RubyPort.cc revision 7823:dac01f14f20f
1/*
2 * Copyright (c) 2009 Advanced Micro Devices, Inc.
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are
7 * met: redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer;
9 * redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution;
12 * neither the name of the copyright holders nor the names of its
13 * contributors may be used to endorse or promote products derived from
14 * this software without specific prior written permission.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29#include "cpu/testers/rubytest/RubyTester.hh"
30#include "mem/physical.hh"
31#include "mem/ruby/slicc_interface/AbstractController.hh"
32#include "mem/ruby/system/RubyPort.hh"
33
34RubyPort::RubyPort(const Params *p)
35    : MemObject(p)
36{
37    m_version = p->version;
38    assert(m_version != -1);
39
40    physmem = p->physmem;
41
42    m_controller = NULL;
43    m_mandatory_q_ptr = NULL;
44
45    m_request_cnt = 0;
46    pio_port = NULL;
47    physMemPort = NULL;
48}
49
50void
51RubyPort::init()
52{
53    assert(m_controller != NULL);
54    m_mandatory_q_ptr = m_controller->getMandatoryQueue();
55}
56
57Port *
58RubyPort::getPort(const std::string &if_name, int idx)
59{
60    if (if_name == "port") {
61        return new M5Port(csprintf("%s-port%d", name(), idx), this);
62    }
63
64    if (if_name == "pio_port") {
65        // ensure there is only one pio port
66        assert(pio_port == NULL);
67
68        pio_port = new PioPort(csprintf("%s-pio-port%d", name(), idx), this);
69
70        return pio_port;
71    }
72
73    if (if_name == "physMemPort") {
74        // RubyPort should only have one port to physical memory
75        assert (physMemPort == NULL);
76
77        physMemPort = new M5Port(csprintf("%s-physMemPort", name()), this);
78
79        return physMemPort;
80    }
81
82    if (if_name == "functional") {
83        // Calls for the functional port only want to access
84        // functional memory.  Therefore, directly pass these calls
85        // ports to physmem.
86        assert(physmem != NULL);
87        return physmem->getPort(if_name, idx);
88    }
89
90    return NULL;
91}
92
93RubyPort::PioPort::PioPort(const std::string &_name,
94                           RubyPort *_port)
95    : SimpleTimingPort(_name, _port)
96{
97    DPRINTF(Ruby, "creating port to ruby sequencer to cpu %s\n", _name);
98    ruby_port = _port;
99}
100
101RubyPort::M5Port::M5Port(const std::string &_name,
102                         RubyPort *_port)
103    : SimpleTimingPort(_name, _port)
104{
105    DPRINTF(Ruby, "creating port from ruby sequcner to cpu %s\n", _name);
106    ruby_port = _port;
107}
108
109Tick
110RubyPort::PioPort::recvAtomic(PacketPtr pkt)
111{
112    panic("RubyPort::PioPort::recvAtomic() not implemented!\n");
113    return 0;
114}
115
116Tick
117RubyPort::M5Port::recvAtomic(PacketPtr pkt)
118{
119    panic("RubyPort::M5Port::recvAtomic() not implemented!\n");
120    return 0;
121}
122
123
124bool
125RubyPort::PioPort::recvTiming(PacketPtr pkt)
126{
127    // In FS mode, ruby memory will receive pio responses from devices
128    // and it must forward these responses back to the particular CPU.
129    DPRINTF(MemoryAccess,  "Pio response for address %#x\n", pkt->getAddr());
130
131    assert(pkt->isResponse());
132
133    // First we must retrieve the request port from the sender State
134    RubyPort::SenderState *senderState =
135      safe_cast<RubyPort::SenderState *>(pkt->senderState);
136    M5Port *port = senderState->port;
137    assert(port != NULL);
138
139    // pop the sender state from the packet
140    pkt->senderState = senderState->saved;
141    delete senderState;
142
143    port->sendTiming(pkt);
144
145    return true;
146}
147
148bool
149RubyPort::M5Port::recvTiming(PacketPtr pkt)
150{
151    DPRINTF(MemoryAccess,
152            "Timing access caught for address %#x\n", pkt->getAddr());
153
154    //dsm: based on SimpleTimingPort::recvTiming(pkt);
155
156    // The received packets should only be M5 requests, which should never
157    // get nacked.  There used to be code to hanldle nacks here, but
158    // I'm pretty sure it didn't work correctly with the drain code,
159    // so that would need to be fixed if we ever added it back.
160    assert(pkt->isRequest());
161
162    if (pkt->memInhibitAsserted()) {
163        warn("memInhibitAsserted???");
164        // snooper will supply based on copy of packet
165        // still target's responsibility to delete packet
166        delete pkt;
167        return true;
168    }
169
170    // Save the port in the sender state object to be used later to
171    // route the response
172    pkt->senderState = new SenderState(this, pkt->senderState);
173
174    // Check for pio requests and directly send them to the dedicated
175    // pio port.
176    if (!isPhysMemAddress(pkt->getAddr())) {
177        assert(ruby_port->pio_port != NULL);
178        DPRINTF(MemoryAccess,
179                "Request for address 0x%#x is assumed to be a pio request\n",
180                pkt->getAddr());
181
182        return ruby_port->pio_port->sendTiming(pkt);
183    }
184
185    // For DMA and CPU requests, translate them to ruby requests before
186    // sending them to our assigned ruby port.
187    RubyRequestType type = RubyRequestType_NULL;
188
189    // If valid, copy the pc to the ruby request
190    Addr pc = 0;
191    if (pkt->req->hasPC()) {
192        pc = pkt->req->getPC();
193    }
194
195    if (pkt->isLLSC()) {
196        if (pkt->isWrite()) {
197            DPRINTF(MemoryAccess, "Issuing SC\n");
198            type = RubyRequestType_Locked_Write;
199        } else {
200            DPRINTF(MemoryAccess, "Issuing LL\n");
201            assert(pkt->isRead());
202            type = RubyRequestType_Locked_Read;
203        }
204    } else {
205        if (pkt->isRead()) {
206            if (pkt->req->isInstFetch()) {
207                type = RubyRequestType_IFETCH;
208            } else {
209                type = RubyRequestType_LD;
210            }
211        } else if (pkt->isWrite()) {
212            type = RubyRequestType_ST;
213        } else if (pkt->isReadWrite()) {
214            // Fix me.  This conditional will never be executed
215            // because isReadWrite() is just an OR of isRead() and
216            // isWrite().  Furthermore, just because the packet is a
217            // read/write request does not necessary mean it is a
218            // read-modify-write atomic operation.
219            type = RubyRequestType_RMW_Write;
220        } else {
221            panic("Unsupported ruby packet type\n");
222        }
223    }
224
225    RubyRequest ruby_request(pkt->getAddr(), pkt->getPtr<uint8_t>(),
226                             pkt->getSize(), pc, type,
227                             RubyAccessMode_Supervisor, pkt);
228
229    // Submit the ruby request
230    RequestStatus requestStatus = ruby_port->makeRequest(ruby_request);
231
232    // If the request successfully issued then we should return true.
233    // Otherwise, we need to delete the senderStatus we just created and return
234    // false.
235    if (requestStatus == RequestStatus_Issued) {
236        return true;
237    }
238
239    DPRINTF(MemoryAccess,
240            "Request for address #x did not issue because %s\n",
241            pkt->getAddr(), RequestStatus_to_string(requestStatus));
242
243    SenderState* senderState = safe_cast<SenderState*>(pkt->senderState);
244    pkt->senderState = senderState->saved;
245    delete senderState;
246    return false;
247}
248
249void
250RubyPort::ruby_hit_callback(PacketPtr pkt)
251{
252    // Retrieve the request port from the sender State
253    RubyPort::SenderState *senderState =
254        safe_cast<RubyPort::SenderState *>(pkt->senderState);
255    M5Port *port = senderState->port;
256    assert(port != NULL);
257
258    // pop the sender state from the packet
259    pkt->senderState = senderState->saved;
260    delete senderState;
261
262    port->hitCallback(pkt);
263}
264
265void
266RubyPort::M5Port::hitCallback(PacketPtr pkt)
267{
268    bool needsResponse = pkt->needsResponse();
269
270    //
271    // All responses except failed SC operations access M5 physical memory
272    //
273    bool accessPhysMem = true;
274
275    if (pkt->isLLSC()) {
276        if (pkt->isWrite()) {
277            if (pkt->req->getExtraData() != 0) {
278                //
279                // Successful SC packets convert to normal writes
280                //
281                pkt->convertScToWrite();
282            } else {
283                //
284                // Failed SC packets don't access physical memory and thus
285                // the RubyPort itself must convert it to a response.
286                //
287                accessPhysMem = false;
288                pkt->makeAtomicResponse();
289            }
290        } else {
291            //
292            // All LL packets convert to normal loads so that M5 PhysMem does
293            // not lock the blocks.
294            //
295            pkt->convertLlToRead();
296        }
297    }
298    DPRINTF(MemoryAccess, "Hit callback needs response %d\n", needsResponse);
299
300    if (accessPhysMem) {
301        ruby_port->physMemPort->sendAtomic(pkt);
302    }
303
304    // turn packet around to go back to requester if response expected
305    if (needsResponse) {
306        // sendAtomic() should already have turned packet into
307        // atomic response
308        assert(pkt->isResponse());
309        DPRINTF(MemoryAccess, "Sending packet back over port\n");
310        sendTiming(pkt);
311    } else {
312        delete pkt;
313    }
314    DPRINTF(MemoryAccess, "Hit callback done!\n");
315}
316
317bool
318RubyPort::M5Port::sendTiming(PacketPtr pkt)
319{
320    //minimum latency, must be > 0
321    schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
322    return true;
323}
324
325bool
326RubyPort::PioPort::sendTiming(PacketPtr pkt)
327{
328    //minimum latency, must be > 0
329    schedSendTiming(pkt, curTick() + (1 * g_eventQueue_ptr->getClock()));
330    return true;
331}
332
333bool
334RubyPort::M5Port::isPhysMemAddress(Addr addr)
335{
336    AddrRangeList physMemAddrList;
337    bool snoop = false;
338    ruby_port->physMemPort->getPeerAddressRanges(physMemAddrList, snoop);
339    for (AddrRangeIter iter = physMemAddrList.begin();
340         iter != physMemAddrList.end();
341         iter++) {
342        if (addr >= iter->start && addr <= iter->end) {
343            DPRINTF(MemoryAccess, "Request found in %#llx - %#llx range\n",
344                    iter->start, iter->end);
345            return true;
346        }
347    }
348    return false;
349}
350