RubyPort.cc revision 9152
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2009 Advanced Micro Devices, Inc.
15 * Copyright (c) 2011 Mark D. Hill and David A. Wood
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42#include "cpu/testers/rubytest/RubyTester.hh"
43#include "debug/Config.hh"
44#include "debug/Drain.hh"
45#include "debug/Ruby.hh"
46#include "mem/protocol/AccessPermission.hh"
47#include "mem/ruby/slicc_interface/AbstractController.hh"
48#include "mem/ruby/system/RubyPort.hh"
49#include "sim/system.hh"
50
51RubyPort::RubyPort(const Params *p)
52    : MemObject(p), m_version(p->version), m_controller(NULL),
53      m_mandatory_q_ptr(NULL),
54      pio_port(csprintf("%s-pio-port", name()), this),
55      m_usingRubyTester(p->using_ruby_tester), m_request_cnt(0),
56      drainEvent(NULL), ruby_system(p->ruby_system), system(p->system),
57      waitingOnSequencer(false), access_phys_mem(p->access_phys_mem)
58{
59    assert(m_version != -1);
60
61    // create the slave ports based on the number of connected ports
62    for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
63        slave_ports.push_back(new M5Port(csprintf("%s-slave%d", name(), i),
64                                         this, ruby_system, access_phys_mem));
65    }
66
67    // create the master ports based on the number of connected ports
68    for (size_t i = 0; i < p->port_master_connection_count; ++i) {
69        master_ports.push_back(new PioPort(csprintf("%s-master%d", name(), i),
70                                           this));
71    }
72}
73
74void
75RubyPort::init()
76{
77    assert(m_controller != NULL);
78    m_mandatory_q_ptr = m_controller->getMandatoryQueue();
79}
80
81MasterPort &
82RubyPort::getMasterPort(const std::string &if_name, int idx)
83{
84    if (if_name == "pio_port") {
85        return pio_port;
86    }
87
88    // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
89    // port
90    if (if_name != "master") {
91        // pass it along to our super class
92        return MemObject::getMasterPort(if_name, idx);
93    } else {
94        if (idx >= static_cast<int>(master_ports.size())) {
95            panic("RubyPort::getMasterPort: unknown index %d\n", idx);
96        }
97
98        return *master_ports[idx];
99    }
100}
101
102SlavePort &
103RubyPort::getSlavePort(const std::string &if_name, int idx)
104{
105    // used by the CPUs to connect the caches to the interconnect, and
106    // for the x86 case also the interrupt master
107    if (if_name != "slave") {
108        // pass it along to our super class
109        return MemObject::getSlavePort(if_name, idx);
110    } else {
111        if (idx >= static_cast<int>(slave_ports.size())) {
112            panic("RubyPort::getSlavePort: unknown index %d\n", idx);
113        }
114
115        return *slave_ports[idx];
116    }
117}
118
119RubyPort::PioPort::PioPort(const std::string &_name,
120                           RubyPort *_port)
121    : QueuedMasterPort(_name, _port, queue), queue(*_port, *this),
122      ruby_port(_port)
123{
124    DPRINTF(RubyPort, "creating master port on ruby sequencer %s\n", _name);
125}
126
127RubyPort::M5Port::M5Port(const std::string &_name, RubyPort *_port,
128                         RubySystem *_system, bool _access_phys_mem)
129    : QueuedSlavePort(_name, _port, queue), queue(*_port, *this),
130      ruby_port(_port), ruby_system(_system),
131      _onRetryList(false), access_phys_mem(_access_phys_mem)
132{
133    DPRINTF(RubyPort, "creating slave port on ruby sequencer %s\n", _name);
134}
135
136Tick
137RubyPort::M5Port::recvAtomic(PacketPtr pkt)
138{
139    panic("RubyPort::M5Port::recvAtomic() not implemented!\n");
140    return 0;
141}
142
143
144bool
145RubyPort::PioPort::recvTimingResp(PacketPtr pkt)
146{
147    // In FS mode, ruby memory will receive pio responses from devices
148    // and it must forward these responses back to the particular CPU.
149    DPRINTF(RubyPort,  "Pio response for address %#x\n", pkt->getAddr());
150
151    // First we must retrieve the request port from the sender State
152    RubyPort::SenderState *senderState =
153      safe_cast<RubyPort::SenderState *>(pkt->senderState);
154    M5Port *port = senderState->port;
155    assert(port != NULL);
156
157    // pop the sender state from the packet
158    pkt->senderState = senderState->saved;
159    delete senderState;
160
161    port->sendTimingResp(pkt);
162
163    return true;
164}
165
166bool
167RubyPort::M5Port::recvTimingReq(PacketPtr pkt)
168{
169    DPRINTF(RubyPort,
170            "Timing access caught for address %#x\n", pkt->getAddr());
171
172    //dsm: based on SimpleTimingPort::recvTimingReq(pkt);
173
174    // The received packets should only be M5 requests, which should never
175    // get nacked.  There used to be code to hanldle nacks here, but
176    // I'm pretty sure it didn't work correctly with the drain code,
177    // so that would need to be fixed if we ever added it back.
178
179    if (pkt->memInhibitAsserted()) {
180        warn("memInhibitAsserted???");
181        // snooper will supply based on copy of packet
182        // still target's responsibility to delete packet
183        delete pkt;
184        return true;
185    }
186
187    // Save the port in the sender state object to be used later to
188    // route the response
189    pkt->senderState = new SenderState(this, pkt->senderState);
190
191    // Check for pio requests and directly send them to the dedicated
192    // pio port.
193    if (!isPhysMemAddress(pkt->getAddr())) {
194        assert(ruby_port->pio_port.isConnected());
195        DPRINTF(RubyPort,
196                "Request for address 0x%#x is assumed to be a pio request\n",
197                pkt->getAddr());
198
199        return ruby_port->pio_port.sendNextCycle(pkt);
200    }
201
202    assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
203           RubySystem::getBlockSizeBytes());
204
205    // Submit the ruby request
206    RequestStatus requestStatus = ruby_port->makeRequest(pkt);
207
208    // If the request successfully issued then we should return true.
209    // Otherwise, we need to delete the senderStatus we just created and return
210    // false.
211    if (requestStatus == RequestStatus_Issued) {
212        DPRINTF(RubyPort, "Request %#x issued\n", pkt->getAddr());
213        return true;
214    }
215
216    //
217    // Unless one is using the ruby tester, record the stalled M5 port for
218    // later retry when the sequencer becomes free.
219    //
220    if (!ruby_port->m_usingRubyTester) {
221        ruby_port->addToRetryList(this);
222    }
223
224    DPRINTF(RubyPort,
225            "Request for address %#x did not issue because %s\n",
226            pkt->getAddr(), RequestStatus_to_string(requestStatus));
227
228    SenderState* senderState = safe_cast<SenderState*>(pkt->senderState);
229    pkt->senderState = senderState->saved;
230    delete senderState;
231    return false;
232}
233
234bool
235RubyPort::M5Port::doFunctionalRead(PacketPtr pkt)
236{
237    Address address(pkt->getAddr());
238    Address line_address(address);
239    line_address.makeLineAddress();
240
241    AccessPermission access_perm = AccessPermission_NotPresent;
242    int num_controllers = ruby_system->m_abs_cntrl_vec.size();
243
244    DPRINTF(RubyPort, "Functional Read request for %s\n",address);
245
246    unsigned int num_ro = 0;
247    unsigned int num_rw = 0;
248    unsigned int num_busy = 0;
249    unsigned int num_backing_store = 0;
250    unsigned int num_invalid = 0;
251
252    // In this loop we count the number of controllers that have the given
253    // address in read only, read write and busy states.
254    for (int i = 0; i < num_controllers; ++i) {
255        access_perm = ruby_system->m_abs_cntrl_vec[i]->
256                                            getAccessPermission(line_address);
257        if (access_perm == AccessPermission_Read_Only)
258            num_ro++;
259        else if (access_perm == AccessPermission_Read_Write)
260            num_rw++;
261        else if (access_perm == AccessPermission_Busy)
262            num_busy++;
263        else if (access_perm == AccessPermission_Backing_Store)
264            // See RubySlicc_Exports.sm for details, but Backing_Store is meant
265            // to represent blocks in memory *for Broadcast/Snooping protocols*,
266            // where memory has no idea whether it has an exclusive copy of data
267            // or not.
268            num_backing_store++;
269        else if (access_perm == AccessPermission_Invalid ||
270                 access_perm == AccessPermission_NotPresent)
271            num_invalid++;
272    }
273    assert(num_rw <= 1);
274
275    uint8* data = pkt->getPtr<uint8_t>(true);
276    unsigned int size_in_bytes = pkt->getSize();
277    unsigned startByte = address.getAddress() - line_address.getAddress();
278
279    // This if case is meant to capture what happens in a Broadcast/Snoop
280    // protocol where the block does not exist in the cache hierarchy. You
281    // only want to read from the Backing_Store memory if there is no copy in
282    // the cache hierarchy, otherwise you want to try to read the RO or RW
283    // copies existing in the cache hierarchy (covered by the else statement).
284    // The reason is because the Backing_Store memory could easily be stale, if
285    // there are copies floating around the cache hierarchy, so you want to read
286    // it only if it's not in the cache hierarchy at all.
287    if (num_invalid == (num_controllers - 1) &&
288            num_backing_store == 1)
289    {
290        DPRINTF(RubyPort, "only copy in Backing_Store memory, read from it\n");
291        for (int i = 0; i < num_controllers; ++i) {
292            access_perm = ruby_system->m_abs_cntrl_vec[i]
293                                              ->getAccessPermission(line_address);
294            if (access_perm == AccessPermission_Backing_Store) {
295                DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
296                                                 ->getDataBlock(line_address);
297
298                DPRINTF(RubyPort, "reading from %s block %s\n",
299                        ruby_system->m_abs_cntrl_vec[i]->name(), block);
300                for (unsigned i = 0; i < size_in_bytes; ++i) {
301                    data[i] = block.getByte(i + startByte);
302                }
303                return true;
304            }
305        }
306    } else {
307        // In Broadcast/Snoop protocols, this covers if you know the block
308        // exists somewhere in the caching hierarchy, then you want to read any
309        // valid RO or RW block.  In directory protocols, same thing, you want
310        // to read any valid readable copy of the block.
311        DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
312                num_busy, num_ro, num_rw);
313        // In this loop, we try to figure which controller has a read only or
314        // a read write copy of the given address. Any valid copy would suffice
315        // for a functional read.
316        for(int i = 0;i < num_controllers;++i) {
317            access_perm = ruby_system->m_abs_cntrl_vec[i]
318                                              ->getAccessPermission(line_address);
319            if(access_perm == AccessPermission_Read_Only ||
320               access_perm == AccessPermission_Read_Write)
321            {
322                DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
323                                                     ->getDataBlock(line_address);
324
325                DPRINTF(RubyPort, "reading from %s block %s\n",
326                        ruby_system->m_abs_cntrl_vec[i]->name(), block);
327                for (unsigned i = 0; i < size_in_bytes; ++i) {
328                    data[i] = block.getByte(i + startByte);
329                }
330                return true;
331            }
332        }
333    }
334    return false;
335}
336
337bool
338RubyPort::M5Port::doFunctionalWrite(PacketPtr pkt)
339{
340    Address addr(pkt->getAddr());
341    Address line_addr = line_address(addr);
342    AccessPermission access_perm = AccessPermission_NotPresent;
343    int num_controllers = ruby_system->m_abs_cntrl_vec.size();
344
345    DPRINTF(RubyPort, "Functional Write request for %s\n",addr);
346
347    unsigned int num_ro = 0;
348    unsigned int num_rw = 0;
349    unsigned int num_busy = 0;
350    unsigned int num_backing_store = 0;
351    unsigned int num_invalid = 0;
352
353    // In this loop we count the number of controllers that have the given
354    // address in read only, read write and busy states.
355    for(int i = 0;i < num_controllers;++i) {
356        access_perm = ruby_system->m_abs_cntrl_vec[i]->
357                                            getAccessPermission(line_addr);
358        if (access_perm == AccessPermission_Read_Only)
359            num_ro++;
360        else if (access_perm == AccessPermission_Read_Write)
361            num_rw++;
362        else if (access_perm == AccessPermission_Busy)
363            num_busy++;
364        else if (access_perm == AccessPermission_Backing_Store)
365            // See RubySlicc_Exports.sm for details, but Backing_Store is meant
366            // to represent blocks in memory *for Broadcast/Snooping protocols*,
367            // where memory has no idea whether it has an exclusive copy of data
368            // or not.
369            num_backing_store++;
370        else if (access_perm == AccessPermission_Invalid ||
371                 access_perm == AccessPermission_NotPresent)
372            num_invalid++;
373    }
374
375    // If the number of read write copies is more than 1, then there is bug in
376    // coherence protocol. Otherwise, if all copies are in stable states, i.e.
377    // num_busy == 0, we update all the copies. If there is at least one copy
378    // in busy state, then we check if there is read write copy. If yes, then
379    // also we let the access go through. Or, if there is no copy in the cache
380    // hierarchy at all, we still want to do the write to the memory
381    // (Backing_Store) instead of failing.
382
383    DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
384            num_busy, num_ro, num_rw);
385    assert(num_rw <= 1);
386
387    uint8* data = pkt->getPtr<uint8_t>(true);
388    unsigned int size_in_bytes = pkt->getSize();
389    unsigned startByte = addr.getAddress() - line_addr.getAddress();
390
391    if ((num_busy == 0 && num_ro > 0) || num_rw == 1 ||
392            (num_invalid == (num_controllers - 1) && num_backing_store == 1))
393    {
394        for(int i = 0; i < num_controllers;++i) {
395            access_perm = ruby_system->m_abs_cntrl_vec[i]->
396                                                getAccessPermission(line_addr);
397            if(access_perm == AccessPermission_Read_Only ||
398               access_perm == AccessPermission_Read_Write||
399               access_perm == AccessPermission_Maybe_Stale ||
400               access_perm == AccessPermission_Backing_Store)
401            {
402                DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
403                                                      ->getDataBlock(line_addr);
404
405                DPRINTF(RubyPort, "%s\n",block);
406                for (unsigned i = 0; i < size_in_bytes; ++i) {
407                  block.setByte(i + startByte, data[i]);
408                }
409                DPRINTF(RubyPort, "%s\n",block);
410            }
411        }
412        return true;
413    }
414    return false;
415}
416
417void
418RubyPort::M5Port::recvFunctional(PacketPtr pkt)
419{
420    DPRINTF(RubyPort, "Functional access caught for address %#x\n",
421                                                           pkt->getAddr());
422
423    // Check for pio requests and directly send them to the dedicated
424    // pio port.
425    if (!isPhysMemAddress(pkt->getAddr())) {
426        assert(ruby_port->pio_port.isConnected());
427        DPRINTF(RubyPort, "Request for address 0x%#x is a pio request\n",
428                                                           pkt->getAddr());
429        panic("RubyPort::PioPort::recvFunctional() not implemented!\n");
430    }
431
432    assert(pkt->getAddr() + pkt->getSize() <=
433                line_address(Address(pkt->getAddr())).getAddress() +
434                RubySystem::getBlockSizeBytes());
435
436    bool accessSucceeded = false;
437    bool needsResponse = pkt->needsResponse();
438
439    // Do the functional access on ruby memory
440    if (pkt->isRead()) {
441        accessSucceeded = doFunctionalRead(pkt);
442    } else if (pkt->isWrite()) {
443        accessSucceeded = doFunctionalWrite(pkt);
444    } else {
445        panic("RubyPort: unsupported functional command %s\n",
446              pkt->cmdString());
447    }
448
449    // Unless the requester explicitly said otherwise, generate an error if
450    // the functional request failed
451    if (!accessSucceeded && !pkt->suppressFuncError()) {
452        fatal("Ruby functional %s failed for address %#x\n",
453              pkt->isWrite() ? "write" : "read", pkt->getAddr());
454    }
455
456    if (access_phys_mem) {
457        // The attached physmem contains the official version of data.
458        // The following command performs the real functional access.
459        // This line should be removed once Ruby supplies the official version
460        // of data.
461        ruby_port->system->getPhysMem().functionalAccess(pkt);
462    }
463
464    // turn packet around to go back to requester if response expected
465    if (needsResponse) {
466        pkt->setFunctionalResponseStatus(accessSucceeded);
467
468        // @todo There should not be a reverse call since the response is
469        // communicated through the packet pointer
470        // DPRINTF(RubyPort, "Sending packet back over port\n");
471        // sendFunctional(pkt);
472    }
473    DPRINTF(RubyPort, "Functional access %s!\n",
474            accessSucceeded ? "successful":"failed");
475}
476
477void
478RubyPort::ruby_hit_callback(PacketPtr pkt)
479{
480    // Retrieve the request port from the sender State
481    RubyPort::SenderState *senderState =
482        safe_cast<RubyPort::SenderState *>(pkt->senderState);
483    M5Port *port = senderState->port;
484    assert(port != NULL);
485
486    // pop the sender state from the packet
487    pkt->senderState = senderState->saved;
488    delete senderState;
489
490    port->hitCallback(pkt);
491
492    //
493    // If we had to stall the M5Ports, wake them up because the sequencer
494    // likely has free resources now.
495    //
496    if (waitingOnSequencer) {
497        //
498        // Record the current list of ports to retry on a temporary list before
499        // calling sendRetry on those ports.  sendRetry will cause an
500        // immediate retry, which may result in the ports being put back on the
501        // list. Therefore we want to clear the retryList before calling
502        // sendRetry.
503        //
504        std::list<M5Port*> curRetryList(retryList);
505
506        retryList.clear();
507        waitingOnSequencer = false;
508
509        for (std::list<M5Port*>::iterator i = curRetryList.begin();
510             i != curRetryList.end(); ++i) {
511            DPRINTF(RubyPort,
512                    "Sequencer may now be free.  SendRetry to port %s\n",
513                    (*i)->name());
514            (*i)->onRetryList(false);
515            (*i)->sendRetry();
516        }
517    }
518
519    testDrainComplete();
520}
521
522void
523RubyPort::testDrainComplete()
524{
525    //If we weren't able to drain before, we might be able to now.
526    if (drainEvent != NULL) {
527        unsigned int drainCount = getDrainCount(drainEvent);
528        DPRINTF(Drain, "Drain count: %u\n", drainCount);
529        if (drainCount == 0) {
530            DPRINTF(Drain, "RubyPort done draining, processing drain event\n");
531            drainEvent->process();
532            // Clear the drain event once we're done with it.
533            drainEvent = NULL;
534        }
535    }
536}
537
538unsigned int
539RubyPort::getDrainCount(Event *de)
540{
541    int count = 0;
542    //
543    // If the sequencer is not empty, then requests need to drain.
544    // The outstandingCount is the number of requests outstanding and thus the
545    // number of times M5's timing port will process the drain event.
546    //
547    count += outstandingCount();
548
549    DPRINTF(Config, "outstanding count %d\n", outstandingCount());
550
551    // To simplify the draining process, the sequencer's deadlock detection
552    // event should have been descheduled.
553    assert(isDeadlockEventScheduled() == false);
554
555    if (pio_port.isConnected()) {
556        count += pio_port.drain(de);
557        DPRINTF(Config, "count after pio check %d\n", count);
558    }
559
560    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
561        count += (*p)->drain(de);
562        DPRINTF(Config, "count after slave port check %d\n", count);
563    }
564
565    for (std::vector<PioPort*>::iterator p = master_ports.begin();
566         p != master_ports.end(); ++p) {
567        count += (*p)->drain(de);
568        DPRINTF(Config, "count after master port check %d\n", count);
569    }
570
571    DPRINTF(Config, "final count %d\n", count);
572
573    return count;
574}
575
576unsigned int
577RubyPort::drain(Event *de)
578{
579    if (isDeadlockEventScheduled()) {
580        descheduleDeadlockEvent();
581    }
582
583    int count = getDrainCount(de);
584
585    // Set status
586    if (count != 0) {
587        drainEvent = de;
588
589        DPRINTF(Drain, "RubyPort not drained\n");
590        changeState(SimObject::Draining);
591        return count;
592    }
593
594    changeState(SimObject::Drained);
595    return 0;
596}
597
598void
599RubyPort::M5Port::hitCallback(PacketPtr pkt)
600{
601    bool needsResponse = pkt->needsResponse();
602
603    //
604    // Unless specified at configuraiton, all responses except failed SC
605    // and Flush operations access M5 physical memory.
606    //
607    bool accessPhysMem = access_phys_mem;
608
609    if (pkt->isLLSC()) {
610        if (pkt->isWrite()) {
611            if (pkt->req->getExtraData() != 0) {
612                //
613                // Successful SC packets convert to normal writes
614                //
615                pkt->convertScToWrite();
616            } else {
617                //
618                // Failed SC packets don't access physical memory and thus
619                // the RubyPort itself must convert it to a response.
620                //
621                accessPhysMem = false;
622            }
623        } else {
624            //
625            // All LL packets convert to normal loads so that M5 PhysMem does
626            // not lock the blocks.
627            //
628            pkt->convertLlToRead();
629        }
630    }
631
632    //
633    // Flush requests don't access physical memory
634    //
635    if (pkt->isFlush()) {
636        accessPhysMem = false;
637    }
638
639    DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
640
641    if (accessPhysMem) {
642        ruby_port->system->getPhysMem().access(pkt);
643    } else if (needsResponse) {
644        pkt->makeResponse();
645    }
646
647    // turn packet around to go back to requester if response expected
648    if (needsResponse) {
649        DPRINTF(RubyPort, "Sending packet back over port\n");
650        sendNextCycle(pkt);
651    } else {
652        delete pkt;
653    }
654    DPRINTF(RubyPort, "Hit callback done!\n");
655}
656
657bool
658RubyPort::M5Port::sendNextCycle(PacketPtr pkt, bool send_as_snoop)
659{
660    //minimum latency, must be > 0
661    queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()),
662                          send_as_snoop);
663    return true;
664}
665
666bool
667RubyPort::PioPort::sendNextCycle(PacketPtr pkt)
668{
669    //minimum latency, must be > 0
670    queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
671    return true;
672}
673
674AddrRangeList
675RubyPort::M5Port::getAddrRanges() const
676{
677    // at the moment the assumption is that the master does not care
678    AddrRangeList ranges;
679    return ranges;
680}
681
682bool
683RubyPort::M5Port::isPhysMemAddress(Addr addr)
684{
685    return ruby_port->system->isMemAddr(addr);
686}
687
688unsigned
689RubyPort::M5Port::deviceBlockSize() const
690{
691    return (unsigned) RubySystem::getBlockSizeBytes();
692}
693
694void
695RubyPort::ruby_eviction_callback(const Address& address)
696{
697    DPRINTF(RubyPort, "Sending invalidations.\n");
698    // should this really be using funcMasterId?
699    Request req(address.getAddress(), 0, 0, Request::funcMasterId);
700    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
701        // check if the connected master port is snooping
702        if ((*p)->isSnooping()) {
703            Packet *pkt = new Packet(&req, MemCmd::InvalidationReq);
704            // send as a snoop request
705            (*p)->sendTimingSnoopReq(pkt);
706        }
707    }
708}
709