RubyPort.cc revision 8162
1/*
2 * Copyright (c) 2009 Advanced Micro Devices, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "config/the_isa.hh"
30#if THE_ISA == X86_ISA
31#include "arch/x86/insts/microldstop.hh"
32#endif // X86_ISA
33#include "cpu/testers/rubytest/RubyTester.hh"
34#include "mem/physical.hh"
35#include "mem/ruby/slicc_interface/AbstractController.hh"
36#include "mem/ruby/system/RubyPort.hh"
37
38RubyPort::RubyPort(const Params *p)
39    : MemObject(p)
40{
41    m_version = p->version;
42    assert(m_version != -1);
43
44    physmem = p->physmem;
45
46    m_controller = NULL;
47    m_mandatory_q_ptr = NULL;
48
49    m_request_cnt = 0;
50    pio_port = NULL;
51    physMemPort = NULL;
52
53    m_usingRubyTester = p->using_ruby_tester;
54    access_phys_mem = p->access_phys_mem;
55}
56
57void
58RubyPort::init()
59{
60    assert(m_controller != NULL);
61    m_mandatory_q_ptr = m_controller->getMandatoryQueue();
62}
63
64Port *
65RubyPort::getPort(const std::string &if_name, int idx)
66{
67    if (if_name == "port") {
68        return new M5Port(csprintf("%s-port%d", name(), idx), this,
69                          access_phys_mem);
70    }
71
72    if (if_name == "pio_port") {
73        // ensure there is only one pio port
74        assert(pio_port == NULL);
75
76        pio_port = new PioPort(csprintf("%s-pio-port%d", name(), idx), this);
77
78        return pio_port;
79    }
80
81    if (if_name == "physMemPort") {
82        // RubyPort should only have one port to physical memory
83        assert (physMemPort == NULL);
84
85        physMemPort = new M5Port(csprintf("%s-physMemPort", name()), this,
86                                 access_phys_mem);
87
88        return physMemPort;
89    }
90
91    if (if_name == "functional") {
92        // Calls for the functional port only want to access
93        // functional memory.  Therefore, directly pass these calls
94        // ports to physmem.
95        assert(physmem != NULL);
96        return physmem->getPort(if_name, idx);
97    }
98
99    return NULL;
100}
101
102RubyPort::PioPort::PioPort(const std::string &_name,
103                           RubyPort *_port)
104    : SimpleTimingPort(_name, _port)
105{
106    DPRINTF(RubyPort, "creating port to ruby sequencer to cpu %s\n", _name);
107    ruby_port = _port;
108}
109
110RubyPort::M5Port::M5Port(const std::string &_name,
111                         RubyPort *_port, bool _access_phys_mem)
112    : SimpleTimingPort(_name, _port)
113{
114    DPRINTF(RubyPort, "creating port from ruby sequcner to cpu %s\n", _name);
115    ruby_port = _port;
116    _onRetryList = false;
117    access_phys_mem = _access_phys_mem;
118}
119
120Tick
121RubyPort::PioPort::recvAtomic(PacketPtr pkt)
122{
123    panic("RubyPort::PioPort::recvAtomic() not implemented!\n");
124    return 0;
125}
126
127Tick
128RubyPort::M5Port::recvAtomic(PacketPtr pkt)
129{
130    panic("RubyPort::M5Port::recvAtomic() not implemented!\n");
131    return 0;
132}
133
134
135bool
136RubyPort::PioPort::recvTiming(PacketPtr pkt)
137{
138    // In FS mode, ruby memory will receive pio responses from devices
139    // and it must forward these responses back to the particular CPU.
140    DPRINTF(RubyPort,  "Pio response for address %#x\n", pkt->getAddr());
141
142    assert(pkt->isResponse());
143
144    // First we must retrieve the request port from the sender State
145    RubyPort::SenderState *senderState =
146      safe_cast<RubyPort::SenderState *>(pkt->senderState);
147    M5Port *port = senderState->port;
148    assert(port != NULL);
149
150    // pop the sender state from the packet
151    pkt->senderState = senderState->saved;
152    delete senderState;
153
154    port->sendTiming(pkt);
155
156    return true;
157}
158
159bool
160RubyPort::M5Port::recvTiming(PacketPtr pkt)
161{
162    DPRINTF(RubyPort,
163            "Timing access caught for address %#x\n", pkt->getAddr());
164
165    //dsm: based on SimpleTimingPort::recvTiming(pkt);
166
167    // The received packets should only be M5 requests, which should never
168    // get nacked.  There used to be code to hanldle nacks here, but
169    // I'm pretty sure it didn't work correctly with the drain code,
170    // so that would need to be fixed if we ever added it back.
171    assert(pkt->isRequest());
172
173    if (pkt->memInhibitAsserted()) {
174        warn("memInhibitAsserted???");
175        // snooper will supply based on copy of packet
176        // still target's responsibility to delete packet
177        delete pkt;
178        return true;
179    }
180
181    // Save the port in the sender state object to be used later to
182    // route the response
183    pkt->senderState = new SenderState(this, pkt->senderState);
184
185    // Check for pio requests and directly send them to the dedicated
186    // pio port.
187    if (!isPhysMemAddress(pkt->getAddr())) {
188        assert(ruby_port->pio_port != NULL);
189        DPRINTF(RubyPort,
190                "Request for address 0x%#x is assumed to be a pio request\n",
191                pkt->getAddr());
192
193        return ruby_port->pio_port->sendTiming(pkt);
194    }
195
196    // For DMA and CPU requests, translate them to ruby requests before
197    // sending them to our assigned ruby port.
198    RubyRequestType type = RubyRequestType_NULL;
199
200    // If valid, copy the pc to the ruby request
201    Addr pc = 0;
202    if (pkt->req->hasPC()) {
203        pc = pkt->req->getPC();
204    }
205
206    if (pkt->isLLSC()) {
207        if (pkt->isWrite()) {
208            DPRINTF(RubyPort, "Issuing SC\n");
209            type = RubyRequestType_Store_Conditional;
210        } else {
211            DPRINTF(RubyPort, "Issuing LL\n");
212            assert(pkt->isRead());
213            type = RubyRequestType_Load_Linked;
214        }
215    } else if (pkt->req->isLocked()) {
216        if (pkt->isWrite()) {
217            DPRINTF(RubyPort, "Issuing Locked RMW Write\n");
218            type = RubyRequestType_Locked_RMW_Write;
219        } else {
220            DPRINTF(RubyPort, "Issuing Locked RMW Read\n");
221            assert(pkt->isRead());
222            type = RubyRequestType_Locked_RMW_Read;
223        }
224    } else {
225        if (pkt->isRead()) {
226            if (pkt->req->isInstFetch()) {
227                type = RubyRequestType_IFETCH;
228            } else {
229#if THE_ISA == X86_ISA
230                uint32_t flags = pkt->req->getFlags();
231                bool storeCheck = flags &
232                        (TheISA::StoreCheck << TheISA::FlagShift);
233#else
234                bool storeCheck = false;
235#endif // X86_ISA
236                if (storeCheck) {
237                    type = RubyRequestType_RMW_Read;
238                } else {
239                    type = RubyRequestType_LD;
240                }
241            }
242        } else if (pkt->isWrite()) {
243            //
244            // Note: M5 packets do not differentiate ST from RMW_Write
245            //
246            type = RubyRequestType_ST;
247        } else {
248            panic("Unsupported ruby packet type\n");
249        }
250    }
251
252    RubyRequest ruby_request(pkt->getAddr(), pkt->getPtr<uint8_t>(true),
253                             pkt->getSize(), pc, type,
254                             RubyAccessMode_Supervisor, pkt);
255
256    assert(Address(ruby_request.paddr).getOffset() + ruby_request.len <=
257        RubySystem::getBlockSizeBytes());
258
259    // Submit the ruby request
260    RequestStatus requestStatus = ruby_port->makeRequest(ruby_request);
261
262    // If the request successfully issued then we should return true.
263    // Otherwise, we need to delete the senderStatus we just created and return
264    // false.
265    if (requestStatus == RequestStatus_Issued) {
266        DPRINTF(RubyPort, "Request %#x issued\n", pkt->getAddr());
267        return true;
268    }
269
270    //
271    // Unless one is using the ruby tester, record the stalled M5 port for
272    // later retry when the sequencer becomes free.
273    //
274    if (!ruby_port->m_usingRubyTester) {
275        ruby_port->addToRetryList(this);
276    }
277
278    DPRINTF(RubyPort,
279            "Request for address %#x did not issue because %s\n",
280            pkt->getAddr(), RequestStatus_to_string(requestStatus));
281
282    SenderState* senderState = safe_cast<SenderState*>(pkt->senderState);
283    pkt->senderState = senderState->saved;
284    delete senderState;
285    return false;
286}
287
288void
289RubyPort::ruby_hit_callback(PacketPtr pkt)
290{
291    // Retrieve the request port from the sender State
292    RubyPort::SenderState *senderState =
293        safe_cast<RubyPort::SenderState *>(pkt->senderState);
294    M5Port *port = senderState->port;
295    assert(port != NULL);
296
297    // pop the sender state from the packet
298    pkt->senderState = senderState->saved;
299    delete senderState;
300
301    port->hitCallback(pkt);
302
303    //
304    // If we had to stall the M5Ports, wake them up because the sequencer
305    // likely has free resources now.
306    //
307    if (waitingOnSequencer) {
308        //
309        // Record the current list of ports to retry on a temporary list before
310        // calling sendRetry on those ports.  sendRetry will cause an
311        // immediate retry, which may result in the ports being put back on the
312        // list. Therefore we want to clear the retryList before calling
313        // sendRetry.
314        //
315        std::list<M5Port*> curRetryList(retryList);
316
317        retryList.clear();
318        waitingOnSequencer = false;
319
320        for (std::list<M5Port*>::iterator i = curRetryList.begin();
321             i != curRetryList.end(); ++i) {
322            DPRINTF(RubyPort,
323                    "Sequencer may now be free.  SendRetry to port %s\n",
324                    (*i)->name());
325            (*i)->onRetryList(false);
326            (*i)->sendRetry();
327        }
328    }
329}
330
331void
332RubyPort::M5Port::hitCallback(PacketPtr pkt)
333{
334    bool needsResponse = pkt->needsResponse();
335
336    //
337    // Unless specified at configuraiton, all responses except failed SC
338    // operations access M5 physical memory.
339    //
340    bool accessPhysMem = access_phys_mem;
341
342    if (pkt->isLLSC()) {
343        if (pkt->isWrite()) {
344            if (pkt->req->getExtraData() != 0) {
345                //
346                // Successful SC packets convert to normal writes
347                //
348                pkt->convertScToWrite();
349            } else {
350                //
351                // Failed SC packets don't access physical memory and thus
352                // the RubyPort itself must convert it to a response.
353                //
354                accessPhysMem = false;
355            }
356        } else {
357            //
358            // All LL packets convert to normal loads so that M5 PhysMem does
359            // not lock the blocks.
360            //
361            pkt->convertLlToRead();
362        }
363    }
364    DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
365
366    if (accessPhysMem) {
367        ruby_port->physMemPort->sendAtomic(pkt);
368    } else {
369        pkt->makeResponse();
370    }
371
372    // turn packet around to go back to requester if response expected
373    if (needsResponse) {
374        DPRINTF(RubyPort, "Sending packet back over port\n");
375        sendTiming(pkt);
376    } else {
377        delete pkt;
378    }
379    DPRINTF(RubyPort, "Hit callback done!\n");
380}
381
382bool
383RubyPort::M5Port::sendTiming(PacketPtr pkt)
384{
385    //minimum latency, must be > 0
386    schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
387    return true;
388}
389
390bool
391RubyPort::PioPort::sendTiming(PacketPtr pkt)
392{
393    //minimum latency, must be > 0
394    schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
395    return true;
396}
397
398bool
399RubyPort::M5Port::isPhysMemAddress(Addr addr)
400{
401    AddrRangeList physMemAddrList;
402    bool snoop = false;
403    ruby_port->physMemPort->getPeerAddressRanges(physMemAddrList, snoop);
404    for (AddrRangeIter iter = physMemAddrList.begin();
405         iter != physMemAddrList.end();
406         iter++) {
407        if (addr >= iter->start && addr <= iter->end) {
408            DPRINTF(RubyPort, "Request found in %#llx - %#llx range\n",
409                    iter->start, iter->end);
410            return true;
411        }
412    }
413    return false;
414}
415
416unsigned
417RubyPort::M5Port::deviceBlockSize() const
418{
419    return (unsigned) RubySystem::getBlockSizeBytes();
420}
421