RubyPort.cc revision 11793:ef606668d247
1/*
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2009-2013 Advanced Micro Devices, Inc.
15 * Copyright (c) 2011 Mark D. Hill and David A. Wood
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42#include "mem/ruby/system/RubyPort.hh"
43
44#include "cpu/testers/rubytest/RubyTester.hh"
45#include "debug/Config.hh"
46#include "debug/Drain.hh"
47#include "debug/Ruby.hh"
48#include "mem/protocol/AccessPermission.hh"
49#include "mem/ruby/slicc_interface/AbstractController.hh"
50#include "mem/simple_mem.hh"
51#include "sim/full_system.hh"
52#include "sim/system.hh"
53
54RubyPort::RubyPort(const Params *p)
55    : MemObject(p), m_ruby_system(p->ruby_system), m_version(p->version),
56      m_controller(NULL), m_mandatory_q_ptr(NULL),
57      m_usingRubyTester(p->using_ruby_tester), system(p->system),
58      pioMasterPort(csprintf("%s.pio-master-port", name()), this),
59      pioSlavePort(csprintf("%s.pio-slave-port", name()), this),
60      memMasterPort(csprintf("%s.mem-master-port", name()), this),
61      memSlavePort(csprintf("%s-mem-slave-port", name()), this,
62                   p->ruby_system->getAccessBackingStore(), -1,
63                   p->no_retry_on_stall),
64      gotAddrRanges(p->port_master_connection_count),
65      m_isCPUSequencer(p->is_cpu_sequencer)
66{
67    assert(m_version != -1);
68
69    // create the slave ports based on the number of connected ports
70    for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
71        slave_ports.push_back(new MemSlavePort(csprintf("%s.slave%d", name(),
72            i), this, p->ruby_system->getAccessBackingStore(),
73            i, p->no_retry_on_stall));
74    }
75
76    // create the master ports based on the number of connected ports
77    for (size_t i = 0; i < p->port_master_connection_count; ++i) {
78        master_ports.push_back(new PioMasterPort(csprintf("%s.master%d",
79            name(), i), this));
80    }
81}
82
83void
84RubyPort::init()
85{
86    assert(m_controller != NULL);
87    m_mandatory_q_ptr = m_controller->getMandatoryQueue();
88}
89
90BaseMasterPort &
91RubyPort::getMasterPort(const std::string &if_name, PortID idx)
92{
93    if (if_name == "mem_master_port") {
94        return memMasterPort;
95    }
96
97    if (if_name == "pio_master_port") {
98        return pioMasterPort;
99    }
100
101    // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
102    // port
103    if (if_name != "master") {
104        // pass it along to our super class
105        return MemObject::getMasterPort(if_name, idx);
106    } else {
107        if (idx >= static_cast<PortID>(master_ports.size())) {
108            panic("RubyPort::getMasterPort: unknown index %d\n", idx);
109        }
110
111        return *master_ports[idx];
112    }
113}
114
115BaseSlavePort &
116RubyPort::getSlavePort(const std::string &if_name, PortID idx)
117{
118    if (if_name == "mem_slave_port") {
119        return memSlavePort;
120    }
121
122    if (if_name == "pio_slave_port")
123        return pioSlavePort;
124
125    // used by the CPUs to connect the caches to the interconnect, and
126    // for the x86 case also the interrupt master
127    if (if_name != "slave") {
128        // pass it along to our super class
129        return MemObject::getSlavePort(if_name, idx);
130    } else {
131        if (idx >= static_cast<PortID>(slave_ports.size())) {
132            panic("RubyPort::getSlavePort: unknown index %d\n", idx);
133        }
134
135        return *slave_ports[idx];
136    }
137}
138
139RubyPort::PioMasterPort::PioMasterPort(const std::string &_name,
140                           RubyPort *_port)
141    : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue),
142      reqQueue(*_port, *this), snoopRespQueue(*_port, *this)
143{
144    DPRINTF(RubyPort, "Created master pioport on sequencer %s\n", _name);
145}
146
147RubyPort::PioSlavePort::PioSlavePort(const std::string &_name,
148                           RubyPort *_port)
149    : QueuedSlavePort(_name, _port, queue), queue(*_port, *this)
150{
151    DPRINTF(RubyPort, "Created slave pioport on sequencer %s\n", _name);
152}
153
154RubyPort::MemMasterPort::MemMasterPort(const std::string &_name,
155                           RubyPort *_port)
156    : QueuedMasterPort(_name, _port, reqQueue, snoopRespQueue),
157      reqQueue(*_port, *this), snoopRespQueue(*_port, *this)
158{
159    DPRINTF(RubyPort, "Created master memport on ruby sequencer %s\n", _name);
160}
161
162RubyPort::MemSlavePort::MemSlavePort(const std::string &_name, RubyPort *_port,
163                                     bool _access_backing_store, PortID id,
164                                     bool _no_retry_on_stall)
165    : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this),
166      access_backing_store(_access_backing_store),
167      no_retry_on_stall(_no_retry_on_stall)
168{
169    DPRINTF(RubyPort, "Created slave memport on ruby sequencer %s\n", _name);
170}
171
172bool
173RubyPort::PioMasterPort::recvTimingResp(PacketPtr pkt)
174{
175    RubyPort *rp = static_cast<RubyPort *>(&owner);
176    DPRINTF(RubyPort, "Response for address: 0x%#x\n", pkt->getAddr());
177
178    // send next cycle
179    rp->pioSlavePort.schedTimingResp(
180            pkt, curTick() + rp->m_ruby_system->clockPeriod());
181    return true;
182}
183
184bool RubyPort::MemMasterPort::recvTimingResp(PacketPtr pkt)
185{
186    // got a response from a device
187    assert(pkt->isResponse());
188
189    // First we must retrieve the request port from the sender State
190    RubyPort::SenderState *senderState =
191        safe_cast<RubyPort::SenderState *>(pkt->popSenderState());
192    MemSlavePort *port = senderState->port;
193    assert(port != NULL);
194    delete senderState;
195
196    // In FS mode, ruby memory will receive pio responses from devices
197    // and it must forward these responses back to the particular CPU.
198    DPRINTF(RubyPort,  "Pio response for address %#x, going to %s\n",
199            pkt->getAddr(), port->name());
200
201    // attempt to send the response in the next cycle
202    RubyPort *rp = static_cast<RubyPort *>(&owner);
203    port->schedTimingResp(pkt, curTick() + rp->m_ruby_system->clockPeriod());
204
205    return true;
206}
207
208bool
209RubyPort::PioSlavePort::recvTimingReq(PacketPtr pkt)
210{
211    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
212
213    for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
214        AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges();
215        for (auto it = l.begin(); it != l.end(); ++it) {
216            if (it->contains(pkt->getAddr())) {
217                // generally it is not safe to assume success here as
218                // the port could be blocked
219                bool M5_VAR_USED success =
220                    ruby_port->master_ports[i]->sendTimingReq(pkt);
221                assert(success);
222                return true;
223            }
224        }
225    }
226    panic("Should never reach here!\n");
227}
228
229bool
230RubyPort::MemSlavePort::recvTimingReq(PacketPtr pkt)
231{
232    DPRINTF(RubyPort, "Timing request for address %#x on port %d\n",
233            pkt->getAddr(), id);
234    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
235
236    if (pkt->cacheResponding())
237        panic("RubyPort should never see request with the "
238              "cacheResponding flag set\n");
239
240    // Check for pio requests and directly send them to the dedicated
241    // pio port.
242    if (pkt->cmd != MemCmd::MemFenceReq) {
243        if (!isPhysMemAddress(pkt->getAddr())) {
244            assert(ruby_port->memMasterPort.isConnected());
245            DPRINTF(RubyPort, "Request address %#x assumed to be a "
246                    "pio address\n", pkt->getAddr());
247
248            // Save the port in the sender state object to be used later to
249            // route the response
250            pkt->pushSenderState(new SenderState(this));
251
252            // send next cycle
253            RubySystem *rs = ruby_port->m_ruby_system;
254            ruby_port->memMasterPort.schedTimingReq(pkt,
255                curTick() + rs->clockPeriod());
256            return true;
257        }
258
259        assert(getOffset(pkt->getAddr()) + pkt->getSize() <=
260               RubySystem::getBlockSizeBytes());
261    }
262
263    // Submit the ruby request
264    RequestStatus requestStatus = ruby_port->makeRequest(pkt);
265
266    // If the request successfully issued then we should return true.
267    // Otherwise, we need to tell the port to retry at a later point
268    // and return false.
269    if (requestStatus == RequestStatus_Issued) {
270        // Save the port in the sender state object to be used later to
271        // route the response
272        pkt->pushSenderState(new SenderState(this));
273
274        DPRINTF(RubyPort, "Request %s 0x%x issued\n", pkt->cmdString(),
275                pkt->getAddr());
276        return true;
277    }
278
279    if (pkt->cmd != MemCmd::MemFenceReq) {
280        DPRINTF(RubyPort,
281                "Request for address %#x did not issued because %s\n",
282                pkt->getAddr(), RequestStatus_to_string(requestStatus));
283    }
284
285    addToRetryList();
286
287    return false;
288}
289
290void
291RubyPort::MemSlavePort::addToRetryList()
292{
293    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
294
295    //
296    // Unless the requestor do not want retries (e.g., the Ruby tester),
297    // record the stalled M5 port for later retry when the sequencer
298    // becomes free.
299    //
300    if (!no_retry_on_stall && !ruby_port->onRetryList(this)) {
301        ruby_port->addToRetryList(this);
302    }
303}
304
305void
306RubyPort::MemSlavePort::recvFunctional(PacketPtr pkt)
307{
308    DPRINTF(RubyPort, "Functional access for address: %#x\n", pkt->getAddr());
309
310    RubyPort *rp M5_VAR_USED = static_cast<RubyPort *>(&owner);
311    RubySystem *rs = rp->m_ruby_system;
312
313    // Check for pio requests and directly send them to the dedicated
314    // pio port.
315    if (!isPhysMemAddress(pkt->getAddr())) {
316        DPRINTF(RubyPort, "Pio Request for address: 0x%#x\n", pkt->getAddr());
317        assert(rp->pioMasterPort.isConnected());
318        rp->pioMasterPort.sendFunctional(pkt);
319        return;
320    }
321
322    assert(pkt->getAddr() + pkt->getSize() <=
323           makeLineAddress(pkt->getAddr()) + RubySystem::getBlockSizeBytes());
324
325    if (access_backing_store) {
326        // The attached physmem contains the official version of data.
327        // The following command performs the real functional access.
328        // This line should be removed once Ruby supplies the official version
329        // of data.
330        rs->getPhysMem()->functionalAccess(pkt);
331    } else {
332        bool accessSucceeded = false;
333        bool needsResponse = pkt->needsResponse();
334
335        // Do the functional access on ruby memory
336        if (pkt->isRead()) {
337            accessSucceeded = rs->functionalRead(pkt);
338        } else if (pkt->isWrite()) {
339            accessSucceeded = rs->functionalWrite(pkt);
340        } else {
341            panic("Unsupported functional command %s\n", pkt->cmdString());
342        }
343
344        // Unless the requester explicitly said otherwise, generate an error if
345        // the functional request failed
346        if (!accessSucceeded && !pkt->suppressFuncError()) {
347            fatal("Ruby functional %s failed for address %#x\n",
348                  pkt->isWrite() ? "write" : "read", pkt->getAddr());
349        }
350
351        // turn packet around to go back to requester if response expected
352        if (needsResponse) {
353            pkt->setFunctionalResponseStatus(accessSucceeded);
354        }
355
356        DPRINTF(RubyPort, "Functional access %s!\n",
357                accessSucceeded ? "successful":"failed");
358    }
359}
360
361void
362RubyPort::ruby_hit_callback(PacketPtr pkt)
363{
364    DPRINTF(RubyPort, "Hit callback for %s 0x%x\n", pkt->cmdString(),
365            pkt->getAddr());
366
367    // The packet was destined for memory and has not yet been turned
368    // into a response
369    assert(system->isMemAddr(pkt->getAddr()));
370    assert(pkt->isRequest());
371
372    // First we must retrieve the request port from the sender State
373    RubyPort::SenderState *senderState =
374        safe_cast<RubyPort::SenderState *>(pkt->popSenderState());
375    MemSlavePort *port = senderState->port;
376    assert(port != NULL);
377    delete senderState;
378
379    port->hitCallback(pkt);
380
381    trySendRetries();
382}
383
384void
385RubyPort::trySendRetries()
386{
387    //
388    // If we had to stall the MemSlavePorts, wake them up because the sequencer
389    // likely has free resources now.
390    //
391    if (!retryList.empty()) {
392        // Record the current list of ports to retry on a temporary list
393        // before calling sendRetryReq on those ports. sendRetryReq will cause
394        // an immediate retry, which may result in the ports being put back on
395        // the list. Therefore we want to clear the retryList before calling
396        // sendRetryReq.
397        std::vector<MemSlavePort *> curRetryList(retryList);
398
399        retryList.clear();
400
401        for (auto i = curRetryList.begin(); i != curRetryList.end(); ++i) {
402            DPRINTF(RubyPort,
403                    "Sequencer may now be free. SendRetry to port %s\n",
404                    (*i)->name());
405            (*i)->sendRetryReq();
406        }
407    }
408}
409
410void
411RubyPort::testDrainComplete()
412{
413    //If we weren't able to drain before, we might be able to now.
414    if (drainState() == DrainState::Draining) {
415        unsigned int drainCount = outstandingCount();
416        DPRINTF(Drain, "Drain count: %u\n", drainCount);
417        if (drainCount == 0) {
418            DPRINTF(Drain, "RubyPort done draining, signaling drain done\n");
419            signalDrainDone();
420        }
421    }
422}
423
424DrainState
425RubyPort::drain()
426{
427    if (isDeadlockEventScheduled()) {
428        descheduleDeadlockEvent();
429    }
430
431    //
432    // If the RubyPort is not empty, then it needs to clear all outstanding
433    // requests before it should call signalDrainDone()
434    //
435    DPRINTF(Config, "outstanding count %d\n", outstandingCount());
436    if (outstandingCount() > 0) {
437        DPRINTF(Drain, "RubyPort not drained\n");
438        return DrainState::Draining;
439    } else {
440        return DrainState::Drained;
441    }
442}
443
444void
445RubyPort::MemSlavePort::hitCallback(PacketPtr pkt)
446{
447    bool needsResponse = pkt->needsResponse();
448
449    // Unless specified at configuraiton, all responses except failed SC
450    // and Flush operations access M5 physical memory.
451    bool accessPhysMem = access_backing_store;
452
453    if (pkt->isLLSC()) {
454        if (pkt->isWrite()) {
455            if (pkt->req->getExtraData() != 0) {
456                //
457                // Successful SC packets convert to normal writes
458                //
459                pkt->convertScToWrite();
460            } else {
461                //
462                // Failed SC packets don't access physical memory and thus
463                // the RubyPort itself must convert it to a response.
464                //
465                accessPhysMem = false;
466            }
467        } else {
468            //
469            // All LL packets convert to normal loads so that M5 PhysMem does
470            // not lock the blocks.
471            //
472            pkt->convertLlToRead();
473        }
474    }
475
476    // Flush, acquire, release requests don't access physical memory
477    if (pkt->isFlush() || pkt->cmd == MemCmd::MemFenceReq) {
478        accessPhysMem = false;
479    }
480
481    if (pkt->req->isKernel()) {
482        accessPhysMem = false;
483        needsResponse = true;
484    }
485
486    DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
487
488    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
489    RubySystem *rs = ruby_port->m_ruby_system;
490    if (accessPhysMem) {
491        rs->getPhysMem()->access(pkt);
492    } else if (needsResponse) {
493        pkt->makeResponse();
494    }
495
496    // turn packet around to go back to requester if response expected
497    if (needsResponse) {
498        DPRINTF(RubyPort, "Sending packet back over port\n");
499        // Send a response in the same cycle. There is no need to delay the
500        // response because the response latency is already incurred in the
501        // Ruby protocol.
502        schedTimingResp(pkt, curTick());
503    } else {
504        delete pkt;
505    }
506
507    DPRINTF(RubyPort, "Hit callback done!\n");
508}
509
510AddrRangeList
511RubyPort::PioSlavePort::getAddrRanges() const
512{
513    // at the moment the assumption is that the master does not care
514    AddrRangeList ranges;
515    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
516
517    for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
518        ranges.splice(ranges.begin(),
519                ruby_port->master_ports[i]->getAddrRanges());
520    }
521    for (const auto M5_VAR_USED &r : ranges)
522        DPRINTF(RubyPort, "%s\n", r.to_string());
523    return ranges;
524}
525
526bool
527RubyPort::MemSlavePort::isPhysMemAddress(Addr addr) const
528{
529    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
530    return ruby_port->system->isMemAddr(addr);
531}
532
533void
534RubyPort::ruby_eviction_callback(Addr address)
535{
536    DPRINTF(RubyPort, "Sending invalidations.\n");
537    // Allocate the invalidate request and packet on the stack, as it is
538    // assumed they will not be modified or deleted by receivers.
539    // TODO: should this really be using funcMasterId?
540    Request request(address, RubySystem::getBlockSizeBytes(), 0,
541                    Request::funcMasterId);
542    // Use a single packet to signal all snooping ports of the invalidation.
543    // This assumes that snooping ports do NOT modify the packet/request
544    Packet pkt(&request, MemCmd::InvalidateReq);
545    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
546        // check if the connected master port is snooping
547        if ((*p)->isSnooping()) {
548            // send as a snoop request
549            (*p)->sendTimingSnoopReq(&pkt);
550        }
551    }
552}
553
554void
555RubyPort::PioMasterPort::recvRangeChange()
556{
557    RubyPort &r = static_cast<RubyPort &>(owner);
558    r.gotAddrRanges--;
559    if (r.gotAddrRanges == 0 && FullSystem) {
560        r.pioSlavePort.sendRangeChange();
561    }
562}
563