RubyPort.cc revision 8923:820111f58fbb
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2009 Advanced Micro Devices, Inc.
15 * Copyright (c) 2011 Mark D. Hill and David A. Wood
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42#include "cpu/testers/rubytest/RubyTester.hh"
43#include "debug/Config.hh"
44#include "debug/Ruby.hh"
45#include "mem/protocol/AccessPermission.hh"
46#include "mem/ruby/slicc_interface/AbstractController.hh"
47#include "mem/ruby/system/RubyPort.hh"
48#include "sim/system.hh"
49
50RubyPort::RubyPort(const Params *p)
51    : MemObject(p), m_version(p->version), m_controller(NULL),
52      m_mandatory_q_ptr(NULL),
53      pio_port(csprintf("%s-pio-port", name()), this),
54      m_usingRubyTester(p->using_ruby_tester), m_request_cnt(0),
55      drainEvent(NULL), ruby_system(p->ruby_system), system(p->system),
56      waitingOnSequencer(false), access_phys_mem(p->access_phys_mem)
57{
58    assert(m_version != -1);
59
60    // create the slave ports based on the number of connected ports
61    for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
62        slave_ports.push_back(new M5Port(csprintf("%s-slave%d", name(), i),
63                                         this, ruby_system, access_phys_mem));
64    }
65
66    // create the master ports based on the number of connected ports
67    for (size_t i = 0; i < p->port_master_connection_count; ++i) {
68        master_ports.push_back(new PioPort(csprintf("%s-master%d", name(), i),
69                                           this));
70    }
71}
72
73void
74RubyPort::init()
75{
76    assert(m_controller != NULL);
77    m_mandatory_q_ptr = m_controller->getMandatoryQueue();
78}
79
80MasterPort &
81RubyPort::getMasterPort(const std::string &if_name, int idx)
82{
83    if (if_name == "pio_port") {
84        return pio_port;
85    }
86
87    // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
88    // port
89    if (if_name != "master") {
90        // pass it along to our super class
91        return MemObject::getMasterPort(if_name, idx);
92    } else {
93        if (idx >= static_cast<int>(master_ports.size())) {
94            panic("RubyPort::getMasterPort: unknown index %d\n", idx);
95        }
96
97        return *master_ports[idx];
98    }
99}
100
101SlavePort &
102RubyPort::getSlavePort(const std::string &if_name, int idx)
103{
104    // used by the CPUs to connect the caches to the interconnect, and
105    // for the x86 case also the interrupt master
106    if (if_name != "slave") {
107        // pass it along to our super class
108        return MemObject::getSlavePort(if_name, idx);
109    } else {
110        if (idx >= static_cast<int>(slave_ports.size())) {
111            panic("RubyPort::getSlavePort: unknown index %d\n", idx);
112        }
113
114        return *slave_ports[idx];
115    }
116}
117
118RubyPort::PioPort::PioPort(const std::string &_name,
119                           RubyPort *_port)
120    : QueuedMasterPort(_name, _port, queue), queue(*_port, *this),
121      ruby_port(_port)
122{
123    DPRINTF(RubyPort, "creating master port on ruby sequencer %s\n", _name);
124}
125
126RubyPort::M5Port::M5Port(const std::string &_name, RubyPort *_port,
127                         RubySystem *_system, bool _access_phys_mem)
128    : QueuedSlavePort(_name, _port, queue), queue(*_port, *this),
129      ruby_port(_port), ruby_system(_system),
130      _onRetryList(false), access_phys_mem(_access_phys_mem)
131{
132    DPRINTF(RubyPort, "creating slave port on ruby sequencer %s\n", _name);
133}
134
135Tick
136RubyPort::PioPort::recvAtomic(PacketPtr pkt)
137{
138    panic("RubyPort::PioPort::recvAtomic() not implemented!\n");
139    return 0;
140}
141
142Tick
143RubyPort::M5Port::recvAtomic(PacketPtr pkt)
144{
145    panic("RubyPort::M5Port::recvAtomic() not implemented!\n");
146    return 0;
147}
148
149
150bool
151RubyPort::PioPort::recvTiming(PacketPtr pkt)
152{
153    // In FS mode, ruby memory will receive pio responses from devices
154    // and it must forward these responses back to the particular CPU.
155    DPRINTF(RubyPort,  "Pio response for address %#x\n", pkt->getAddr());
156
157    assert(pkt->isResponse());
158
159    // First we must retrieve the request port from the sender State
160    RubyPort::SenderState *senderState =
161      safe_cast<RubyPort::SenderState *>(pkt->senderState);
162    M5Port *port = senderState->port;
163    assert(port != NULL);
164
165    // pop the sender state from the packet
166    pkt->senderState = senderState->saved;
167    delete senderState;
168
169    port->sendTiming(pkt);
170
171    return true;
172}
173
174bool
175RubyPort::M5Port::recvTiming(PacketPtr pkt)
176{
177    DPRINTF(RubyPort,
178            "Timing access caught for address %#x\n", pkt->getAddr());
179
180    //dsm: based on SimpleTimingPort::recvTiming(pkt);
181
182    // The received packets should only be M5 requests, which should never
183    // get nacked.  There used to be code to hanldle nacks here, but
184    // I'm pretty sure it didn't work correctly with the drain code,
185    // so that would need to be fixed if we ever added it back.
186    assert(pkt->isRequest());
187
188    if (pkt->memInhibitAsserted()) {
189        warn("memInhibitAsserted???");
190        // snooper will supply based on copy of packet
191        // still target's responsibility to delete packet
192        delete pkt;
193        return true;
194    }
195
196    // Save the port in the sender state object to be used later to
197    // route the response
198    pkt->senderState = new SenderState(this, pkt->senderState);
199
200    // Check for pio requests and directly send them to the dedicated
201    // pio port.
202    if (!isPhysMemAddress(pkt->getAddr())) {
203        assert(ruby_port->pio_port.isConnected());
204        DPRINTF(RubyPort,
205                "Request for address 0x%#x is assumed to be a pio request\n",
206                pkt->getAddr());
207
208        return ruby_port->pio_port.sendNextCycle(pkt);
209    }
210
211    assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
212           RubySystem::getBlockSizeBytes());
213
214    // Submit the ruby request
215    RequestStatus requestStatus = ruby_port->makeRequest(pkt);
216
217    // If the request successfully issued then we should return true.
218    // Otherwise, we need to delete the senderStatus we just created and return
219    // false.
220    if (requestStatus == RequestStatus_Issued) {
221        DPRINTF(RubyPort, "Request %#x issued\n", pkt->getAddr());
222        return true;
223    }
224
225    //
226    // Unless one is using the ruby tester, record the stalled M5 port for
227    // later retry when the sequencer becomes free.
228    //
229    if (!ruby_port->m_usingRubyTester) {
230        ruby_port->addToRetryList(this);
231    }
232
233    DPRINTF(RubyPort,
234            "Request for address %#x did not issue because %s\n",
235            pkt->getAddr(), RequestStatus_to_string(requestStatus));
236
237    SenderState* senderState = safe_cast<SenderState*>(pkt->senderState);
238    pkt->senderState = senderState->saved;
239    delete senderState;
240    return false;
241}
242
243bool
244RubyPort::M5Port::doFunctionalRead(PacketPtr pkt)
245{
246    Address address(pkt->getAddr());
247    Address line_address(address);
248    line_address.makeLineAddress();
249
250    AccessPermission access_perm = AccessPermission_NotPresent;
251    int num_controllers = ruby_system->m_abs_cntrl_vec.size();
252
253    DPRINTF(RubyPort, "Functional Read request for %s\n",address);
254
255    unsigned int num_ro = 0;
256    unsigned int num_rw = 0;
257    unsigned int num_busy = 0;
258    unsigned int num_backing_store = 0;
259    unsigned int num_invalid = 0;
260
261    // In this loop we count the number of controllers that have the given
262    // address in read only, read write and busy states.
263    for (int i = 0; i < num_controllers; ++i) {
264        access_perm = ruby_system->m_abs_cntrl_vec[i]->
265                                            getAccessPermission(line_address);
266        if (access_perm == AccessPermission_Read_Only)
267            num_ro++;
268        else if (access_perm == AccessPermission_Read_Write)
269            num_rw++;
270        else if (access_perm == AccessPermission_Busy)
271            num_busy++;
272        else if (access_perm == AccessPermission_Backing_Store)
273            // See RubySlicc_Exports.sm for details, but Backing_Store is meant
274            // to represent blocks in memory *for Broadcast/Snooping protocols*,
275            // where memory has no idea whether it has an exclusive copy of data
276            // or not.
277            num_backing_store++;
278        else if (access_perm == AccessPermission_Invalid ||
279                 access_perm == AccessPermission_NotPresent)
280            num_invalid++;
281    }
282    assert(num_rw <= 1);
283
284    uint8* data = pkt->getPtr<uint8_t>(true);
285    unsigned int size_in_bytes = pkt->getSize();
286    unsigned startByte = address.getAddress() - line_address.getAddress();
287
288    // This if case is meant to capture what happens in a Broadcast/Snoop
289    // protocol where the block does not exist in the cache hierarchy. You
290    // only want to read from the Backing_Store memory if there is no copy in
291    // the cache hierarchy, otherwise you want to try to read the RO or RW
292    // copies existing in the cache hierarchy (covered by the else statement).
293    // The reason is because the Backing_Store memory could easily be stale, if
294    // there are copies floating around the cache hierarchy, so you want to read
295    // it only if it's not in the cache hierarchy at all.
296    if (num_invalid == (num_controllers - 1) &&
297            num_backing_store == 1)
298    {
299        DPRINTF(RubyPort, "only copy in Backing_Store memory, read from it\n");
300        for (int i = 0; i < num_controllers; ++i) {
301            access_perm = ruby_system->m_abs_cntrl_vec[i]
302                                              ->getAccessPermission(line_address);
303            if (access_perm == AccessPermission_Backing_Store) {
304                DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
305                                                 ->getDataBlock(line_address);
306
307                DPRINTF(RubyPort, "reading from %s block %s\n",
308                        ruby_system->m_abs_cntrl_vec[i]->name(), block);
309                for (unsigned i = 0; i < size_in_bytes; ++i) {
310                    data[i] = block.getByte(i + startByte);
311                }
312                return true;
313            }
314        }
315    } else {
316        // In Broadcast/Snoop protocols, this covers if you know the block
317        // exists somewhere in the caching hierarchy, then you want to read any
318        // valid RO or RW block.  In directory protocols, same thing, you want
319        // to read any valid readable copy of the block.
320        DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
321                num_busy, num_ro, num_rw);
322        // In this loop, we try to figure which controller has a read only or
323        // a read write copy of the given address. Any valid copy would suffice
324        // for a functional read.
325        for(int i = 0;i < num_controllers;++i) {
326            access_perm = ruby_system->m_abs_cntrl_vec[i]
327                                              ->getAccessPermission(line_address);
328            if(access_perm == AccessPermission_Read_Only ||
329               access_perm == AccessPermission_Read_Write)
330            {
331                DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
332                                                     ->getDataBlock(line_address);
333
334                DPRINTF(RubyPort, "reading from %s block %s\n",
335                        ruby_system->m_abs_cntrl_vec[i]->name(), block);
336                for (unsigned i = 0; i < size_in_bytes; ++i) {
337                    data[i] = block.getByte(i + startByte);
338                }
339                return true;
340            }
341        }
342    }
343    return false;
344}
345
346bool
347RubyPort::M5Port::doFunctionalWrite(PacketPtr pkt)
348{
349    Address addr(pkt->getAddr());
350    Address line_addr = line_address(addr);
351    AccessPermission access_perm = AccessPermission_NotPresent;
352    int num_controllers = ruby_system->m_abs_cntrl_vec.size();
353
354    DPRINTF(RubyPort, "Functional Write request for %s\n",addr);
355
356    unsigned int num_ro = 0;
357    unsigned int num_rw = 0;
358    unsigned int num_busy = 0;
359    unsigned int num_backing_store = 0;
360    unsigned int num_invalid = 0;
361
362    // In this loop we count the number of controllers that have the given
363    // address in read only, read write and busy states.
364    for(int i = 0;i < num_controllers;++i) {
365        access_perm = ruby_system->m_abs_cntrl_vec[i]->
366                                            getAccessPermission(line_addr);
367        if (access_perm == AccessPermission_Read_Only)
368            num_ro++;
369        else if (access_perm == AccessPermission_Read_Write)
370            num_rw++;
371        else if (access_perm == AccessPermission_Busy)
372            num_busy++;
373        else if (access_perm == AccessPermission_Backing_Store)
374            // See RubySlicc_Exports.sm for details, but Backing_Store is meant
375            // to represent blocks in memory *for Broadcast/Snooping protocols*,
376            // where memory has no idea whether it has an exclusive copy of data
377            // or not.
378            num_backing_store++;
379        else if (access_perm == AccessPermission_Invalid ||
380                 access_perm == AccessPermission_NotPresent)
381            num_invalid++;
382    }
383
384    // If the number of read write copies is more than 1, then there is bug in
385    // coherence protocol. Otherwise, if all copies are in stable states, i.e.
386    // num_busy == 0, we update all the copies. If there is at least one copy
387    // in busy state, then we check if there is read write copy. If yes, then
388    // also we let the access go through. Or, if there is no copy in the cache
389    // hierarchy at all, we still want to do the write to the memory
390    // (Backing_Store) instead of failing.
391
392    DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
393            num_busy, num_ro, num_rw);
394    assert(num_rw <= 1);
395
396    uint8* data = pkt->getPtr<uint8_t>(true);
397    unsigned int size_in_bytes = pkt->getSize();
398    unsigned startByte = addr.getAddress() - line_addr.getAddress();
399
400    if ((num_busy == 0 && num_ro > 0) || num_rw == 1 ||
401            (num_invalid == (num_controllers - 1) && num_backing_store == 1))
402    {
403        for(int i = 0; i < num_controllers;++i) {
404            access_perm = ruby_system->m_abs_cntrl_vec[i]->
405                                                getAccessPermission(line_addr);
406            if(access_perm == AccessPermission_Read_Only ||
407               access_perm == AccessPermission_Read_Write||
408               access_perm == AccessPermission_Maybe_Stale ||
409               access_perm == AccessPermission_Backing_Store)
410            {
411                DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
412                                                      ->getDataBlock(line_addr);
413
414                DPRINTF(RubyPort, "%s\n",block);
415                for (unsigned i = 0; i < size_in_bytes; ++i) {
416                  block.setByte(i + startByte, data[i]);
417                }
418                DPRINTF(RubyPort, "%s\n",block);
419            }
420        }
421        return true;
422    }
423    return false;
424}
425
426void
427RubyPort::M5Port::recvFunctional(PacketPtr pkt)
428{
429    DPRINTF(RubyPort, "Functional access caught for address %#x\n",
430                                                           pkt->getAddr());
431
432    // Check for pio requests and directly send them to the dedicated
433    // pio port.
434    if (!isPhysMemAddress(pkt->getAddr())) {
435        assert(ruby_port->pio_port.isConnected());
436        DPRINTF(RubyPort, "Request for address 0x%#x is a pio request\n",
437                                                           pkt->getAddr());
438        panic("RubyPort::PioPort::recvFunctional() not implemented!\n");
439    }
440
441    assert(pkt->getAddr() + pkt->getSize() <=
442                line_address(Address(pkt->getAddr())).getAddress() +
443                RubySystem::getBlockSizeBytes());
444
445    bool accessSucceeded = false;
446    bool needsResponse = pkt->needsResponse();
447
448    // Do the functional access on ruby memory
449    if (pkt->isRead()) {
450        accessSucceeded = doFunctionalRead(pkt);
451    } else if (pkt->isWrite()) {
452        accessSucceeded = doFunctionalWrite(pkt);
453    } else {
454        panic("RubyPort: unsupported functional command %s\n",
455              pkt->cmdString());
456    }
457
458    // Unless the requester explicitly said otherwise, generate an error if
459    // the functional request failed
460    if (!accessSucceeded && !pkt->suppressFuncError()) {
461        fatal("Ruby functional %s failed for address %#x\n",
462              pkt->isWrite() ? "write" : "read", pkt->getAddr());
463    }
464
465    if (access_phys_mem) {
466        // The attached physmem contains the official version of data.
467        // The following command performs the real functional access.
468        // This line should be removed once Ruby supplies the official version
469        // of data.
470        ruby_port->system->physmem->doFunctionalAccess(pkt);
471    }
472
473    // turn packet around to go back to requester if response expected
474    if (needsResponse) {
475        pkt->setFunctionalResponseStatus(accessSucceeded);
476
477        // @todo There should not be a reverse call since the response is
478        // communicated through the packet pointer
479        // DPRINTF(RubyPort, "Sending packet back over port\n");
480        // sendFunctional(pkt);
481    }
482    DPRINTF(RubyPort, "Functional access %s!\n",
483            accessSucceeded ? "successful":"failed");
484}
485
486void
487RubyPort::ruby_hit_callback(PacketPtr pkt)
488{
489    // Retrieve the request port from the sender State
490    RubyPort::SenderState *senderState =
491        safe_cast<RubyPort::SenderState *>(pkt->senderState);
492    M5Port *port = senderState->port;
493    assert(port != NULL);
494
495    // pop the sender state from the packet
496    pkt->senderState = senderState->saved;
497    delete senderState;
498
499    port->hitCallback(pkt);
500
501    //
502    // If we had to stall the M5Ports, wake them up because the sequencer
503    // likely has free resources now.
504    //
505    if (waitingOnSequencer) {
506        //
507        // Record the current list of ports to retry on a temporary list before
508        // calling sendRetry on those ports.  sendRetry will cause an
509        // immediate retry, which may result in the ports being put back on the
510        // list. Therefore we want to clear the retryList before calling
511        // sendRetry.
512        //
513        std::list<M5Port*> curRetryList(retryList);
514
515        retryList.clear();
516        waitingOnSequencer = false;
517
518        for (std::list<M5Port*>::iterator i = curRetryList.begin();
519             i != curRetryList.end(); ++i) {
520            DPRINTF(RubyPort,
521                    "Sequencer may now be free.  SendRetry to port %s\n",
522                    (*i)->name());
523            (*i)->onRetryList(false);
524            (*i)->sendRetry();
525        }
526    }
527
528    testDrainComplete();
529}
530
531void
532RubyPort::testDrainComplete()
533{
534    //If we weren't able to drain before, we might be able to now.
535    if (drainEvent != NULL) {
536        unsigned int drainCount = getDrainCount(drainEvent);
537        DPRINTF(Config, "Drain count: %u\n", drainCount);
538        if (drainCount == 0) {
539            drainEvent->process();
540            // Clear the drain event once we're done with it.
541            drainEvent = NULL;
542        }
543    }
544}
545
546unsigned int
547RubyPort::getDrainCount(Event *de)
548{
549    int count = 0;
550    //
551    // If the sequencer is not empty, then requests need to drain.
552    // The outstandingCount is the number of requests outstanding and thus the
553    // number of times M5's timing port will process the drain event.
554    //
555    count += outstandingCount();
556
557    DPRINTF(Config, "outstanding count %d\n", outstandingCount());
558
559    // To simplify the draining process, the sequencer's deadlock detection
560    // event should have been descheduled.
561    assert(isDeadlockEventScheduled() == false);
562
563    if (pio_port.isConnected()) {
564        count += pio_port.drain(de);
565        DPRINTF(Config, "count after pio check %d\n", count);
566    }
567
568    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
569        count += (*p)->drain(de);
570        DPRINTF(Config, "count after slave port check %d\n", count);
571    }
572
573    for (std::vector<PioPort*>::iterator p = master_ports.begin();
574         p != master_ports.end(); ++p) {
575        count += (*p)->drain(de);
576        DPRINTF(Config, "count after master port check %d\n", count);
577    }
578
579    DPRINTF(Config, "final count %d\n", count);
580
581    return count;
582}
583
584unsigned int
585RubyPort::drain(Event *de)
586{
587    if (isDeadlockEventScheduled()) {
588        descheduleDeadlockEvent();
589    }
590
591    int count = getDrainCount(de);
592
593    // Set status
594    if (count != 0) {
595        drainEvent = de;
596
597        changeState(SimObject::Draining);
598        return count;
599    }
600
601    changeState(SimObject::Drained);
602    return 0;
603}
604
605void
606RubyPort::M5Port::hitCallback(PacketPtr pkt)
607{
608    bool needsResponse = pkt->needsResponse();
609
610    //
611    // Unless specified at configuraiton, all responses except failed SC
612    // and Flush operations access M5 physical memory.
613    //
614    bool accessPhysMem = access_phys_mem;
615
616    if (pkt->isLLSC()) {
617        if (pkt->isWrite()) {
618            if (pkt->req->getExtraData() != 0) {
619                //
620                // Successful SC packets convert to normal writes
621                //
622                pkt->convertScToWrite();
623            } else {
624                //
625                // Failed SC packets don't access physical memory and thus
626                // the RubyPort itself must convert it to a response.
627                //
628                accessPhysMem = false;
629            }
630        } else {
631            //
632            // All LL packets convert to normal loads so that M5 PhysMem does
633            // not lock the blocks.
634            //
635            pkt->convertLlToRead();
636        }
637    }
638
639    //
640    // Flush requests don't access physical memory
641    //
642    if (pkt->isFlush()) {
643        accessPhysMem = false;
644    }
645
646    DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
647
648    if (accessPhysMem) {
649        ruby_port->system->physmem->doAtomicAccess(pkt);
650    } else if (needsResponse) {
651        pkt->makeResponse();
652    }
653
654    // turn packet around to go back to requester if response expected
655    if (needsResponse) {
656        DPRINTF(RubyPort, "Sending packet back over port\n");
657        sendNextCycle(pkt);
658    } else {
659        delete pkt;
660    }
661    DPRINTF(RubyPort, "Hit callback done!\n");
662}
663
664bool
665RubyPort::M5Port::sendNextCycle(PacketPtr pkt)
666{
667    //minimum latency, must be > 0
668    queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
669    return true;
670}
671
672bool
673RubyPort::PioPort::sendNextCycle(PacketPtr pkt)
674{
675    //minimum latency, must be > 0
676    queue.schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
677    return true;
678}
679
680AddrRangeList
681RubyPort::M5Port::getAddrRanges()
682{
683    // at the moment the assumption is that the master does not care
684    AddrRangeList ranges;
685    return ranges;
686}
687
688bool
689RubyPort::M5Port::isPhysMemAddress(Addr addr)
690{
691    return ruby_port->system->isMemory(addr);
692}
693
694unsigned
695RubyPort::M5Port::deviceBlockSize() const
696{
697    return (unsigned) RubySystem::getBlockSizeBytes();
698}
699
700void
701RubyPort::ruby_eviction_callback(const Address& address)
702{
703    DPRINTF(RubyPort, "Sending invalidations.\n");
704    // should this really be using funcMasterId?
705    Request req(address.getAddress(), 0, 0, Request::funcMasterId);
706    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
707        if ((*p)->getMasterPort().isSnooping()) {
708            Packet *pkt = new Packet(&req, MemCmd::InvalidationReq, -1);
709            (*p)->sendNextCycle(pkt);
710        }
711    }
712}
713