RubyPort.cc revision 9206:f6483789d23a
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2009 Advanced Micro Devices, Inc.
15 * Copyright (c) 2011 Mark D. Hill and David A. Wood
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42#include "cpu/testers/rubytest/RubyTester.hh"
43#include "debug/Config.hh"
44#include "debug/Drain.hh"
45#include "debug/Ruby.hh"
46#include "mem/protocol/AccessPermission.hh"
47#include "mem/ruby/slicc_interface/AbstractController.hh"
48#include "mem/ruby/system/RubyPort.hh"
49#include "sim/system.hh"
50
51RubyPort::RubyPort(const Params *p)
52    : MemObject(p), m_version(p->version), m_controller(NULL),
53      m_mandatory_q_ptr(NULL),
54      pio_port(csprintf("%s-pio-port", name()), this),
55      m_usingRubyTester(p->using_ruby_tester), m_request_cnt(0),
56      drainEvent(NULL), ruby_system(p->ruby_system), system(p->system),
57      waitingOnSequencer(false), access_phys_mem(p->access_phys_mem)
58{
59    assert(m_version != -1);
60
61    // create the slave ports based on the number of connected ports
62    for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
63        slave_ports.push_back(new M5Port(csprintf("%s-slave%d", name(), i),
64                                         this, ruby_system, access_phys_mem));
65    }
66
67    // create the master ports based on the number of connected ports
68    for (size_t i = 0; i < p->port_master_connection_count; ++i) {
69        master_ports.push_back(new PioPort(csprintf("%s-master%d", name(), i),
70                                           this));
71    }
72}
73
74void
75RubyPort::init()
76{
77    assert(m_controller != NULL);
78    m_mandatory_q_ptr = m_controller->getMandatoryQueue();
79}
80
81MasterPort &
82RubyPort::getMasterPort(const std::string &if_name, int idx)
83{
84    if (if_name == "pio_port") {
85        return pio_port;
86    }
87
88    // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
89    // port
90    if (if_name != "master") {
91        // pass it along to our super class
92        return MemObject::getMasterPort(if_name, idx);
93    } else {
94        if (idx >= static_cast<int>(master_ports.size())) {
95            panic("RubyPort::getMasterPort: unknown index %d\n", idx);
96        }
97
98        return *master_ports[idx];
99    }
100}
101
102SlavePort &
103RubyPort::getSlavePort(const std::string &if_name, int idx)
104{
105    // used by the CPUs to connect the caches to the interconnect, and
106    // for the x86 case also the interrupt master
107    if (if_name != "slave") {
108        // pass it along to our super class
109        return MemObject::getSlavePort(if_name, idx);
110    } else {
111        if (idx >= static_cast<int>(slave_ports.size())) {
112            panic("RubyPort::getSlavePort: unknown index %d\n", idx);
113        }
114
115        return *slave_ports[idx];
116    }
117}
118
119RubyPort::PioPort::PioPort(const std::string &_name,
120                           RubyPort *_port)
121    : QueuedMasterPort(_name, _port, queue), queue(*_port, *this),
122      ruby_port(_port)
123{
124    DPRINTF(RubyPort, "creating master port on ruby sequencer %s\n", _name);
125}
126
127RubyPort::M5Port::M5Port(const std::string &_name, RubyPort *_port,
128                         RubySystem *_system, bool _access_phys_mem)
129    : QueuedSlavePort(_name, _port, queue), queue(*_port, *this),
130      ruby_port(_port), ruby_system(_system),
131      _onRetryList(false), access_phys_mem(_access_phys_mem)
132{
133    DPRINTF(RubyPort, "creating slave port on ruby sequencer %s\n", _name);
134}
135
136Tick
137RubyPort::M5Port::recvAtomic(PacketPtr pkt)
138{
139    panic("RubyPort::M5Port::recvAtomic() not implemented!\n");
140    return 0;
141}
142
143
144bool
145RubyPort::PioPort::recvTimingResp(PacketPtr pkt)
146{
147    // In FS mode, ruby memory will receive pio responses from devices
148    // and it must forward these responses back to the particular CPU.
149    DPRINTF(RubyPort,  "Pio response for address %#x\n", pkt->getAddr());
150
151    // First we must retrieve the request port from the sender State
152    RubyPort::SenderState *senderState =
153      safe_cast<RubyPort::SenderState *>(pkt->senderState);
154    M5Port *port = senderState->port;
155    assert(port != NULL);
156
157    // pop the sender state from the packet
158    pkt->senderState = senderState->saved;
159    delete senderState;
160
161    port->sendTimingResp(pkt);
162
163    return true;
164}
165
166bool
167RubyPort::M5Port::recvTimingReq(PacketPtr pkt)
168{
169    DPRINTF(RubyPort,
170            "Timing access caught for address %#x\n", pkt->getAddr());
171
172    //dsm: based on SimpleTimingPort::recvTimingReq(pkt);
173
174    // The received packets should only be M5 requests, which should never
175    // get nacked.  There used to be code to hanldle nacks here, but
176    // I'm pretty sure it didn't work correctly with the drain code,
177    // so that would need to be fixed if we ever added it back.
178
179    if (pkt->memInhibitAsserted()) {
180        warn("memInhibitAsserted???");
181        // snooper will supply based on copy of packet
182        // still target's responsibility to delete packet
183        delete pkt;
184        return true;
185    }
186
187    // Save the port in the sender state object to be used later to
188    // route the response
189    pkt->senderState = new SenderState(this, pkt->senderState);
190
191    // Check for pio requests and directly send them to the dedicated
192    // pio port.
193    if (!isPhysMemAddress(pkt->getAddr())) {
194        assert(ruby_port->pio_port.isConnected());
195        DPRINTF(RubyPort,
196                "Request for address 0x%#x is assumed to be a pio request\n",
197                pkt->getAddr());
198
199        // send next cycle
200        ruby_port->pio_port.schedTimingReq(pkt,
201            curTick() + g_system_ptr->clockPeriod());
202        return true;
203    }
204
205    assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
206           RubySystem::getBlockSizeBytes());
207
208    // Submit the ruby request
209    RequestStatus requestStatus = ruby_port->makeRequest(pkt);
210
211    // If the request successfully issued then we should return true.
212    // Otherwise, we need to delete the senderStatus we just created and return
213    // false.
214    if (requestStatus == RequestStatus_Issued) {
215        DPRINTF(RubyPort, "Request %#x issued\n", pkt->getAddr());
216        return true;
217    }
218
219    //
220    // Unless one is using the ruby tester, record the stalled M5 port for
221    // later retry when the sequencer becomes free.
222    //
223    if (!ruby_port->m_usingRubyTester) {
224        ruby_port->addToRetryList(this);
225    }
226
227    DPRINTF(RubyPort,
228            "Request for address %#x did not issue because %s\n",
229            pkt->getAddr(), RequestStatus_to_string(requestStatus));
230
231    SenderState* senderState = safe_cast<SenderState*>(pkt->senderState);
232    pkt->senderState = senderState->saved;
233    delete senderState;
234    return false;
235}
236
237bool
238RubyPort::M5Port::doFunctionalRead(PacketPtr pkt)
239{
240    Address address(pkt->getAddr());
241    Address line_address(address);
242    line_address.makeLineAddress();
243
244    AccessPermission access_perm = AccessPermission_NotPresent;
245    int num_controllers = ruby_system->m_abs_cntrl_vec.size();
246
247    DPRINTF(RubyPort, "Functional Read request for %s\n",address);
248
249    unsigned int num_ro = 0;
250    unsigned int num_rw = 0;
251    unsigned int num_busy = 0;
252    unsigned int num_backing_store = 0;
253    unsigned int num_invalid = 0;
254
255    // In this loop we count the number of controllers that have the given
256    // address in read only, read write and busy states.
257    for (int i = 0; i < num_controllers; ++i) {
258        access_perm = ruby_system->m_abs_cntrl_vec[i]->
259                                            getAccessPermission(line_address);
260        if (access_perm == AccessPermission_Read_Only)
261            num_ro++;
262        else if (access_perm == AccessPermission_Read_Write)
263            num_rw++;
264        else if (access_perm == AccessPermission_Busy)
265            num_busy++;
266        else if (access_perm == AccessPermission_Backing_Store)
267            // See RubySlicc_Exports.sm for details, but Backing_Store is meant
268            // to represent blocks in memory *for Broadcast/Snooping protocols*,
269            // where memory has no idea whether it has an exclusive copy of data
270            // or not.
271            num_backing_store++;
272        else if (access_perm == AccessPermission_Invalid ||
273                 access_perm == AccessPermission_NotPresent)
274            num_invalid++;
275    }
276    assert(num_rw <= 1);
277
278    uint8* data = pkt->getPtr<uint8_t>(true);
279    unsigned int size_in_bytes = pkt->getSize();
280    unsigned startByte = address.getAddress() - line_address.getAddress();
281
282    // This if case is meant to capture what happens in a Broadcast/Snoop
283    // protocol where the block does not exist in the cache hierarchy. You
284    // only want to read from the Backing_Store memory if there is no copy in
285    // the cache hierarchy, otherwise you want to try to read the RO or RW
286    // copies existing in the cache hierarchy (covered by the else statement).
287    // The reason is because the Backing_Store memory could easily be stale, if
288    // there are copies floating around the cache hierarchy, so you want to read
289    // it only if it's not in the cache hierarchy at all.
290    if (num_invalid == (num_controllers - 1) &&
291            num_backing_store == 1)
292    {
293        DPRINTF(RubyPort, "only copy in Backing_Store memory, read from it\n");
294        for (int i = 0; i < num_controllers; ++i) {
295            access_perm = ruby_system->m_abs_cntrl_vec[i]
296                                              ->getAccessPermission(line_address);
297            if (access_perm == AccessPermission_Backing_Store) {
298                DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
299                                                 ->getDataBlock(line_address);
300
301                DPRINTF(RubyPort, "reading from %s block %s\n",
302                        ruby_system->m_abs_cntrl_vec[i]->name(), block);
303                for (unsigned i = 0; i < size_in_bytes; ++i) {
304                    data[i] = block.getByte(i + startByte);
305                }
306                return true;
307            }
308        }
309    } else {
310        // In Broadcast/Snoop protocols, this covers if you know the block
311        // exists somewhere in the caching hierarchy, then you want to read any
312        // valid RO or RW block.  In directory protocols, same thing, you want
313        // to read any valid readable copy of the block.
314        DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
315                num_busy, num_ro, num_rw);
316        // In this loop, we try to figure which controller has a read only or
317        // a read write copy of the given address. Any valid copy would suffice
318        // for a functional read.
319        for(int i = 0;i < num_controllers;++i) {
320            access_perm = ruby_system->m_abs_cntrl_vec[i]
321                                              ->getAccessPermission(line_address);
322            if(access_perm == AccessPermission_Read_Only ||
323               access_perm == AccessPermission_Read_Write)
324            {
325                DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
326                                                     ->getDataBlock(line_address);
327
328                DPRINTF(RubyPort, "reading from %s block %s\n",
329                        ruby_system->m_abs_cntrl_vec[i]->name(), block);
330                for (unsigned i = 0; i < size_in_bytes; ++i) {
331                    data[i] = block.getByte(i + startByte);
332                }
333                return true;
334            }
335        }
336    }
337    return false;
338}
339
340bool
341RubyPort::M5Port::doFunctionalWrite(PacketPtr pkt)
342{
343    Address addr(pkt->getAddr());
344    Address line_addr = line_address(addr);
345    AccessPermission access_perm = AccessPermission_NotPresent;
346    int num_controllers = ruby_system->m_abs_cntrl_vec.size();
347
348    DPRINTF(RubyPort, "Functional Write request for %s\n",addr);
349
350    unsigned int num_ro = 0;
351    unsigned int num_rw = 0;
352    unsigned int num_busy = 0;
353    unsigned int num_backing_store = 0;
354    unsigned int num_invalid = 0;
355
356    // In this loop we count the number of controllers that have the given
357    // address in read only, read write and busy states.
358    for(int i = 0;i < num_controllers;++i) {
359        access_perm = ruby_system->m_abs_cntrl_vec[i]->
360                                            getAccessPermission(line_addr);
361        if (access_perm == AccessPermission_Read_Only)
362            num_ro++;
363        else if (access_perm == AccessPermission_Read_Write)
364            num_rw++;
365        else if (access_perm == AccessPermission_Busy)
366            num_busy++;
367        else if (access_perm == AccessPermission_Backing_Store)
368            // See RubySlicc_Exports.sm for details, but Backing_Store is meant
369            // to represent blocks in memory *for Broadcast/Snooping protocols*,
370            // where memory has no idea whether it has an exclusive copy of data
371            // or not.
372            num_backing_store++;
373        else if (access_perm == AccessPermission_Invalid ||
374                 access_perm == AccessPermission_NotPresent)
375            num_invalid++;
376    }
377
378    // If the number of read write copies is more than 1, then there is bug in
379    // coherence protocol. Otherwise, if all copies are in stable states, i.e.
380    // num_busy == 0, we update all the copies. If there is at least one copy
381    // in busy state, then we check if there is read write copy. If yes, then
382    // also we let the access go through. Or, if there is no copy in the cache
383    // hierarchy at all, we still want to do the write to the memory
384    // (Backing_Store) instead of failing.
385
386    DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
387            num_busy, num_ro, num_rw);
388    assert(num_rw <= 1);
389
390    uint8* data = pkt->getPtr<uint8_t>(true);
391    unsigned int size_in_bytes = pkt->getSize();
392    unsigned startByte = addr.getAddress() - line_addr.getAddress();
393
394    if ((num_busy == 0 && num_ro > 0) || num_rw == 1 ||
395            (num_invalid == (num_controllers - 1) && num_backing_store == 1))
396    {
397        for(int i = 0; i < num_controllers;++i) {
398            access_perm = ruby_system->m_abs_cntrl_vec[i]->
399                                                getAccessPermission(line_addr);
400            if(access_perm == AccessPermission_Read_Only ||
401               access_perm == AccessPermission_Read_Write||
402               access_perm == AccessPermission_Maybe_Stale ||
403               access_perm == AccessPermission_Backing_Store)
404            {
405                DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
406                                                      ->getDataBlock(line_addr);
407
408                DPRINTF(RubyPort, "%s\n",block);
409                for (unsigned i = 0; i < size_in_bytes; ++i) {
410                  block.setByte(i + startByte, data[i]);
411                }
412                DPRINTF(RubyPort, "%s\n",block);
413            }
414        }
415        return true;
416    }
417    return false;
418}
419
420void
421RubyPort::M5Port::recvFunctional(PacketPtr pkt)
422{
423    DPRINTF(RubyPort, "Functional access caught for address %#x\n",
424                                                           pkt->getAddr());
425
426    // Check for pio requests and directly send them to the dedicated
427    // pio port.
428    if (!isPhysMemAddress(pkt->getAddr())) {
429        assert(ruby_port->pio_port.isConnected());
430        DPRINTF(RubyPort, "Request for address 0x%#x is a pio request\n",
431                                                           pkt->getAddr());
432        panic("RubyPort::PioPort::recvFunctional() not implemented!\n");
433    }
434
435    assert(pkt->getAddr() + pkt->getSize() <=
436                line_address(Address(pkt->getAddr())).getAddress() +
437                RubySystem::getBlockSizeBytes());
438
439    bool accessSucceeded = false;
440    bool needsResponse = pkt->needsResponse();
441
442    // Do the functional access on ruby memory
443    if (pkt->isRead()) {
444        accessSucceeded = doFunctionalRead(pkt);
445    } else if (pkt->isWrite()) {
446        accessSucceeded = doFunctionalWrite(pkt);
447    } else {
448        panic("RubyPort: unsupported functional command %s\n",
449              pkt->cmdString());
450    }
451
452    // Unless the requester explicitly said otherwise, generate an error if
453    // the functional request failed
454    if (!accessSucceeded && !pkt->suppressFuncError()) {
455        fatal("Ruby functional %s failed for address %#x\n",
456              pkt->isWrite() ? "write" : "read", pkt->getAddr());
457    }
458
459    if (access_phys_mem) {
460        // The attached physmem contains the official version of data.
461        // The following command performs the real functional access.
462        // This line should be removed once Ruby supplies the official version
463        // of data.
464        ruby_port->system->getPhysMem().functionalAccess(pkt);
465    }
466
467    // turn packet around to go back to requester if response expected
468    if (needsResponse) {
469        pkt->setFunctionalResponseStatus(accessSucceeded);
470
471        // @todo There should not be a reverse call since the response is
472        // communicated through the packet pointer
473        // DPRINTF(RubyPort, "Sending packet back over port\n");
474        // sendFunctional(pkt);
475    }
476    DPRINTF(RubyPort, "Functional access %s!\n",
477            accessSucceeded ? "successful":"failed");
478}
479
480void
481RubyPort::ruby_hit_callback(PacketPtr pkt)
482{
483    // Retrieve the request port from the sender State
484    RubyPort::SenderState *senderState =
485        safe_cast<RubyPort::SenderState *>(pkt->senderState);
486    M5Port *port = senderState->port;
487    assert(port != NULL);
488
489    // pop the sender state from the packet
490    pkt->senderState = senderState->saved;
491    delete senderState;
492
493    port->hitCallback(pkt);
494
495    //
496    // If we had to stall the M5Ports, wake them up because the sequencer
497    // likely has free resources now.
498    //
499    if (waitingOnSequencer) {
500        //
501        // Record the current list of ports to retry on a temporary list before
502        // calling sendRetry on those ports.  sendRetry will cause an
503        // immediate retry, which may result in the ports being put back on the
504        // list. Therefore we want to clear the retryList before calling
505        // sendRetry.
506        //
507        std::list<M5Port*> curRetryList(retryList);
508
509        retryList.clear();
510        waitingOnSequencer = false;
511
512        for (std::list<M5Port*>::iterator i = curRetryList.begin();
513             i != curRetryList.end(); ++i) {
514            DPRINTF(RubyPort,
515                    "Sequencer may now be free.  SendRetry to port %s\n",
516                    (*i)->name());
517            (*i)->onRetryList(false);
518            (*i)->sendRetry();
519        }
520    }
521
522    testDrainComplete();
523}
524
525void
526RubyPort::testDrainComplete()
527{
528    //If we weren't able to drain before, we might be able to now.
529    if (drainEvent != NULL) {
530        unsigned int drainCount = getDrainCount(drainEvent);
531        DPRINTF(Drain, "Drain count: %u\n", drainCount);
532        if (drainCount == 0) {
533            DPRINTF(Drain, "RubyPort done draining, processing drain event\n");
534            drainEvent->process();
535            // Clear the drain event once we're done with it.
536            drainEvent = NULL;
537        }
538    }
539}
540
541unsigned int
542RubyPort::getDrainCount(Event *de)
543{
544    int count = 0;
545    //
546    // If the sequencer is not empty, then requests need to drain.
547    // The outstandingCount is the number of requests outstanding and thus the
548    // number of times M5's timing port will process the drain event.
549    //
550    count += outstandingCount();
551
552    DPRINTF(Config, "outstanding count %d\n", outstandingCount());
553
554    // To simplify the draining process, the sequencer's deadlock detection
555    // event should have been descheduled.
556    assert(isDeadlockEventScheduled() == false);
557
558    if (pio_port.isConnected()) {
559        count += pio_port.drain(de);
560        DPRINTF(Config, "count after pio check %d\n", count);
561    }
562
563    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
564        count += (*p)->drain(de);
565        DPRINTF(Config, "count after slave port check %d\n", count);
566    }
567
568    for (std::vector<PioPort*>::iterator p = master_ports.begin();
569         p != master_ports.end(); ++p) {
570        count += (*p)->drain(de);
571        DPRINTF(Config, "count after master port check %d\n", count);
572    }
573
574    DPRINTF(Config, "final count %d\n", count);
575
576    return count;
577}
578
579unsigned int
580RubyPort::drain(Event *de)
581{
582    if (isDeadlockEventScheduled()) {
583        descheduleDeadlockEvent();
584    }
585
586    int count = getDrainCount(de);
587
588    // Set status
589    if (count != 0) {
590        drainEvent = de;
591
592        DPRINTF(Drain, "RubyPort not drained\n");
593        changeState(SimObject::Draining);
594        return count;
595    }
596
597    changeState(SimObject::Drained);
598    return 0;
599}
600
601void
602RubyPort::M5Port::hitCallback(PacketPtr pkt)
603{
604    bool needsResponse = pkt->needsResponse();
605
606    //
607    // Unless specified at configuraiton, all responses except failed SC
608    // and Flush operations access M5 physical memory.
609    //
610    bool accessPhysMem = access_phys_mem;
611
612    if (pkt->isLLSC()) {
613        if (pkt->isWrite()) {
614            if (pkt->req->getExtraData() != 0) {
615                //
616                // Successful SC packets convert to normal writes
617                //
618                pkt->convertScToWrite();
619            } else {
620                //
621                // Failed SC packets don't access physical memory and thus
622                // the RubyPort itself must convert it to a response.
623                //
624                accessPhysMem = false;
625            }
626        } else {
627            //
628            // All LL packets convert to normal loads so that M5 PhysMem does
629            // not lock the blocks.
630            //
631            pkt->convertLlToRead();
632        }
633    }
634
635    //
636    // Flush requests don't access physical memory
637    //
638    if (pkt->isFlush()) {
639        accessPhysMem = false;
640    }
641
642    DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
643
644    if (accessPhysMem) {
645        ruby_port->system->getPhysMem().access(pkt);
646    } else if (needsResponse) {
647        pkt->makeResponse();
648    }
649
650    // turn packet around to go back to requester if response expected
651    if (needsResponse) {
652        DPRINTF(RubyPort, "Sending packet back over port\n");
653        // send next cycle
654        schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod());
655    } else {
656        delete pkt;
657    }
658    DPRINTF(RubyPort, "Hit callback done!\n");
659}
660
661AddrRangeList
662RubyPort::M5Port::getAddrRanges() const
663{
664    // at the moment the assumption is that the master does not care
665    AddrRangeList ranges;
666    return ranges;
667}
668
669bool
670RubyPort::M5Port::isPhysMemAddress(Addr addr)
671{
672    return ruby_port->system->isMemAddr(addr);
673}
674
675unsigned
676RubyPort::M5Port::deviceBlockSize() const
677{
678    return (unsigned) RubySystem::getBlockSizeBytes();
679}
680
681void
682RubyPort::ruby_eviction_callback(const Address& address)
683{
684    DPRINTF(RubyPort, "Sending invalidations.\n");
685    // should this really be using funcMasterId?
686    Request req(address.getAddress(), 0, 0, Request::funcMasterId);
687    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
688        // check if the connected master port is snooping
689        if ((*p)->isSnooping()) {
690            Packet *pkt = new Packet(&req, MemCmd::InvalidationReq);
691            // send as a snoop request
692            (*p)->sendTimingSnoopReq(pkt);
693        }
694    }
695}
696