;
537    uint64_t stack_dist = 0;
538    auto a = stack.rbegin();
539
540    for (; a != stack.rend(); ++a) {
541        if (*a == r_address) {
542            found = true;
543            break;
544        } else {
545            ++stack_dist;
546        }
547    }
548
549    if (found) {
550        ++a;
551        if (update_stack)
552            stack.erase(a.base());
553    } else {
554        stack_dist = Infinity;
555    }
556
557    if (update_stack)
558        stack.push_back(r_address);
559
560    return stack_dist;
561}
562
563// This method is useful to print top n entities in the stack.
564void
565StackDistCalc::printStack(int n) const
566{
567    Node* node;
568    int count = 0;
569
570    DPRINTF(StackDist, "Printing last %d entries in tree\n", n);
571
572    // Walk through leaf layer to display the last n nodes
573    for (auto it = tree[0].rbegin(); (count < n) && (it != tree[0].rend());
574         ++it, ++count) {
575        node = it->second;
576        uint64_t r_index = node->nodeIndex;
577
578        // Lookup aiMap using the index returned by the leaf iterator
579        for (auto ai = aiMap.rbegin(); ai != aiMap.rend(); ++ai) {
580            if (ai->second == r_index) {
581                DPRINTF(StackDist,"Tree leaves, Rightmost-[%d] = %#lx\n",
582                        count, ai->first);
583                break;
584            }
585        }
586    }
587
588    DPRINTF(StackDist,"Tree depth = %#ld\n", getTreeDepth());
589
590    if (verifyStack) {
591        DPRINTF(StackDist,"Printing Last %d entries in VerifStack \n", n);
592        count = 0;
593        for (auto a = stack.rbegin(); (count < n) && (a != stack.rend());
594             ++a, ++count) {
595            DPRINTF(StackDist, "Verif Stack, Top-[%d] = %#lx\n", count, *a);
596        }
597    }
598}
599