RubyPort.cc revision 8949:3fa1ee293096
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2009 Advanced Micro Devices, Inc.
15 * Copyright (c) 2011 Mark D. Hill and David A. Wood
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42#include "cpu/testers/rubytest/RubyTester.hh"
43#include "debug/Config.hh"
44#include "debug/Ruby.hh"
45#include "mem/protocol/AccessPermission.hh"
46#include "mem/ruby/slicc_interface/AbstractController.hh"
47#include "mem/ruby/system/RubyPort.hh"
48#include "sim/system.hh"
49
50RubyPort::RubyPort(const Params *p)
51    : MemObject(p), m_version(p->version), m_controller(NULL),
52      m_mandatory_q_ptr(NULL),
53      pio_port(csprintf("%s-pio-port", name()), this),
54      m_usingRubyTester(p->using_ruby_tester), m_request_cnt(0),
55      drainEvent(NULL), ruby_system(p->ruby_system), system(p->system),
56      waitingOnSequencer(false), access_phys_mem(p->access_phys_mem)
57{
58    assert(m_version != -1);
59
60    // create the slave ports based on the number of connected ports
61    for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
62        slave_ports.push_back(new M5Port(csprintf("%s-slave%d", name(), i),
63                                         this, ruby_system, access_phys_mem));
64    }
65
66    // create the master ports based on the number of connected ports
67    for (size_t i = 0; i < p->port_master_connection_count; ++i) {
68        master_ports.push_back(new PioPort(csprintf("%s-master%d", name(), i),
69                                           this));
70    }
71}
72
73void
74RubyPort::init()
75{
76    assert(m_controller != NULL);
77    m_mandatory_q_ptr = m_controller->getMandatoryQueue();
78}
79
80MasterPort &
81RubyPort::getMasterPort(const std::string &if_name, int idx)
82{
83    if (if_name == "pio_port") {
84        return pio_port;
85    }
86
87    // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
88    // port
89    if (if_name != "master") {
90        // pass it along to our super class
91        return MemObject::getMasterPort(if_name, idx);
92    } else {
93        if (idx >= static_cast<int>(master_ports.size())) {
94            panic("RubyPort::getMasterPort: unknown index %d\n", idx);
95        }
96
97        return *master_ports[idx];
98    }
99}
100
101SlavePort &
102RubyPort::getSlavePort(const std::string &if_name, int idx)
103{
104    // used by the CPUs to connect the caches to the interconnect, and
105    // for the x86 case also the interrupt master
106    if (if_name != "slave") {
107        // pass it along to our super class
108        return MemObject::getSlavePort(if_name, idx);
109    } else {
110        if (idx >= static_cast<int>(slave_ports.size())) {
111            panic("RubyPort::getSlavePort: unknown index %d\n", idx);
112        }
113
114        return *slave_ports[idx];
115    }
116}
117
118RubyPort::PioPort::PioPort(const std::string &_name,
119                           RubyPort *_port)
120    : QueuedMasterPort(_name, _port, queue), queue(*_port, *this),
121      ruby_port(_port)
122{
123    DPRINTF(RubyPort, "creating master port on ruby sequencer %s\n", _name);
124}
125
126RubyPort::M5Port::M5Port(const std::string &_name, RubyPort *_port,
127                         RubySystem *_system, bool _access_phys_mem)
128    : QueuedSlavePort(_name, _port, queue), queue(*_port, *this),
129      ruby_port(_port), ruby_system(_system),
130      _onRetryList(false), access_phys_mem(_access_phys_mem)
131{
132    DPRINTF(RubyPort, "creating slave port on ruby sequencer %s\n", _name);
133}
134
135Tick
136RubyPort::M5Port::recvAtomic(PacketPtr pkt)
137{
138    panic("RubyPort::M5Port::recvAtomic() not implemented!\n");
139    return 0;
140}
141
142
143bool
144RubyPort::PioPort::recvTiming(PacketPtr pkt)
145{
146    // In FS mode, ruby memory will receive pio responses from devices
147    // and it must forward these responses back to the particular CPU.
148    DPRINTF(RubyPort,  "Pio response for address %#x\n", pkt->getAddr());
149
150    assert(pkt->isResponse());
151
152    // First we must retrieve the request port from the sender State
153    RubyPort::SenderState *senderState =
154      safe_cast<RubyPort::SenderState *>(pkt->senderState);
155    M5Port *port = senderState->port;
156    assert(port != NULL);
157
158    // pop the sender state from the packet
159    pkt->senderState = senderState->saved;
160    delete senderState;
161
162    port->sendTiming(pkt);
163
164    return true;
165}
166
167bool
168RubyPort::M5Port::recvTiming(PacketPtr pkt)
169{
170    DPRINTF(RubyPort,
171            "Timing access caught for address %#x\n", pkt->getAddr());
172
173    //dsm: based on SimpleTimingPort::recvTiming(pkt);
174
175    // The received packets should only be M5 requests, which should never
176    // get nacked.  There used to be code to hanldle nacks here, but
177    // I'm pretty sure it didn't work correctly with the drain code,
178    // so that would need to be fixed if we ever added it back.
179    assert(pkt->isRequest());
180
181    if (pkt->memInhibitAsserted()) {
182        warn("memInhibitAsserted???");
183        // snooper will supply based on copy of packet
184        // still target's responsibility to delete packet
185        delete pkt;
186        return true;
187    }
188
189    // Save the port in the sender state object to be used later to
190    // route the response
191    pkt->senderState = new SenderState(this, pkt->senderState);
192
193    // Check for pio requests and directly send them to the dedicated
194    // pio port.
195    if (!isPhysMemAddress(pkt->getAddr())) {
196        assert(ruby_port->pio_port.isConnected());
197        DPRINTF(RubyPort,
198                "Request for address 0x%#x is assumed to be a pio request\n",
199                pkt->getAddr());
200
201        return ruby_port->pio_port.sendNextCycle(pkt);
202    }
203
204    assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
205           RubySystem::getBlockSizeBytes());
206
207    // Submit the ruby request
208    RequestStatus requestStatus = ruby_port->makeRequest(pkt);
209
210    // If the request successfully issued then we should return true.
211    // Otherwise, we need to delete the senderStatus we just created and return
212    // false.
213    if (requestStatus == RequestStatus_Issued) {
214        DPRINTF(RubyPort, "Request %#x issued\n", pkt->getAddr());
215        return true;
216    }
217
218    //
219    // Unless one is using the ruby tester, record the stalled M5 port for
220    // later retry when the sequencer becomes free.
221    //
222    if (!ruby_port->m_usingRubyTester) {
223        ruby_port->addToRetryList(this);
224    }
225
226    DPRINTF(RubyPort,
227            "Request for address %#x did not issue because %s\n",
228            pkt->getAddr(), RequestStatus_to_string(requestStatus));
229
230    SenderState* senderState = safe_cast<SenderState*>(pkt->senderState);
231    pkt->senderState = senderState->saved;
232    delete senderState;
233    return false;
234}
235
236bool
237RubyPort::M5Port::doFunctionalRead(PacketPtr pkt)
238{
239    Address address(pkt->getAddr());
240    Address line_address(address);
241    line_address.makeLineAddress();
242
243    AccessPermission access_perm = AccessPermission_NotPresent;
244    int num_controllers = ruby_system->m_abs_cntrl_vec.size();
245
246    DPRINTF(RubyPort, "Functional Read request for %s\n",address);
247
248    unsigned int num_ro = 0;
249    unsigned int num_rw = 0;
250    unsigned int num_busy = 0;
251    unsigned int num_backing_store = 0;
252    unsigned int num_invalid = 0;
253
254    // In this loop we count the number of controllers that have the given
255    // address in read only, read write and busy states.
256    for (int i = 0; i < num_controllers; ++i) {
257        access_perm = ruby_system->m_abs_cntrl_vec[i]->
258                                            getAccessPermission(line_address);
259        if (access_perm == AccessPermission_Read_Only)
260            num_ro++;
261        else if (access_perm == AccessPermission_Read_Write)
262            num_rw++;
263        else if (access_perm == AccessPermission_Busy)
264            num_busy++;
265        else if (access_perm == AccessPermission_Backing_Store)
266            // See RubySlicc_Exports.sm for details, but Backing_Store is meant
267            // to represent blocks in memory *for Broadcast/Snooping protocols*,
268            // where memory has no idea whether it has an exclusive copy of data
269            // or not.
270            num_backing_store++;
271        else if (access_perm == AccessPermission_Invalid ||
272                 access_perm == AccessPermission_NotPresent)
273            num_invalid++;
274    }
275    assert(num_rw <= 1);
276
277    uint8* data = pkt->getPtr<uint8_t>(true);
278    unsigned int size_in_bytes = pkt->getSize();
279    unsigned startByte = address.getAddress() - line_address.getAddress();
280
281    // This if case is meant to capture what happens in a Broadcast/Snoop
282    // protocol where the block does not exist in the cache hierarchy. You
283    // only want to read from the Backing_Store memory if there is no copy in
284    // the cache hierarchy, otherwise you want to try to read the RO or RW
285    // copies existing in the cache hierarchy (covered by the else statement).
286    // The reason is because the Backing_Store memory could easily be stale, if
287    // there are copies floating around the cache hierarchy, so you want to read
288    // it only if it's not in the cache hierarchy at all.
289    if (num_invalid == (num_controllers - 1) &&
290            num_backing_store == 1)
291    {
292        DPRINTF(RubyPort, "only copy in Backing_Store memory, read from it\n");
293        for (int i = 0; i < num_controllers; ++i) {
294            access_perm = ruby_system->m_abs_cntrl_vec[i]
295                                              ->getAccessPermission(line_address);
296            if (access_perm == AccessPermission_Backing_Store) {
297                DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
298                                                 ->getDataBlock(line_address);
299
300                DPRINTF(RubyPort, "reading from %s block %s\n",
301                        ruby_system->m_abs_cntrl_vec[i]->name(), block);
302                for (unsigned i = 0; i < size_in_bytes; ++i) {
303                    data[i] = block.getByte(i + startByte);
304                }
305                return true;
306            }
307        }
308    } else {
309        // In Broadcast/Snoop protocols, this covers if you know the block
310        // exists somewhere in the caching hierarchy, then you want to read any
311        // valid RO or RW block.  In directory protocols, same thing, you want
312        // to read any valid readable copy of the block.
313        DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
314                num_busy, num_ro, num_rw);
315        // In this loop, we try to figure which controller has a read only or
316        // a read write copy of the given address. Any valid copy would suffice
317        // for a functional read.
318        for(int i = 0;i < num_controllers;++i) {
319            access_perm = ruby_system->m_abs_cntrl_vec[i]
320                                              ->getAccessPermission(line_address);
321            if(access_perm == AccessPermission_Read_Only ||
322               access_perm == AccessPermission_Read_Write)
323            {
324                DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
325                                                     ->getDataBlock(line_address);
326
327                DPRINTF(RubyPort, "reading from %s block %s\n",
328                        ruby_system->m_abs_cntrl_vec[i]->name(), block);
329                for (unsigned i = 0; i < size_in_bytes; ++i) {
330                    data[i] = block.getByte(i + startByte);
331                }
332                return true;
333            }
334        }
335    }
336    return false;
337}
338
339bool
340RubyPort::M5Port::doFunctionalWrite(PacketPtr pkt)
341{
342    Address addr(pkt->getAddr());
343    Address line_addr = line_address(addr);
344    AccessPermission access_perm = AccessPermission_NotPresent;
345    int num_controllers = ruby_system->m_abs_cntrl_vec.size();
346
347    DPRINTF(RubyPort, "Functional Write request for %s\n",addr);
348
349    unsigned int num_ro = 0;
350    unsigned int num_rw = 0;
351    unsigned int num_busy = 0;
352    unsigned int num_backing_store = 0;
353    unsigned int num_invalid = 0;
354
355    // In this loop we count the number of controllers that have the given
356    // address in read only, read write and busy states.
357    for(int i = 0;i < num_controllers;++i) {
358        access_perm = ruby_system->m_abs_cntrl_vec[i]->
359                                            getAccessPermission(line_addr);
360        if (access_perm == AccessPermission_Read_Only)
361            num_ro++;
362        else if (access_perm == AccessPermission_Read_Write)
363            num_rw++;
364        else if (access_perm == AccessPermission_Busy)
365            num_busy++;
366        else if (access_perm == AccessPermission_Backing_Store)
367            // See RubySlicc_Exports.sm for details, but Backing_Store is meant
368            // to represent blocks in memory *for Broadcast/Snooping protocols*,
369            // where memory has no idea whether it has an exclusive copy of data
370            // or not.
371            num_backing_store++;
372        else if (access_perm == AccessPermission_Invalid ||
373                 access_perm == AccessPermission_NotPresent)
374            num_invalid++;
375    }
376
377    // If the number of read write copies is more than 1, then there is bug in
378    // coherence protocol. Otherwise, if all copies are in stable states, i.e.
379    // num_busy == 0, we update all the copies. If there is at least one copy
380    // in busy state, then we check if there is read write copy. If yes, then
381    // also we let the access go through. Or, if there is no copy in the cache
382    // hierarchy at all, we still want to do the write to the memory
383    // (Backing_Store) instead of failing.
384
385    DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
386            num_busy, num_ro, num_rw);
387    assert(num_rw <= 1);
388
389    uint8* data = pkt->getPtr<uint8_t>(true);
390    unsigned int size_in_bytes = pkt->getSize();
391    unsigned startByte = addr.getAddress() - line_addr.getAddress();
392
393    if ((num_busy == 0 && num_ro > 0) || num_rw == 1 ||
394            (num_invalid == (num_controllers - 1) && num_backing_store == 1))
395    {
396        for(int i = 0; i < num_controllers;++i) {
397            access_perm = ruby_system->m_abs_cntrl_vec[i]->
398                                                getAccessPermission(line_addr);
399            if(access_perm == AccessPermission_Read_Only ||
400               access_perm == AccessPermission_Read_Write||
401               access_perm == AccessPermission_Maybe_Stale ||
402               access_perm == AccessPermission_Backing_Store)
403            {
404                DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
405                                                      ->getDataBlock(line_addr);
406
407                DPRINTF(RubyPort, "%s\n",block);
408                for (unsigned i = 0; i < size_in_bytes; ++i) {
409                  block.setByte(i + startByte, data[i]);
410                }
411                DPRINTF(RubyPort, "%s\n",block);
412            }
413        }
414        return true;
415    }
416    return false;
417}
418
419void
420RubyPort::M5Port::recvFunctional(PacketPtr pkt)
421{
422    DPRINTF(RubyPort, "Functional access caught for address %#x\n",
423                                                           pkt->getAddr());
424
425    // Check for pio requests and directly send them to the dedicated
426    // pio port.
427    if (!isPhysMemAddress(pkt->getAddr())) {
428        assert(ruby_port->pio_port.isConnected());
429        DPRINTF(RubyPort, "Request for address 0x%#x is a pio request\n",
430                                                           pkt->getAddr());
431        panic("RubyPort::PioPort::recvFunctional() not implemented!\n");
432    }
433
434    assert(pkt->getAddr() + pkt->getSize() <=
435                line_address(Address(pkt->getAddr())).getAddress() +
436                RubySystem::getBlockSizeBytes());
437
438    bool accessSucceeded = false;
439    bool needsResponse = pkt->needsResponse();
440
441    // Do the functional access on ruby memory
442    if (pkt->isRead()) {
443        accessSucceeded = doFunctionalRead(pkt);
444    } else if (pkt->isWrite()) {
445        accessSucceeded = doFunctionalWrite(pkt);
446    } else {
447        panic("RubyPort: unsupported functional command %s\n",
448              pkt->cmdString());
449    }
450
451    // Unless the requester explicitly said otherwise, generate an error if
452    // the functional request failed
453    if (!accessSucceeded && !pkt->suppressFuncError()) {
454        fatal("Ruby functional %s failed for address %#x\n",
455              pkt->isWrite() ? "write" : "read", pkt->getAddr());
456    }
457
458    if (access_phys_mem) {
459        // The attached physmem contains the official version of data.
460        // The following command performs the real functional access.
461        // This line should be removed once Ruby supplies the official version
462        // of data.
463        ruby_port->system->getPhysMem().functionalAccess(pkt);
464    }
465
466    // turn packet around to go back to requester if response expected
467    if (needsResponse) {
468        pkt->setFunctionalResponseStatus(accessSucceeded);
469
470        // @todo There should not be a reverse call since the response is
471        // communicated through the packet pointer
472        // DPRINTF(RubyPort, "Sending packet back over port\n");
473        // sendFunctional(pkt);
474    }
475    DPRINTF(RubyPort, "Functional access %s!\n",
476            accessSucceeded ? "successful":"failed");
477}
478
479void
480RubyPort::ruby_hit_callback(PacketPtr pkt)
481{
482    // Retrieve the request port from the sender State
483    RubyPort::SenderState *senderState =
484        safe_cast<RubyPort::SenderState *>(pkt->senderState);
485    M5Port *port = senderState->port;
486    assert(port != NULL);
487
488    // pop the sender state from the packet
489    pkt->senderState = senderState->saved;
490    delete senderState;
491
492    port->hitCallback(pkt);
493
494    //
495    // If we had to stall the M5Ports, wake them up because the sequencer
496    // likely has free resources now.
497    //
498    if (waitingOnSequencer) {
499        //
500        // Record the current list of ports to retry on a temporary list before
501        // calling sendRetry on those ports.  sendRetry will cause an
502        // immediate retry, which may result in the ports being put back on the
503        // list. Therefore we want to clear the retryList before calling
504        // sendRetry.
505        //
506        std::list<M5Port*> curRetryList(retryList);
507
508        retryList.clear();
509        waitingOnSequencer = false;
510
511        for (std::list<M5Port*>::iterator i = curRetryList.begin();
512             i != curRetryList.end(); ++i) {
513            DPRINTF(RubyPort,
514                    "Sequencer may now be free.  SendRetry to port %s\n",
515                    (*i)->name());
516            (*i)->onRetryList(false);
517            (*i)->sendRetry();
518        }
519    }
520
521    testDrainComplete();
522}
523
524void
525RubyPort::testDrainComplete()
526{
527    //If we weren't able to drain before, we might be able to now.
528    if (drainEvent != NULL) {
529        unsigned int drainCount = getDrainCount(drainEvent);
530        DPRINTF(Config, "Drain count: %u\n", drainCount);
531        if (drainCount == 0) {
532            drainEvent->process();
533            // Clear the drain event once we're done with it.
534            drainEvent = NULL;
535        }
536    }
537}
538
539unsigned int
540RubyPort::getDrainCount(Event *de)
541{
542    int count = 0;
543    //
544    // If the sequencer is not empty, then requests need to drain.
545    // The outstandingCount is the number of requests outstanding and thus the
546    // number of times M5's timing port will process the drain event.
547    //
548    count += outstandingCount();
549
550    DPRINTF(Config, "outstanding count %d\n", outstandingCount());
551
552    // To simplify the draining process, the sequencer's deadlock detection
553    // event should have been descheduled.
554    assert(isDeadlockEventScheduled() == false);
555
556    if (pio_port.isConnected()) {
557        count += pio_port.drain(de);
558        DPRINTF(Config, "count after pio check %d\n", count);
559    }
560
561    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
562        count += (*p)->drain(de);
563        DPRINTF(Config, "count after slave port check %d\n", count);
564    }
565
566    for (std::vector<PioPort*>::iterator p = master_ports.begin();
567         p != master_ports.end(); ++p) {
568        count += (*p)->drain(de);
569        DPRINTF(Config, "count after master port check %d\n", count);
570    }
571
572    DPRINTF(Config, "final count %d\n", count);
573
574    return count;
575}
576
577unsigned int
578RubyPort::drain(Event *de)
579{
580    if (isDeadlockEventScheduled()) {
581        descheduleDeadlockEvent();
582    }
583
584    int count = getDrainCount(de);
585
586    // Set status
587    if (count != 0) {
588        drainEvent = de;
589
590        changeState(SimObject::Draining);
591        return count;
592    }
593
594    changeState(SimObject::Drained);
595    return 0;
596}
597
598void
599RubyPort::M5Port::hitCallback(PacketPtr pkt)
600{
601    bool needsResponse = pkt->needsResponse();
602
603    //
604    // Unless specified at configuraiton, all responses except failed SC
605    // and Flush operations access M5 physical memory.
606    //
607    bool accessPhysMem = access_phys_mem;
608
609    if (pkt->isLLSC()) {
610        if (pkt->isWrite()) {
611            if (pkt->req->getExtraData() != 0) {
612                //
613                // Successful SC packets convert to normal writes
614                //
615                pkt->convertScToWrite();
616            } else {
617                //
618                // Failed SC packets don't access physical memory and thus
619                // the RubyPort itself must convert it to a response.
620                //
621                accessPhysMem = false;
622            }
623        } else {
624            //
625            // All LL packets convert to normal loads so that M5 PhysMem does
626            // not lock the blocks.
627            //
628            pkt->convertLlToRead();
629        }
630    }
631
632    //
633    // Flush requests don't access physical memory
634    //
635    if (pkt->isFlush()) {
636        accessPhysMem = false;
637    }
638
639    DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
640
641    if (accessPhysMem) {
642        ruby_port->system->getPhysMem().access(pkt);
643    } else if (needsResponse) {
644        pkt->makeResponse();
645    }
646
647    // turn packet around to go back to requester if response expected
648    if (needsResponse) {
649        DPRINTF(RubyPort, "Sending packet back over port\n");
650        sendNextCycle(pkt);
651    } else {
652        delete pkt;
653    }
654    DPRINTF(RubyPort, "Hit callback done!\n");
655}
656
657bool
658RubyPort::M5Port::sendNextCycle(PacketPtr pkt, bool send_as_snoop)
659{
660    //minimum latency, must be > 0
661    queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()),
662                          send_as_snoop);
663    return true;
664}
665
666bool
667RubyPort::PioPort::sendNextCycle(PacketPtr pkt)
668{
669    //minimum latency, must be > 0
670    queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
671    return true;
672}
673
674AddrRangeList
675RubyPort::M5Port::getAddrRanges()
676{
677    // at the moment the assumption is that the master does not care
678    AddrRangeList ranges;
679    return ranges;
680}
681
682bool
683RubyPort::M5Port::isPhysMemAddress(Addr addr)
684{
685    return ruby_port->system->isMemAddr(addr);
686}
687
688unsigned
689RubyPort::M5Port::deviceBlockSize() const
690{
691    return (unsigned) RubySystem::getBlockSizeBytes();
692}
693
694void
695RubyPort::ruby_eviction_callback(const Address& address)
696{
697    DPRINTF(RubyPort, "Sending invalidations.\n");
698    // should this really be using funcMasterId?
699    Request req(address.getAddress(), 0, 0, Request::funcMasterId);
700    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
701        if ((*p)->getMasterPort().isSnooping()) {
702            Packet *pkt = new Packet(&req, MemCmd::InvalidationReq);
703            // send as a snoop request
704            (*p)->sendNextCycle(pkt, true);
705        }
706    }
707}
708