RubyPort.cc revision 8532:8f27cf8971fe
1/*
2 * Copyright (c) 2009 Advanced Micro Devices, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "config/the_isa.hh"
30#if THE_ISA == X86_ISA
31#include "arch/x86/insts/microldstop.hh"
32#endif // X86_ISA
33#include "cpu/testers/rubytest/RubyTester.hh"
34#include "debug/Ruby.hh"
35#include "mem/protocol/AccessPermission.hh"
36#include "mem/ruby/slicc_interface/AbstractController.hh"
37#include "mem/ruby/system/RubyPort.hh"
38#include "mem/physical.hh"
39
40RubyPort::RubyPort(const Params *p)
41    : MemObject(p)
42{
43    m_version = p->version;
44    assert(m_version != -1);
45
46    physmem = p->physmem;
47
48    m_controller = NULL;
49    m_mandatory_q_ptr = NULL;
50
51    m_request_cnt = 0;
52    pio_port = NULL;
53    physMemPort = NULL;
54
55    m_usingRubyTester = p->using_ruby_tester;
56    access_phys_mem = p->access_phys_mem;
57
58    ruby_system = p->ruby_system;
59    waitingOnSequencer = false;
60}
61
62void
63RubyPort::init()
64{
65    assert(m_controller != NULL);
66    m_mandatory_q_ptr = m_controller->getMandatoryQueue();
67}
68
69Port *
70RubyPort::getPort(const std::string &if_name, int idx)
71{
72    if (if_name == "port") {
73        return new M5Port(csprintf("%s-port%d", name(), idx), this,
74                          ruby_system, access_phys_mem);
75    }
76
77    if (if_name == "pio_port") {
78        // ensure there is only one pio port
79        assert(pio_port == NULL);
80
81        pio_port = new PioPort(csprintf("%s-pio-port%d", name(), idx), this);
82
83        return pio_port;
84    }
85
86    if (if_name == "physMemPort") {
87        // RubyPort should only have one port to physical memory
88        assert (physMemPort == NULL);
89
90        physMemPort = new M5Port(csprintf("%s-physMemPort", name()), this,
91                                 ruby_system, access_phys_mem);
92
93        return physMemPort;
94    }
95
96    if (if_name == "functional") {
97        // Calls for the functional port only want to access
98        // functional memory.  Therefore, directly pass these calls
99        // ports to physmem.
100        assert(physmem != NULL);
101        return physmem->getPort(if_name, idx);
102    }
103
104    return NULL;
105}
106
107RubyPort::PioPort::PioPort(const std::string &_name,
108                           RubyPort *_port)
109    : SimpleTimingPort(_name, _port)
110{
111    DPRINTF(RubyPort, "creating port to ruby sequencer to cpu %s\n", _name);
112    ruby_port = _port;
113}
114
115RubyPort::M5Port::M5Port(const std::string &_name, RubyPort *_port,
116                         RubySystem *_system, bool _access_phys_mem)
117    : SimpleTimingPort(_name, _port)
118{
119    DPRINTF(RubyPort, "creating port from ruby sequcner to cpu %s\n", _name);
120    ruby_port = _port;
121    ruby_system = _system;
122    _onRetryList = false;
123    access_phys_mem = _access_phys_mem;
124}
125
126Tick
127RubyPort::PioPort::recvAtomic(PacketPtr pkt)
128{
129    panic("RubyPort::PioPort::recvAtomic() not implemented!\n");
130    return 0;
131}
132
133Tick
134RubyPort::M5Port::recvAtomic(PacketPtr pkt)
135{
136    panic("RubyPort::M5Port::recvAtomic() not implemented!\n");
137    return 0;
138}
139
140
141bool
142RubyPort::PioPort::recvTiming(PacketPtr pkt)
143{
144    // In FS mode, ruby memory will receive pio responses from devices
145    // and it must forward these responses back to the particular CPU.
146    DPRINTF(RubyPort,  "Pio response for address %#x\n", pkt->getAddr());
147
148    assert(pkt->isResponse());
149
150    // First we must retrieve the request port from the sender State
151    RubyPort::SenderState *senderState =
152      safe_cast<RubyPort::SenderState *>(pkt->senderState);
153    M5Port *port = senderState->port;
154    assert(port != NULL);
155
156    // pop the sender state from the packet
157    pkt->senderState = senderState->saved;
158    delete senderState;
159
160    port->sendTiming(pkt);
161
162    return true;
163}
164
165bool
166RubyPort::M5Port::recvTiming(PacketPtr pkt)
167{
168    DPRINTF(RubyPort,
169            "Timing access caught for address %#x\n", pkt->getAddr());
170
171    //dsm: based on SimpleTimingPort::recvTiming(pkt);
172
173    // The received packets should only be M5 requests, which should never
174    // get nacked.  There used to be code to hanldle nacks here, but
175    // I'm pretty sure it didn't work correctly with the drain code,
176    // so that would need to be fixed if we ever added it back.
177    assert(pkt->isRequest());
178
179    if (pkt->memInhibitAsserted()) {
180        warn("memInhibitAsserted???");
181        // snooper will supply based on copy of packet
182        // still target's responsibility to delete packet
183        delete pkt;
184        return true;
185    }
186
187    // Save the port in the sender state object to be used later to
188    // route the response
189    pkt->senderState = new SenderState(this, pkt->senderState);
190
191    // Check for pio requests and directly send them to the dedicated
192    // pio port.
193    if (!isPhysMemAddress(pkt->getAddr())) {
194        assert(ruby_port->pio_port != NULL);
195        DPRINTF(RubyPort,
196                "Request for address 0x%#x is assumed to be a pio request\n",
197                pkt->getAddr());
198
199        return ruby_port->pio_port->sendTiming(pkt);
200    }
201
202    // For DMA and CPU requests, translate them to ruby requests before
203    // sending them to our assigned ruby port.
204    RubyRequestType type = RubyRequestType_NULL;
205
206    // If valid, copy the pc to the ruby request
207    Addr pc = 0;
208    if (pkt->req->hasPC()) {
209        pc = pkt->req->getPC();
210    }
211
212    if (pkt->isLLSC()) {
213        if (pkt->isWrite()) {
214            DPRINTF(RubyPort, "Issuing SC\n");
215            type = RubyRequestType_Store_Conditional;
216        } else {
217            DPRINTF(RubyPort, "Issuing LL\n");
218            assert(pkt->isRead());
219            type = RubyRequestType_Load_Linked;
220        }
221    } else if (pkt->req->isLocked()) {
222        if (pkt->isWrite()) {
223            DPRINTF(RubyPort, "Issuing Locked RMW Write\n");
224            type = RubyRequestType_Locked_RMW_Write;
225        } else {
226            DPRINTF(RubyPort, "Issuing Locked RMW Read\n");
227            assert(pkt->isRead());
228            type = RubyRequestType_Locked_RMW_Read;
229        }
230    } else {
231        if (pkt->isRead()) {
232            if (pkt->req->isInstFetch()) {
233                type = RubyRequestType_IFETCH;
234            } else {
235#if THE_ISA == X86_ISA
236                uint32_t flags = pkt->req->getFlags();
237                bool storeCheck = flags &
238                        (TheISA::StoreCheck << TheISA::FlagShift);
239#else
240                bool storeCheck = false;
241#endif // X86_ISA
242                if (storeCheck) {
243                    type = RubyRequestType_RMW_Read;
244                } else {
245                    type = RubyRequestType_LD;
246                }
247            }
248        } else if (pkt->isWrite()) {
249            //
250            // Note: M5 packets do not differentiate ST from RMW_Write
251            //
252            type = RubyRequestType_ST;
253        } else if (pkt->isFlush()) {
254            type = RubyRequestType_FLUSH;
255        } else {
256            panic("Unsupported ruby packet type\n");
257        }
258    }
259
260    RubyRequest ruby_request(pkt->getAddr(), pkt->getPtr<uint8_t>(true),
261                             pkt->getSize(), pc, type,
262                             RubyAccessMode_Supervisor, pkt);
263
264    assert(ruby_request.m_PhysicalAddress.getOffset() + ruby_request.m_Size <=
265        RubySystem::getBlockSizeBytes());
266
267    // Submit the ruby request
268    RequestStatus requestStatus = ruby_port->makeRequest(ruby_request);
269
270    // If the request successfully issued then we should return true.
271    // Otherwise, we need to delete the senderStatus we just created and return
272    // false.
273    if (requestStatus == RequestStatus_Issued) {
274        DPRINTF(RubyPort, "Request %#x issued\n", pkt->getAddr());
275        return true;
276    }
277
278    //
279    // Unless one is using the ruby tester, record the stalled M5 port for
280    // later retry when the sequencer becomes free.
281    //
282    if (!ruby_port->m_usingRubyTester) {
283        ruby_port->addToRetryList(this);
284    }
285
286    DPRINTF(RubyPort,
287            "Request for address %#x did not issue because %s\n",
288            pkt->getAddr(), RequestStatus_to_string(requestStatus));
289
290    SenderState* senderState = safe_cast<SenderState*>(pkt->senderState);
291    pkt->senderState = senderState->saved;
292    delete senderState;
293    return false;
294}
295
296bool
297RubyPort::M5Port::doFunctionalRead(PacketPtr pkt)
298{
299    Address address(pkt->getAddr());
300    Address line_address(address);
301    line_address.makeLineAddress();
302
303    AccessPermission access_perm = AccessPermission_NotPresent;
304    int num_controllers = ruby_system->m_abs_cntrl_vec.size();
305
306    DPRINTF(RubyPort, "Functional Read request for %s\n",address);
307
308    unsigned int num_ro = 0;
309    unsigned int num_rw = 0;
310    unsigned int num_busy = 0;
311    unsigned int num_backing_store = 0;
312    unsigned int num_invalid = 0;
313
314    // In this loop we count the number of controllers that have the given
315    // address in read only, read write and busy states.
316    for (int i = 0; i < num_controllers; ++i) {
317        access_perm = ruby_system->m_abs_cntrl_vec[i]->
318                                            getAccessPermission(line_address);
319        if (access_perm == AccessPermission_Read_Only)
320            num_ro++;
321        else if (access_perm == AccessPermission_Read_Write)
322            num_rw++;
323        else if (access_perm == AccessPermission_Busy)
324            num_busy++;
325        else if (access_perm == AccessPermission_Backing_Store)
326            // See RubySlicc_Exports.sm for details, but Backing_Store is meant
327            // to represent blocks in memory *for Broadcast/Snooping protocols*,
328            // where memory has no idea whether it has an exclusive copy of data
329            // or not.
330            num_backing_store++;
331        else if (access_perm == AccessPermission_Invalid ||
332                 access_perm == AccessPermission_NotPresent)
333            num_invalid++;
334    }
335    assert(num_rw <= 1);
336
337    uint8* data = pkt->getPtr<uint8_t>(true);
338    unsigned int size_in_bytes = pkt->getSize();
339    unsigned startByte = address.getAddress() - line_address.getAddress();
340
341    // This if case is meant to capture what happens in a Broadcast/Snoop
342    // protocol where the block does not exist in the cache hierarchy. You
343    // only want to read from the Backing_Store memory if there is no copy in
344    // the cache hierarchy, otherwise you want to try to read the RO or RW
345    // copies existing in the cache hierarchy (covered by the else statement).
346    // The reason is because the Backing_Store memory could easily be stale, if
347    // there are copies floating around the cache hierarchy, so you want to read
348    // it only if it's not in the cache hierarchy at all.
349    if (num_invalid == (num_controllers - 1) &&
350            num_backing_store == 1)
351    {
352        DPRINTF(RubyPort, "only copy in Backing_Store memory, read from it\n");
353        for (int i = 0; i < num_controllers; ++i) {
354            access_perm = ruby_system->m_abs_cntrl_vec[i]
355                                              ->getAccessPermission(line_address);
356            if (access_perm == AccessPermission_Backing_Store) {
357                DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
358                                                 ->getDataBlock(line_address);
359
360                DPRINTF(RubyPort, "reading from %s block %s\n",
361                        ruby_system->m_abs_cntrl_vec[i]->name(), block);
362                for (unsigned i = 0; i < size_in_bytes; ++i) {
363                    data[i] = block.getByte(i + startByte);
364                }
365                return true;
366            }
367        }
368    } else {
369        // In Broadcast/Snoop protocols, this covers if you know the block
370        // exists somewhere in the caching hierarchy, then you want to read any
371        // valid RO or RW block.  In directory protocols, same thing, you want
372        // to read any valid readable copy of the block.
373        DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
374                num_busy, num_ro, num_rw);
375        // In this loop, we try to figure which controller has a read only or
376        // a read write copy of the given address. Any valid copy would suffice
377        // for a functional read.
378        for(int i = 0;i < num_controllers;++i) {
379            access_perm = ruby_system->m_abs_cntrl_vec[i]
380                                              ->getAccessPermission(line_address);
381            if(access_perm == AccessPermission_Read_Only ||
382               access_perm == AccessPermission_Read_Write)
383            {
384                DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
385                                                     ->getDataBlock(line_address);
386
387                DPRINTF(RubyPort, "reading from %s block %s\n",
388                        ruby_system->m_abs_cntrl_vec[i]->name(), block);
389                for (unsigned i = 0; i < size_in_bytes; ++i) {
390                    data[i] = block.getByte(i + startByte);
391                }
392                return true;
393            }
394        }
395    }
396    return false;
397}
398
399bool
400RubyPort::M5Port::doFunctionalWrite(PacketPtr pkt)
401{
402    Address addr(pkt->getAddr());
403    Address line_addr = line_address(addr);
404    AccessPermission access_perm = AccessPermission_NotPresent;
405    int num_controllers = ruby_system->m_abs_cntrl_vec.size();
406
407    DPRINTF(RubyPort, "Functional Write request for %s\n",addr);
408
409    unsigned int num_ro = 0;
410    unsigned int num_rw = 0;
411    unsigned int num_busy = 0;
412    unsigned int num_backing_store = 0;
413    unsigned int num_invalid = 0;
414
415    // In this loop we count the number of controllers that have the given
416    // address in read only, read write and busy states.
417    for(int i = 0;i < num_controllers;++i) {
418        access_perm = ruby_system->m_abs_cntrl_vec[i]->
419                                            getAccessPermission(line_addr);
420        if (access_perm == AccessPermission_Read_Only)
421            num_ro++;
422        else if (access_perm == AccessPermission_Read_Write)
423            num_rw++;
424        else if (access_perm == AccessPermission_Busy)
425            num_busy++;
426        else if (access_perm == AccessPermission_Backing_Store)
427            // See RubySlicc_Exports.sm for details, but Backing_Store is meant
428            // to represent blocks in memory *for Broadcast/Snooping protocols*,
429            // where memory has no idea whether it has an exclusive copy of data
430            // or not.
431            num_backing_store++;
432        else if (access_perm == AccessPermission_Invalid ||
433                 access_perm == AccessPermission_NotPresent)
434            num_invalid++;
435    }
436
437    // If the number of read write copies is more than 1, then there is bug in
438    // coherence protocol. Otherwise, if all copies are in stable states, i.e.
439    // num_busy == 0, we update all the copies. If there is at least one copy
440    // in busy state, then we check if there is read write copy. If yes, then
441    // also we let the access go through. Or, if there is no copy in the cache
442    // hierarchy at all, we still want to do the write to the memory
443    // (Backing_Store) instead of failing.
444
445    DPRINTF(RubyPort, "num_busy = %d, num_ro = %d, num_rw = %d\n",
446            num_busy, num_ro, num_rw);
447    assert(num_rw <= 1);
448
449    uint8* data = pkt->getPtr<uint8_t>(true);
450    unsigned int size_in_bytes = pkt->getSize();
451    unsigned startByte = addr.getAddress() - line_addr.getAddress();
452
453    if ((num_busy == 0 && num_ro > 0) || num_rw == 1 ||
454            (num_invalid == (num_controllers - 1) && num_backing_store == 1))
455    {
456        for(int i = 0; i < num_controllers;++i) {
457            access_perm = ruby_system->m_abs_cntrl_vec[i]->
458                                                getAccessPermission(line_addr);
459            if(access_perm == AccessPermission_Read_Only ||
460               access_perm == AccessPermission_Read_Write||
461               access_perm == AccessPermission_Maybe_Stale ||
462               access_perm == AccessPermission_Backing_Store)
463            {
464                DataBlock& block = ruby_system->m_abs_cntrl_vec[i]
465                                                      ->getDataBlock(line_addr);
466
467                DPRINTF(RubyPort, "%s\n",block);
468                for (unsigned i = 0; i < size_in_bytes; ++i) {
469                  block.setByte(i + startByte, data[i]);
470                }
471                DPRINTF(RubyPort, "%s\n",block);
472            }
473        }
474        return true;
475    }
476    return false;
477}
478
479void
480RubyPort::M5Port::recvFunctional(PacketPtr pkt)
481{
482    DPRINTF(RubyPort, "Functional access caught for address %#x\n",
483                                                           pkt->getAddr());
484
485    // Check for pio requests and directly send them to the dedicated
486    // pio port.
487    if (!isPhysMemAddress(pkt->getAddr())) {
488        assert(ruby_port->pio_port != NULL);
489        DPRINTF(RubyPort, "Request for address 0x%#x is a pio request\n",
490                                                           pkt->getAddr());
491        panic("RubyPort::PioPort::recvFunctional() not implemented!\n");
492    }
493
494    assert(pkt->getAddr() + pkt->getSize() <=
495                line_address(Address(pkt->getAddr())).getAddress() +
496                RubySystem::getBlockSizeBytes());
497
498    bool accessSucceeded = false;
499    bool needsResponse = pkt->needsResponse();
500
501    // Do the functional access on ruby memory
502    if (pkt->isRead()) {
503        accessSucceeded = doFunctionalRead(pkt);
504    } else if (pkt->isWrite()) {
505        accessSucceeded = doFunctionalWrite(pkt);
506    } else {
507        panic("RubyPort: unsupported functional command %s\n",
508              pkt->cmdString());
509    }
510
511    // Unless the requester explicitly said otherwise, generate an error if
512    // the functional request failed
513    if (!accessSucceeded && !pkt->suppressFuncError()) {
514        fatal("Ruby functional %s failed for address %#x\n",
515              pkt->isWrite() ? "write" : "read", pkt->getAddr());
516    }
517
518    if (access_phys_mem) {
519        // The attached physmem contains the official version of data.
520        // The following command performs the real functional access.
521        // This line should be removed once Ruby supplies the official version
522        // of data.
523        ruby_port->physMemPort->sendFunctional(pkt);
524    }
525
526    // turn packet around to go back to requester if response expected
527    if (needsResponse) {
528        pkt->setFunctionalResponseStatus(accessSucceeded);
529        DPRINTF(RubyPort, "Sending packet back over port\n");
530        sendFunctional(pkt);
531    }
532    DPRINTF(RubyPort, "Functional access %s!\n",
533            accessSucceeded ? "successful":"failed");
534}
535
536void
537RubyPort::ruby_hit_callback(PacketPtr pkt)
538{
539    // Retrieve the request port from the sender State
540    RubyPort::SenderState *senderState =
541        safe_cast<RubyPort::SenderState *>(pkt->senderState);
542    M5Port *port = senderState->port;
543    assert(port != NULL);
544
545    // pop the sender state from the packet
546    pkt->senderState = senderState->saved;
547    delete senderState;
548
549    port->hitCallback(pkt);
550
551    //
552    // If we had to stall the M5Ports, wake them up because the sequencer
553    // likely has free resources now.
554    //
555    if (waitingOnSequencer) {
556        //
557        // Record the current list of ports to retry on a temporary list before
558        // calling sendRetry on those ports.  sendRetry will cause an
559        // immediate retry, which may result in the ports being put back on the
560        // list. Therefore we want to clear the retryList before calling
561        // sendRetry.
562        //
563        std::list<M5Port*> curRetryList(retryList);
564
565        retryList.clear();
566        waitingOnSequencer = false;
567
568        for (std::list<M5Port*>::iterator i = curRetryList.begin();
569             i != curRetryList.end(); ++i) {
570            DPRINTF(RubyPort,
571                    "Sequencer may now be free.  SendRetry to port %s\n",
572                    (*i)->name());
573            (*i)->onRetryList(false);
574            (*i)->sendRetry();
575        }
576    }
577}
578
579void
580RubyPort::M5Port::hitCallback(PacketPtr pkt)
581{
582    bool needsResponse = pkt->needsResponse();
583
584    //
585    // Unless specified at configuraiton, all responses except failed SC
586    // and Flush operations access M5 physical memory.
587    //
588    bool accessPhysMem = access_phys_mem;
589
590    if (pkt->isLLSC()) {
591        if (pkt->isWrite()) {
592            if (pkt->req->getExtraData() != 0) {
593                //
594                // Successful SC packets convert to normal writes
595                //
596                pkt->convertScToWrite();
597            } else {
598                //
599                // Failed SC packets don't access physical memory and thus
600                // the RubyPort itself must convert it to a response.
601                //
602                accessPhysMem = false;
603            }
604        } else {
605            //
606            // All LL packets convert to normal loads so that M5 PhysMem does
607            // not lock the blocks.
608            //
609            pkt->convertLlToRead();
610        }
611    }
612
613    //
614    // Flush requests don't access physical memory
615    //
616    if (pkt->isFlush()) {
617        accessPhysMem = false;
618    }
619
620    DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
621
622    if (accessPhysMem) {
623        ruby_port->physMemPort->sendAtomic(pkt);
624    } else if (needsResponse) {
625        pkt->makeResponse();
626    }
627
628    // turn packet around to go back to requester if response expected
629    if (needsResponse) {
630        DPRINTF(RubyPort, "Sending packet back over port\n");
631        sendTiming(pkt);
632    } else {
633        delete pkt;
634    }
635    DPRINTF(RubyPort, "Hit callback done!\n");
636}
637
638bool
639RubyPort::M5Port::sendTiming(PacketPtr pkt)
640{
641    //minimum latency, must be > 0
642    schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
643    return true;
644}
645
646bool
647RubyPort::PioPort::sendTiming(PacketPtr pkt)
648{
649    //minimum latency, must be > 0
650    schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
651    return true;
652}
653
654bool
655RubyPort::M5Port::isPhysMemAddress(Addr addr)
656{
657    AddrRangeList physMemAddrList;
658    bool snoop = false;
659    ruby_port->physMemPort->getPeerAddressRanges(physMemAddrList, snoop);
660    for (AddrRangeIter iter = physMemAddrList.begin();
661         iter != physMemAddrList.end();
662         iter++) {
663        if (addr >= iter->start && addr <= iter->end) {
664            DPRINTF(RubyPort, "Request found in %#llx - %#llx range\n",
665                    iter->start, iter->end);
666            return true;
667        }
668    }
669    return false;
670}
671
672unsigned
673RubyPort::M5Port::deviceBlockSize() const
674{
675    return (unsigned) RubySystem::getBlockSizeBytes();
676}
677