RubyPort.cc revision 10706
1/*
2 * Copyright (c) 2012-2013 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2009 Advanced Micro Devices, Inc.
15 * Copyright (c) 2011 Mark D. Hill and David A. Wood
16 * All rights reserved.
17 *
18 * Redistribution and use in source and binary forms, with or without
19 * modification, are permitted provided that the following conditions are
20 * met: redistributions of source code must retain the above copyright
21 * notice, this list of conditions and the following disclaimer;
22 * redistributions in binary form must reproduce the above copyright
23 * notice, this list of conditions and the following disclaimer in the
24 * documentation and/or other materials provided with the distribution;
25 * neither the name of the copyright holders nor the names of its
26 * contributors may be used to endorse or promote products derived from
27 * this software without specific prior written permission.
28 *
29 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
30 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
31 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
32 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
33 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
34 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
35 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
36 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
37 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
38 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
39 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
40 */
41
42#include "cpu/testers/rubytest/RubyTester.hh"
43#include "debug/Config.hh"
44#include "debug/Drain.hh"
45#include "debug/Ruby.hh"
46#include "mem/protocol/AccessPermission.hh"
47#include "mem/ruby/slicc_interface/AbstractController.hh"
48#include "mem/ruby/system/RubyPort.hh"
49#include "mem/simple_mem.hh"
50#include "sim/full_system.hh"
51#include "sim/system.hh"
52
53RubyPort::RubyPort(const Params *p)
54    : MemObject(p), m_version(p->version), m_controller(NULL),
55      m_mandatory_q_ptr(NULL), m_usingRubyTester(p->using_ruby_tester),
56      system(p->system),
57      pioMasterPort(csprintf("%s.pio-master-port", name()), this),
58      pioSlavePort(csprintf("%s.pio-slave-port", name()), this),
59      memMasterPort(csprintf("%s.mem-master-port", name()), this),
60      memSlavePort(csprintf("%s-mem-slave-port", name()), this,
61          p->ruby_system, p->ruby_system->getAccessBackingStore(), -1),
62      gotAddrRanges(p->port_master_connection_count), drainManager(NULL)
63{
64    assert(m_version != -1);
65
66    // create the slave ports based on the number of connected ports
67    for (size_t i = 0; i < p->port_slave_connection_count; ++i) {
68        slave_ports.push_back(new MemSlavePort(csprintf("%s.slave%d", name(),
69            i), this, p->ruby_system,
70            p->ruby_system->getAccessBackingStore(), i));
71    }
72
73    // create the master ports based on the number of connected ports
74    for (size_t i = 0; i < p->port_master_connection_count; ++i) {
75        master_ports.push_back(new PioMasterPort(csprintf("%s.master%d",
76            name(), i), this));
77    }
78}
79
80void
81RubyPort::init()
82{
83    assert(m_controller != NULL);
84    m_mandatory_q_ptr = m_controller->getMandatoryQueue();
85    m_mandatory_q_ptr->setSender(this);
86}
87
88BaseMasterPort &
89RubyPort::getMasterPort(const std::string &if_name, PortID idx)
90{
91    if (if_name == "mem_master_port") {
92        return memMasterPort;
93    }
94
95    if (if_name == "pio_master_port") {
96        return pioMasterPort;
97    }
98
99    // used by the x86 CPUs to connect the interrupt PIO and interrupt slave
100    // port
101    if (if_name != "master") {
102        // pass it along to our super class
103        return MemObject::getMasterPort(if_name, idx);
104    } else {
105        if (idx >= static_cast<PortID>(master_ports.size())) {
106            panic("RubyPort::getMasterPort: unknown index %d\n", idx);
107        }
108
109        return *master_ports[idx];
110    }
111}
112
113BaseSlavePort &
114RubyPort::getSlavePort(const std::string &if_name, PortID idx)
115{
116    if (if_name == "mem_slave_port") {
117        return memSlavePort;
118    }
119
120    if (if_name == "pio_slave_port")
121        return pioSlavePort;
122
123    // used by the CPUs to connect the caches to the interconnect, and
124    // for the x86 case also the interrupt master
125    if (if_name != "slave") {
126        // pass it along to our super class
127        return MemObject::getSlavePort(if_name, idx);
128    } else {
129        if (idx >= static_cast<PortID>(slave_ports.size())) {
130            panic("RubyPort::getSlavePort: unknown index %d\n", idx);
131        }
132
133        return *slave_ports[idx];
134    }
135}
136
137RubyPort::PioMasterPort::PioMasterPort(const std::string &_name,
138                           RubyPort *_port)
139    : QueuedMasterPort(_name, _port, queue), queue(*_port, *this)
140{
141    DPRINTF(RubyPort, "Created master pioport on sequencer %s\n", _name);
142}
143
144RubyPort::PioSlavePort::PioSlavePort(const std::string &_name,
145                           RubyPort *_port)
146    : QueuedSlavePort(_name, _port, queue), queue(*_port, *this)
147{
148    DPRINTF(RubyPort, "Created slave pioport on sequencer %s\n", _name);
149}
150
151RubyPort::MemMasterPort::MemMasterPort(const std::string &_name,
152                           RubyPort *_port)
153    : QueuedMasterPort(_name, _port, queue), queue(*_port, *this)
154{
155    DPRINTF(RubyPort, "Created master memport on ruby sequencer %s\n", _name);
156}
157
158RubyPort::MemSlavePort::MemSlavePort(const std::string &_name, RubyPort *_port,
159                                     RubySystem *_system,
160                                     bool _access_backing_store, PortID id)
161    : QueuedSlavePort(_name, _port, queue, id), queue(*_port, *this),
162      ruby_system(_system), access_backing_store(_access_backing_store)
163{
164    DPRINTF(RubyPort, "Created slave memport on ruby sequencer %s\n", _name);
165}
166
167bool
168RubyPort::PioMasterPort::recvTimingResp(PacketPtr pkt)
169{
170    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
171    DPRINTF(RubyPort, "Response for address: 0x%#x\n", pkt->getAddr());
172
173    // send next cycle
174    ruby_port->pioSlavePort.schedTimingResp(
175            pkt, curTick() + g_system_ptr->clockPeriod());
176    return true;
177}
178
179bool RubyPort::MemMasterPort::recvTimingResp(PacketPtr pkt)
180{
181    // got a response from a device
182    assert(pkt->isResponse());
183
184    // First we must retrieve the request port from the sender State
185    RubyPort::SenderState *senderState =
186        safe_cast<RubyPort::SenderState *>(pkt->popSenderState());
187    MemSlavePort *port = senderState->port;
188    assert(port != NULL);
189    delete senderState;
190
191    // In FS mode, ruby memory will receive pio responses from devices
192    // and it must forward these responses back to the particular CPU.
193    DPRINTF(RubyPort,  "Pio response for address %#x, going to %s\n",
194            pkt->getAddr(), port->name());
195
196    // attempt to send the response in the next cycle
197    port->schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod());
198
199    return true;
200}
201
202bool
203RubyPort::PioSlavePort::recvTimingReq(PacketPtr pkt)
204{
205    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
206
207    for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
208        AddrRangeList l = ruby_port->master_ports[i]->getAddrRanges();
209        for (auto it = l.begin(); it != l.end(); ++it) {
210            if (it->contains(pkt->getAddr())) {
211                // generally it is not safe to assume success here as
212                // the port could be blocked
213                bool M5_VAR_USED success =
214                    ruby_port->master_ports[i]->sendTimingReq(pkt);
215                assert(success);
216                return true;
217            }
218        }
219    }
220    panic("Should never reach here!\n");
221}
222
223bool
224RubyPort::MemSlavePort::recvTimingReq(PacketPtr pkt)
225{
226    DPRINTF(RubyPort, "Timing request for address %#x on port %d\n",
227            pkt->getAddr(), id);
228    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
229
230    if (pkt->memInhibitAsserted())
231        panic("RubyPort should never see an inhibited request\n");
232
233    // Check for pio requests and directly send them to the dedicated
234    // pio port.
235    if (!isPhysMemAddress(pkt->getAddr())) {
236        assert(ruby_port->memMasterPort.isConnected());
237        DPRINTF(RubyPort, "Request address %#x assumed to be a pio address\n",
238                pkt->getAddr());
239
240        // Save the port in the sender state object to be used later to
241        // route the response
242        pkt->pushSenderState(new SenderState(this));
243
244        // send next cycle
245        ruby_port->memMasterPort.schedTimingReq(pkt,
246            curTick() + g_system_ptr->clockPeriod());
247        return true;
248    }
249
250    assert(Address(pkt->getAddr()).getOffset() + pkt->getSize() <=
251           RubySystem::getBlockSizeBytes());
252
253    // Submit the ruby request
254    RequestStatus requestStatus = ruby_port->makeRequest(pkt);
255
256    // If the request successfully issued then we should return true.
257    // Otherwise, we need to tell the port to retry at a later point
258    // and return false.
259    if (requestStatus == RequestStatus_Issued) {
260        // Save the port in the sender state object to be used later to
261        // route the response
262        pkt->pushSenderState(new SenderState(this));
263
264        DPRINTF(RubyPort, "Request %s 0x%x issued\n", pkt->cmdString(),
265                pkt->getAddr());
266        return true;
267    }
268
269    //
270    // Unless one is using the ruby tester, record the stalled M5 port for
271    // later retry when the sequencer becomes free.
272    //
273    if (!ruby_port->m_usingRubyTester) {
274        ruby_port->addToRetryList(this);
275    }
276
277    DPRINTF(RubyPort, "Request for address %#x did not issued because %s\n",
278            pkt->getAddr(), RequestStatus_to_string(requestStatus));
279
280    return false;
281}
282
283void
284RubyPort::MemSlavePort::recvFunctional(PacketPtr pkt)
285{
286    DPRINTF(RubyPort, "Functional access for address: %#x\n", pkt->getAddr());
287
288    // Check for pio requests and directly send them to the dedicated
289    // pio port.
290    if (!isPhysMemAddress(pkt->getAddr())) {
291        RubyPort *ruby_port M5_VAR_USED = static_cast<RubyPort *>(&owner);
292        assert(ruby_port->memMasterPort.isConnected());
293        DPRINTF(RubyPort, "Pio Request for address: 0x%#x\n", pkt->getAddr());
294        panic("RubyPort::PioMasterPort::recvFunctional() not implemented!\n");
295    }
296
297    assert(pkt->getAddr() + pkt->getSize() <=
298                line_address(Address(pkt->getAddr())).getAddress() +
299                RubySystem::getBlockSizeBytes());
300
301    if (access_backing_store) {
302        // The attached physmem contains the official version of data.
303        // The following command performs the real functional access.
304        // This line should be removed once Ruby supplies the official version
305        // of data.
306        ruby_system->getPhysMem()->functionalAccess(pkt);
307    } else {
308        bool accessSucceeded = false;
309        bool needsResponse = pkt->needsResponse();
310
311        // Do the functional access on ruby memory
312        if (pkt->isRead()) {
313            accessSucceeded = ruby_system->functionalRead(pkt);
314        } else if (pkt->isWrite()) {
315            accessSucceeded = ruby_system->functionalWrite(pkt);
316        } else {
317            panic("Unsupported functional command %s\n", pkt->cmdString());
318        }
319
320        // Unless the requester explicitly said otherwise, generate an error if
321        // the functional request failed
322        if (!accessSucceeded && !pkt->suppressFuncError()) {
323            fatal("Ruby functional %s failed for address %#x\n",
324                  pkt->isWrite() ? "write" : "read", pkt->getAddr());
325        }
326
327        // turn packet around to go back to requester if response expected
328        if (needsResponse) {
329            pkt->setFunctionalResponseStatus(accessSucceeded);
330        }
331
332        DPRINTF(RubyPort, "Functional access %s!\n",
333                accessSucceeded ? "successful":"failed");
334    }
335}
336
337void
338RubyPort::ruby_hit_callback(PacketPtr pkt)
339{
340    DPRINTF(RubyPort, "Hit callback for %s 0x%x\n", pkt->cmdString(),
341            pkt->getAddr());
342
343    // The packet was destined for memory and has not yet been turned
344    // into a response
345    assert(system->isMemAddr(pkt->getAddr()));
346    assert(pkt->isRequest());
347
348    // First we must retrieve the request port from the sender State
349    RubyPort::SenderState *senderState =
350        safe_cast<RubyPort::SenderState *>(pkt->popSenderState());
351    MemSlavePort *port = senderState->port;
352    assert(port != NULL);
353    delete senderState;
354
355    port->hitCallback(pkt);
356
357    //
358    // If we had to stall the MemSlavePorts, wake them up because the sequencer
359    // likely has free resources now.
360    //
361    if (!retryList.empty()) {
362        //
363        // Record the current list of ports to retry on a temporary list before
364        // calling sendRetry on those ports.  sendRetry will cause an
365        // immediate retry, which may result in the ports being put back on the
366        // list. Therefore we want to clear the retryList before calling
367        // sendRetry.
368        //
369        std::vector<MemSlavePort *> curRetryList(retryList);
370
371        retryList.clear();
372
373        for (auto i = curRetryList.begin(); i != curRetryList.end(); ++i) {
374            DPRINTF(RubyPort,
375                    "Sequencer may now be free.  SendRetry to port %s\n",
376                    (*i)->name());
377            (*i)->sendRetry();
378        }
379    }
380
381    testDrainComplete();
382}
383
384void
385RubyPort::testDrainComplete()
386{
387    //If we weren't able to drain before, we might be able to now.
388    if (drainManager != NULL) {
389        unsigned int drainCount = outstandingCount();
390        DPRINTF(Drain, "Drain count: %u\n", drainCount);
391        if (drainCount == 0) {
392            DPRINTF(Drain, "RubyPort done draining, signaling drain done\n");
393            drainManager->signalDrainDone();
394            // Clear the drain manager once we're done with it.
395            drainManager = NULL;
396        }
397    }
398}
399
400unsigned int
401RubyPort::getChildDrainCount(DrainManager *dm)
402{
403    int count = 0;
404
405    if (memMasterPort.isConnected()) {
406        count += memMasterPort.drain(dm);
407        DPRINTF(Config, "count after pio check %d\n", count);
408    }
409
410    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
411        count += (*p)->drain(dm);
412        DPRINTF(Config, "count after slave port check %d\n", count);
413    }
414
415    for (std::vector<PioMasterPort *>::iterator p = master_ports.begin();
416         p != master_ports.end(); ++p) {
417        count += (*p)->drain(dm);
418        DPRINTF(Config, "count after master port check %d\n", count);
419    }
420
421    DPRINTF(Config, "final count %d\n", count);
422    return count;
423}
424
425unsigned int
426RubyPort::drain(DrainManager *dm)
427{
428    if (isDeadlockEventScheduled()) {
429        descheduleDeadlockEvent();
430    }
431
432    //
433    // If the RubyPort is not empty, then it needs to clear all outstanding
434    // requests before it should call drainManager->signalDrainDone()
435    //
436    DPRINTF(Config, "outstanding count %d\n", outstandingCount());
437    bool need_drain = outstandingCount() > 0;
438
439    //
440    // Also, get the number of child ports that will also need to clear
441    // their buffered requests before they call drainManager->signalDrainDone()
442    //
443    unsigned int child_drain_count = getChildDrainCount(dm);
444
445    // Set status
446    if (need_drain) {
447        drainManager = dm;
448
449        DPRINTF(Drain, "RubyPort not drained\n");
450        setDrainState(Drainable::Draining);
451        return child_drain_count + 1;
452    }
453
454    drainManager = NULL;
455    setDrainState(Drainable::Drained);
456    return child_drain_count;
457}
458
459void
460RubyPort::MemSlavePort::hitCallback(PacketPtr pkt)
461{
462    bool needsResponse = pkt->needsResponse();
463
464    // Unless specified at configuraiton, all responses except failed SC
465    // and Flush operations access M5 physical memory.
466    bool accessPhysMem = access_backing_store;
467
468    if (pkt->isLLSC()) {
469        if (pkt->isWrite()) {
470            if (pkt->req->getExtraData() != 0) {
471                //
472                // Successful SC packets convert to normal writes
473                //
474                pkt->convertScToWrite();
475            } else {
476                //
477                // Failed SC packets don't access physical memory and thus
478                // the RubyPort itself must convert it to a response.
479                //
480                accessPhysMem = false;
481            }
482        } else {
483            //
484            // All LL packets convert to normal loads so that M5 PhysMem does
485            // not lock the blocks.
486            //
487            pkt->convertLlToRead();
488        }
489    }
490
491    // Flush requests don't access physical memory
492    if (pkt->isFlush()) {
493        accessPhysMem = false;
494    }
495
496    DPRINTF(RubyPort, "Hit callback needs response %d\n", needsResponse);
497
498    if (accessPhysMem) {
499        ruby_system->getPhysMem()->access(pkt);
500    } else if (needsResponse) {
501        pkt->makeResponse();
502    }
503
504    // turn packet around to go back to requester if response expected
505    if (needsResponse) {
506        DPRINTF(RubyPort, "Sending packet back over port\n");
507        // send next cycle
508        schedTimingResp(pkt, curTick() + g_system_ptr->clockPeriod());
509    } else {
510        delete pkt;
511    }
512
513    DPRINTF(RubyPort, "Hit callback done!\n");
514}
515
516AddrRangeList
517RubyPort::PioSlavePort::getAddrRanges() const
518{
519    // at the moment the assumption is that the master does not care
520    AddrRangeList ranges;
521    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
522
523    for (size_t i = 0; i < ruby_port->master_ports.size(); ++i) {
524        ranges.splice(ranges.begin(),
525                ruby_port->master_ports[i]->getAddrRanges());
526    }
527    for (const auto M5_VAR_USED &r : ranges)
528        DPRINTF(RubyPort, "%s\n", r.to_string());
529    return ranges;
530}
531
532bool
533RubyPort::MemSlavePort::isPhysMemAddress(Addr addr) const
534{
535    RubyPort *ruby_port = static_cast<RubyPort *>(&owner);
536    return ruby_port->system->isMemAddr(addr);
537}
538
539void
540RubyPort::ruby_eviction_callback(const Address& address)
541{
542    DPRINTF(RubyPort, "Sending invalidations.\n");
543    // This request is deleted in the stack-allocated packet destructor
544    // when this function exits
545    // TODO: should this really be using funcMasterId?
546    RequestPtr req =
547            new Request(address.getAddress(), 0, 0, Request::funcMasterId);
548    // Use a single packet to signal all snooping ports of the invalidation.
549    // This assumes that snooping ports do NOT modify the packet/request
550    Packet pkt(req, MemCmd::InvalidationReq);
551    for (CpuPortIter p = slave_ports.begin(); p != slave_ports.end(); ++p) {
552        // check if the connected master port is snooping
553        if ((*p)->isSnooping()) {
554            // send as a snoop request
555            (*p)->sendTimingSnoopReq(&pkt);
556        }
557    }
558}
559
560void
561RubyPort::PioMasterPort::recvRangeChange()
562{
563    RubyPort &r = static_cast<RubyPort &>(owner);
564    r.gotAddrRanges--;
565    if (r.gotAddrRanges == 0 && FullSystem) {
566        r.pioSlavePort.sendRangeChange();
567    }
568}
569