1/*
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2009-2013 Advanced Micro Devices, Inc.
15 * Copyright (c) 2011 Mark D. Hill and David A. Wood
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42#include "mem/ruby/system/RubyPort.hh"
43
44#include "cpu/testers/rubytest/RubyTester.hh"
45#include "debug/Config.hh"
46#include "debug/Drain.hh"
47#include "debug/Ruby.hh"
48#include "mem/ruby/protocol/AccessPermission.hh"
49#include "mem/ruby/slicc_interface/AbstractController.hh"
50#include "mem/simple_mem.hh"
51#include "sim/full_system.hh"
52#include "sim/system.hh"
53
54RubyPort::RubyPort(const Params *p)
55    : ClockedObject(p), m_ruby_system(p->ruby_system), m_version(p->version),
56      m_controller(NULL), m_mandatory_q_ptr(NULL),
57      m_usingRubyTester(p->using_ruby_tester), system(p->system),
58      pioMasterPort(csprintf("%s.pio-master-port", name()), this),
59      pioSlavePort(csprintf("%s.pio-slave-port", name()), this),
60      memMasterPort(csprintf("%s.mem-master-port", name()), this),
61      memSlavePort(csprintf("%s-mem-slave-port", name()), this,
62                   p->ruby_system->getAccessBackingStore(), -1,
63                   p->no_retry_on_stall),
64      gotAddrRanges(p->port_master_connection_count),
65      m_isCPUSequencer(p->is_cpu_sequencer)
66{
67    assert(m_version != -1);
68
69    // create the slave ports based on the number of connected ports
70    for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
71        slave_ports.push_back(new MemSlavePort(csprintf("%s.slave%d", name(),
72            i), this, p->ruby_system->getAccessBackingStore(),
73            i, p->no_retry_on_stall));
74    }
75
76    // create the master ports based on the number of connected ports
77    for (size_t i = 0; i < p->port_master_connection_count; ++i) {
78        master_ports.push_back(new PioMasterPort(csprintf("%s.master%d",
79            name(), i), this));
80    }
81}
82
83void
84RubyPort::init()
85{
86    assert(m_controller != NULL);
87    m_mandatory_q_ptr = m_controller->getMandatoryQueue();
88}
89
90Port &
91RubyPort::getPort(const std::string &if_name, PortID idx)
92{
93    if (if_name == "mem_master_port") {
94        return memMasterPort;
95    } else if (if_name == "pio_master_port") {
96        return pioMasterPort;
97    } else if (if_name == "mem_slave_port") {
98        return memSlavePort;
99    } else if (if_name == "pio_slave_port") {
100        return pioSlavePort;
101    } else if (if_name == "master") {
102        // used by the x86 CPUs to connect the interrupt PIO and interrupt
103        // slave port
104        if (idx >= static_cast<PortID>(master_ports.size())) {
105            panic("RubyPort::getPort master: unknown index %d\n", idx);
106        }
107
108        return *master_ports[idx];
109    } else if (if_name == "slave") {
110        // used by the CPUs to connect the caches to the interconnect, and
111        // for the x86 case also the interrupt master
112        if (idx >= static_cast<PortID>(slave_ports.size())) {
113            panic("RubyPort::getPort slave: unknown index %d\n", idx);
114        }
115
116        return *slave_ports[idx];
117    }
118
119    // pass it along to our super class
120    return ClockedObject::getPort(if_name, idx);
121}
122
123RubyPort::PioMasterPort::PioMasterPort(const std::string &_name,
124                           RubyPort *_port)
125    : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue),
126      reqQueue(*_port, *this), snoopRespQueue(*_port, *this)
127{
128    DPRINTF(RubyPort, "Created master pioport on sequencer %s\n", _name);
129}
130
131RubyPort::PioSlavePort::PioSlavePort(const std::string &_name,
132                           RubyPort *_port)
133    : QueuedSlavePort(_name, _port, queue), queue(*_port, *this)
134{
135    DPRINTF(RubyPort, "Created slave pioport on sequencer %s\n", _name);
136}
137
138RubyPort::MemMasterPort::MemMasterPort(const std::string &_name,
139                           RubyPort *_port)
140    : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue),
141      reqQueue(*_port, *this), snoopRespQueue(*_port, *this)
142{
143    DPRINTF(RubyPort, "Created master memport on ruby sequencer %s\n", _name);
144}
145
146RubyPort::MemSlavePort::MemSlavePort(const std::string &_name, RubyPort *_port,
147                                     bool _access_backing_store, PortID id,
148                                     bool _no_retry_on_stall)
149    : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this),
150      access_backing_store(_access_backing_store),
151      no_retry_on_stall(_no_retry_on_stall)
152{
153    DPRINTF(RubyPort, "Created slave memport on ruby sequencer %s\n", _name);
154}
155
156bool
157RubyPort::PioMasterPort::recvTimingResp(PacketPtr pkt)
158{
159    RubyPort *rp = static_cast<RubyPort *>(&owner);
160    DPRINTF(RubyPort, "Response for address: 0x%#x\n", pkt->getAddr());
161
162    // send next cycle
163    rp->pioSlavePort.schedTimingResp(
164            pkt, curTick() + rp->m_ruby_system->clockPeriod());
165    return true;
166}
167
168bool RubyPort::MemMasterPort::recvTimingResp(PacketPtr pkt)
169{
170    // got a response from a device
171    assert(pkt->isResponse());
172
173    // First we must retrieve the request port from the sender State
174    RubyPort::SenderState *senderState =
175        safe_cast<RubyPort::SenderState *>(pkt->popSenderState());
176    MemSlavePort *port = senderState->port;
177    assert(port != NULL);
178    delete senderState;
179
180    // In FS mode, ruby memory will receive pio responses from devices
181    // and it must forward these responses back to the particular CPU.
182    DPRINTF(RubyPort,  "Pio response for address %#x, going to %s\n",
183            pkt->getAddr(), port->name());
184
185    // attempt to send the response in the next cycle
186    RubyPort *rp = static_cast<RubyPort *>(&owner);
187    port->schedTimingResp(pkt, curTick() + rp->m_ruby_system->clockPeriod());
188
189    return true;
190}
191
192bool
193RubyPort::PioSlavePort::recvTimingReq(PacketPtr pkt)
194{
195    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
196
197    for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
198        AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges();
199        for (auto it = l.begin(); it != l.end(); ++it) {
200            if (it->contains(pkt->getAddr())) {
201                // generally it is not safe to assume success here as
202                // the port could be blocked
203                bool M5_VAR_USED success =
204                    ruby_port->master_ports[i]->sendTimingReq(pkt);
205                assert(success);
206                return true;
207            }
208        }
209    }
210    panic("Should never reach here!\n");
211}
212
213Tick
214RubyPort::PioSlavePort::recvAtomic(PacketPtr pkt)
215{
216    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
217    // Only atomic_noncaching mode supported!
218    if (!ruby_port->system->bypassCaches()) {
219        panic("Ruby supports atomic accesses only in noncaching mode\n");
220    }
221
222    for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
223        AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges();
224        for (auto it = l.begin(); it != l.end(); ++it) {
225            if (it->contains(pkt->getAddr())) {
226                return ruby_port->master_ports[i]->sendAtomic(pkt);
227            }
228        }
229    }
230    panic("Could not find address in Ruby PIO address ranges!\n");
231}
232
233bool
234RubyPort::MemSlavePort::recvTimingReq(PacketPtr pkt)
235{
236    DPRINTF(RubyPort, "Timing request for address %#x on port %d\n",
237            pkt->getAddr(), id);
238    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
239
240    if (pkt->cacheResponding())
241        panic("RubyPort should never see request with the "
242              "cacheResponding flag set\n");
243
244    // ruby doesn't support cache maintenance operations at the
245    // moment, as a workaround, we respond right away
246    if (pkt->req->isCacheMaintenance()) {
247        warn_once("Cache maintenance operations are not supported in Ruby.\n");
248        pkt->makeResponse();
249        schedTimingResp(pkt, curTick());
250        return true;
251    }
252    // Check for pio requests and directly send them to the dedicated
253    // pio port.
254    if (pkt->cmd != MemCmd::MemFenceReq) {
255        if (!isPhysMemAddress(pkt->getAddr())) {
256            assert(ruby_port->memMasterPort.isConnected());
257            DPRINTF(RubyPort, "Request address %#x assumed to be a "
258                    "pio address\n", pkt->getAddr());
259
260            // Save the port in the sender state object to be used later to
261            // route the response
262            pkt->pushSenderState(new SenderState(this));
263
264            // send next cycle
265            RubySystem *rs = ruby_port->m_ruby_system;
266            ruby_port->memMasterPort.schedTimingReq(pkt,
267                curTick() + rs->clockPeriod());
268            return true;
269        }
270
271        assert(getOffset(pkt->getAddr()) + pkt->getSize() <=
272               RubySystem::getBlockSizeBytes());
273    }
274
275    // Submit the ruby request
276    RequestStatus requestStatus = ruby_port->makeRequest(pkt);
277
278    // If the request successfully issued then we should return true.
279    // Otherwise, we need to tell the port to retry at a later point
280    // and return false.
281    if (requestStatus == RequestStatus_Issued) {
282        // Save the port in the sender state object to be used later to
283        // route the response
284        pkt->pushSenderState(new SenderState(this));
285
286        DPRINTF(RubyPort, "Request %s address %#x issued\n", pkt->cmdString(),
287                pkt->getAddr());
288        return true;
289    }
290
291    if (pkt->cmd != MemCmd::MemFenceReq) {
292        DPRINTF(RubyPort,
293                "Request %s for address %#x did not issue because %s\n",
294                pkt->cmdString(), pkt->getAddr(),
295                RequestStatus_to_string(requestStatus));
296    }
297
298    addToRetryList();
299
300    return false;
301}
302
303Tick
304RubyPort::MemSlavePort::recvAtomic(PacketPtr pkt)
305{
306    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
307    // Only atomic_noncaching mode supported!
308    if (!ruby_port->system->bypassCaches()) {
309        panic("Ruby supports atomic accesses only in noncaching mode\n");
310    }
311
312    // Check for pio requests and directly send them to the dedicated
313    // pio port.
314    if (pkt->cmd != MemCmd::MemFenceReq) {
315        if (!isPhysMemAddress(pkt->getAddr())) {
316            assert(ruby_port->memMasterPort.isConnected());
317            DPRINTF(RubyPort, "Request address %#x assumed to be a "
318                    "pio address\n", pkt->getAddr());
319
320            // Save the port in the sender state object to be used later to
321            // route the response
322            pkt->pushSenderState(new SenderState(this));
323
324            // send next cycle
325            Tick req_ticks = ruby_port->memMasterPort.sendAtomic(pkt);
326            return ruby_port->ticksToCycles(req_ticks);
327        }
328
329        assert(getOffset(pkt->getAddr()) + pkt->getSize() <=
330               RubySystem::getBlockSizeBytes());
331    }
332
333    // Find appropriate directory for address
334    // This assumes that protocols have a Directory machine,
335    // which has its memPort hooked up to memory. This can
336    // fail for some custom protocols.
337    MachineID id = ruby_port->m_controller->mapAddressToMachine(
338                    pkt->getAddr(), MachineType_Directory);
339    RubySystem *rs = ruby_port->m_ruby_system;
340    AbstractController *directory =
341        rs->m_abstract_controls[id.getType()][id.getNum()];
342    return directory->recvAtomic(pkt);
343}
344
345void
346RubyPort::MemSlavePort::addToRetryList()
347{
348    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
349
350    //
351    // Unless the requestor do not want retries (e.g., the Ruby tester),
352    // record the stalled M5 port for later retry when the sequencer
353    // becomes free.
354    //
355    if (!no_retry_on_stall && !ruby_port->onRetryList(this)) {
356        ruby_port->addToRetryList(this);
357    }
358}
359
360void
361RubyPort::MemSlavePort::recvFunctional(PacketPtr pkt)
362{
363    DPRINTF(RubyPort, "Functional access for address: %#x\n", pkt->getAddr());
364
365    RubyPort *rp M5_VAR_USED = static_cast<RubyPort *>(&owner);
366    RubySystem *rs = rp->m_ruby_system;
367
368    // Check for pio requests and directly send them to the dedicated
369    // pio port.
370    if (!isPhysMemAddress(pkt->getAddr())) {
371        DPRINTF(RubyPort, "Pio Request for address: 0x%#x\n", pkt->getAddr());
372        assert(rp->pioMasterPort.isConnected());
373        rp->pioMasterPort.sendFunctional(pkt);
374        return;
375    }
376
377    assert(pkt->getAddr() + pkt->getSize() <=
378           makeLineAddress(pkt->getAddr()) + RubySystem::getBlockSizeBytes());
379
380    if (access_backing_store) {
381        // The attached physmem contains the official version of data.
382        // The following command performs the real functional access.
383        // This line should be removed once Ruby supplies the official version
384        // of data.
385        rs->getPhysMem()->functionalAccess(pkt);
386    } else {
387        bool accessSucceeded = false;
388        bool needsResponse = pkt->needsResponse();
389
390        // Do the functional access on ruby memory
391        if (pkt->isRead()) {
392            accessSucceeded = rs->functionalRead(pkt);
393        } else if (pkt->isWrite()) {
394            accessSucceeded = rs->functionalWrite(pkt);
395        } else {
396            panic("Unsupported functional command %s\n", pkt->cmdString());
397        }
398
399        // Unless the requester explicitly said otherwise, generate an error if
400        // the functional request failed
401        if (!accessSucceeded && !pkt->suppressFuncError()) {
402            fatal("Ruby functional %s failed for address %#x\n",
403                  pkt->isWrite() ? "write" : "read", pkt->getAddr());
404        }
405
406        // turn packet around to go back to requester if response expected
407        if (needsResponse) {
408            pkt->setFunctionalResponseStatus(accessSucceeded);
409        }
410
411        DPRINTF(RubyPort, "Functional access %s!\n",
412                accessSucceeded ? "successful":"failed");
413    }
414}
415
416void
417RubyPort::ruby_hit_callback(PacketPtr pkt)
418{
419    DPRINTF(RubyPort, "Hit callback for %s 0x%x\n", pkt->cmdString(),
420            pkt->getAddr());
421
422    // The packet was destined for memory and has not yet been turned
423    // into a response
424    assert(system->isMemAddr(pkt->getAddr()));
425    assert(pkt->isRequest());
426
427    // First we must retrieve the request port from the sender State
428    RubyPort::SenderState *senderState =
429        safe_cast<RubyPort::SenderState *>(pkt->popSenderState());
430    MemSlavePort *port = senderState->port;
431    assert(port != NULL);
432    delete senderState;
433
434    port->hitCallback(pkt);
435
436    trySendRetries();
437}
438
439void
440RubyPort::trySendRetries()
441{
442    //
443    // If we had to stall the MemSlavePorts, wake them up because the sequencer
444    // likely has free resources now.
445    //
446    if (!retryList.empty()) {
447        // Record the current list of ports to retry on a temporary list
448        // before calling sendRetryReq on those ports. sendRetryReq will cause
449        // an immediate retry, which may result in the ports being put back on
450        // the list. Therefore we want to clear the retryList before calling
451        // sendRetryReq.
452        std::vector<MemSlavePort *> curRetryList(retryList);
453
454        retryList.clear();
455
456        for (auto i = curRetryList.begin(); i != curRetryList.end(); ++i) {
457            DPRINTF(RubyPort,
458                    "Sequencer may now be free. SendRetry to port %s\n",
459                    (*i)->name());
460            (*i)->sendRetryReq();
461        }
462    }
463}
464
465void
466RubyPort::testDrainComplete()
467{
468    //If we weren't able to drain before, we might be able to now.
469    if (drainState() == DrainState::Draining) {
470        unsigned int drainCount = outstandingCount();
471        DPRINTF(Drain, "Drain count: %u\n", drainCount);
472        if (drainCount == 0) {
473            DPRINTF(Drain, "RubyPort done draining, signaling drain done\n");
474            signalDrainDone();
475        }
476    }
477}
478
479DrainState
480RubyPort::drain()
481{
482    if (isDeadlockEventScheduled()) {
483        descheduleDeadlockEvent();
484    }
485
486    //
487    // If the RubyPort is not empty, then it needs to clear all outstanding
488    // requests before it should call signalDrainDone()
489    //
490    DPRINTF(Config, "outstanding count %d\n", outstandingCount());
491    if (outstandingCount() > 0) {
492        DPRINTF(Drain, "RubyPort not drained\n");
493        return DrainState::Draining;
494    } else {
495        return DrainState::Drained;
496    }
497}
498
499void
500RubyPort::MemSlavePort::hitCallback(PacketPtr pkt)
501{
502    bool needsResponse = pkt->needsResponse();
503
504    // Unless specified at configuraiton, all responses except failed SC
505    // and Flush operations access M5 physical memory.
506    bool accessPhysMem = access_backing_store;
507
508    if (pkt->isLLSC()) {
509        if (pkt->isWrite()) {
510            if (pkt->req->getExtraData() != 0) {
511                //
512                // Successful SC packets convert to normal writes
513                //
514                pkt->convertScToWrite();
515            } else {
516                //
517                // Failed SC packets don't access physical memory and thus
518                // the RubyPort itself must convert it to a response.
519                //
520                accessPhysMem = false;
521            }
522        } else {
523            //
524            // All LL packets convert to normal loads so that M5 PhysMem does
525            // not lock the blocks.
526            //
527            pkt->convertLlToRead();
528        }
529    }
530
531    // Flush, acquire, release requests don't access physical memory
532    if (pkt->isFlush() || pkt->cmd == MemCmd::MemFenceReq) {
533        accessPhysMem = false;
534    }
535
536    if (pkt->req->isKernel()) {
537        accessPhysMem = false;
538        needsResponse = true;
539    }
540
541    DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
542
543    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
544    RubySystem *rs = ruby_port->m_ruby_system;
545    if (accessPhysMem) {
546        rs->getPhysMem()->access(pkt);
547    } else if (needsResponse) {
548        pkt->makeResponse();
549    }
550
551    // turn packet around to go back to requester if response expected
552    if (needsResponse) {
553        DPRINTF(RubyPort, "Sending packet back over port\n");
554        // Send a response in the same cycle. There is no need to delay the
555        // response because the response latency is already incurred in the
556        // Ruby protocol.
557        schedTimingResp(pkt, curTick());
558    } else {
559        delete pkt;
560    }
561
562    DPRINTF(RubyPort, "Hit callback done!\n");
563}
564
565AddrRangeList
566RubyPort::PioSlavePort::getAddrRanges() const
567{
568    // at the moment the assumption is that the master does not care
569    AddrRangeList ranges;
570    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
571
572    for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
573        ranges.splice(ranges.begin(),
574                ruby_port->master_ports[i]->getAddrRanges());
575    }
576    for (const auto M5_VAR_USED &r : ranges)
577        DPRINTF(RubyPort, "%s\n", r.to_string());
578    return ranges;
579}
580
581bool
582RubyPort::MemSlavePort::isPhysMemAddress(Addr addr) const
583{
584    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
585    return ruby_port->system->isMemAddr(addr);
586}
587
588void
589RubyPort::ruby_eviction_callback(Addr address)
590{
591    DPRINTF(RubyPort, "Sending invalidations.\n");
592    // Allocate the invalidate request and packet on the stack, as it is
593    // assumed they will not be modified or deleted by receivers.
594    // TODO: should this really be using funcMasterId?
595    auto request = std::make_shared<Request>(
596        address, RubySystem::getBlockSizeBytes(), 0,
597        Request::funcMasterId);
598
599    // Use a single packet to signal all snooping ports of the invalidation.
600    // This assumes that snooping ports do NOT modify the packet/request
601    Packet pkt(request, MemCmd::InvalidateReq);
602    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
603        // check if the connected master port is snooping
604        if ((*p)->isSnooping()) {
605            // send as a snoop request
606            (*p)->sendTimingSnoopReq(&pkt);
607        }
608    }
609}
610
611void
612RubyPort::PioMasterPort::recvRangeChange()
613{
614    RubyPort &r = static_cast<RubyPort &>(owner);
615    r.gotAddrRanges--;
616    if (r.gotAddrRanges == 0 && FullSystem) {
617        r.pioSlavePort.sendRangeChange();
618    }
619}
620