1/*
2 * Copyright (c) 2017,2019 ARM Limited
3 * All rights reserved.
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2011-2014 Mark D. Hill and David A. Wood
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 */
40
41#include "mem/ruby/slicc_interface/AbstractController.hh"
42
43#include "debug/RubyQueue.hh"
44#include "mem/ruby/network/Network.hh"
45#include "mem/ruby/protocol/MemoryMsg.hh"
46#include "mem/ruby/system/GPUCoalescer.hh"
47#include "mem/ruby/system/RubySystem.hh"
48#include "mem/ruby/system/Sequencer.hh"
49#include "sim/system.hh"
50
51AbstractController::AbstractController(const Params *p)
52    : ClockedObject(p), Consumer(this), m_version(p->version),
53      m_clusterID(p->cluster_id),
54      m_masterId(p->system->getMasterId(this)), m_is_blocking(false),
55      m_number_of_TBEs(p->number_of_TBEs),
56      m_transitions_per_cycle(p->transitions_per_cycle),
57      m_buffer_size(p->buffer_size), m_recycle_latency(p->recycle_latency),
58      m_mandatory_queue_latency(p->mandatory_queue_latency),
59      memoryPort(csprintf("%s.memory", name()), this, ""),
60      addrRanges(p->addr_ranges.begin(), p->addr_ranges.end())
61{
62    if (m_version == 0) {
63        // Combine the statistics from all controllers
64        // of this particular type.
65        Stats::registerDumpCallback(new StatsCallback(this));
66    }
67}
68
69void
70AbstractController::init()
71{
72    params()->ruby_system->registerAbstractController(this);
73    m_delayHistogram.init(10);
74    uint32_t size = Network::getNumberOfVirtualNetworks();
75    for (uint32_t i = 0; i < size; i++) {
76        m_delayVCHistogram.push_back(new Stats::Histogram());
77        m_delayVCHistogram[i]->init(10);
78    }
79}
80
81void
82AbstractController::resetStats()
83{
84    m_delayHistogram.reset();
85    uint32_t size = Network::getNumberOfVirtualNetworks();
86    for (uint32_t i = 0; i < size; i++) {
87        m_delayVCHistogram[i]->reset();
88    }
89}
90
91void
92AbstractController::regStats()
93{
94    ClockedObject::regStats();
95
96    m_fully_busy_cycles
97        .name(name() + ".fully_busy_cycles")
98        .desc("cycles for which number of transistions == max transitions")
99        .flags(Stats::nozero);
100}
101
102void
103AbstractController::profileMsgDelay(uint32_t virtualNetwork, Cycles delay)
104{
105    assert(virtualNetwork < m_delayVCHistogram.size());
106    m_delayHistogram.sample(delay);
107    m_delayVCHistogram[virtualNetwork]->sample(delay);
108}
109
110void
111AbstractController::stallBuffer(MessageBuffer* buf, Addr addr)
112{
113    if (m_waiting_buffers.count(addr) == 0) {
114        MsgVecType* msgVec = new MsgVecType;
115        msgVec->resize(m_in_ports, NULL);
116        m_waiting_buffers[addr] = msgVec;
117    }
118    DPRINTF(RubyQueue, "stalling %s port %d addr %#x\n", buf, m_cur_in_port,
119            addr);
120    assert(m_in_ports > m_cur_in_port);
121    (*(m_waiting_buffers[addr]))[m_cur_in_port] = buf;
122}
123
124void
125AbstractController::wakeUpBuffers(Addr addr)
126{
127    if (m_waiting_buffers.count(addr) > 0) {
128        //
129        // Wake up all possible lower rank (i.e. lower priority) buffers that could
130        // be waiting on this message.
131        //
132        for (int in_port_rank = m_cur_in_port - 1;
133             in_port_rank >= 0;
134             in_port_rank--) {
135            if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
136                (*(m_waiting_buffers[addr]))[in_port_rank]->
137                    reanalyzeMessages(addr, clockEdge());
138            }
139        }
140        delete m_waiting_buffers[addr];
141        m_waiting_buffers.erase(addr);
142    }
143}
144
145void
146AbstractController::wakeUpAllBuffers(Addr addr)
147{
148    if (m_waiting_buffers.count(addr) > 0) {
149        //
150        // Wake up all possible lower rank (i.e. lower priority) buffers that could
151        // be waiting on this message.
152        //
153        for (int in_port_rank = m_in_ports - 1;
154             in_port_rank >= 0;
155             in_port_rank--) {
156            if ((*(m_waiting_buffers[addr]))[in_port_rank] != NULL) {
157                (*(m_waiting_buffers[addr]))[in_port_rank]->
158                    reanalyzeMessages(addr, clockEdge());
159            }
160        }
161        delete m_waiting_buffers[addr];
162        m_waiting_buffers.erase(addr);
163    }
164}
165
166void
167AbstractController::wakeUpAllBuffers()
168{
169    //
170    // Wake up all possible buffers that could be waiting on any message.
171    //
172
173    std::vector<MsgVecType*> wokeUpMsgVecs;
174    MsgBufType wokeUpMsgBufs;
175
176    if (m_waiting_buffers.size() > 0) {
177        for (WaitingBufType::iterator buf_iter = m_waiting_buffers.begin();
178             buf_iter != m_waiting_buffers.end();
179             ++buf_iter) {
180             for (MsgVecType::iterator vec_iter = buf_iter->second->begin();
181                  vec_iter != buf_iter->second->end();
182                  ++vec_iter) {
183                  //
184                  // Make sure the MessageBuffer has not already be reanalyzed
185                  //
186                  if (*vec_iter != NULL &&
187                      (wokeUpMsgBufs.count(*vec_iter) == 0)) {
188                      (*vec_iter)->reanalyzeAllMessages(clockEdge());
189                      wokeUpMsgBufs.insert(*vec_iter);
190                  }
191             }
192             wokeUpMsgVecs.push_back(buf_iter->second);
193        }
194
195        for (std::vector<MsgVecType*>::iterator wb_iter = wokeUpMsgVecs.begin();
196             wb_iter != wokeUpMsgVecs.end();
197             ++wb_iter) {
198             delete (*wb_iter);
199        }
200
201        m_waiting_buffers.clear();
202    }
203}
204
205void
206AbstractController::blockOnQueue(Addr addr, MessageBuffer* port)
207{
208    m_is_blocking = true;
209    m_block_map[addr] = port;
210}
211
212bool
213AbstractController::isBlocked(Addr addr) const
214{
215    return m_is_blocking && (m_block_map.find(addr) != m_block_map.end());
216}
217
218void
219AbstractController::unblock(Addr addr)
220{
221    m_block_map.erase(addr);
222    if (m_block_map.size() == 0) {
223       m_is_blocking = false;
224    }
225}
226
227bool
228AbstractController::isBlocked(Addr addr)
229{
230    return (m_block_map.count(addr) > 0);
231}
232
233Port &
234AbstractController::getPort(const std::string &if_name, PortID idx)
235{
236    return memoryPort;
237}
238
239void
240AbstractController::queueMemoryRead(const MachineID &id, Addr addr,
241                                    Cycles latency)
242{
243    RequestPtr req = std::make_shared<Request>(
244        addr, RubySystem::getBlockSizeBytes(), 0, m_masterId);
245
246    PacketPtr pkt = Packet::createRead(req);
247    uint8_t *newData = new uint8_t[RubySystem::getBlockSizeBytes()];
248    pkt->dataDynamic(newData);
249
250    SenderState *s = new SenderState(id);
251    pkt->pushSenderState(s);
252
253    // Use functional rather than timing accesses during warmup
254    if (RubySystem::getWarmupEnabled()) {
255        memoryPort.sendFunctional(pkt);
256        recvTimingResp(pkt);
257        return;
258    }
259
260    memoryPort.schedTimingReq(pkt, clockEdge(latency));
261}
262
263void
264AbstractController::queueMemoryWrite(const MachineID &id, Addr addr,
265                                     Cycles latency, const DataBlock &block)
266{
267    RequestPtr req = std::make_shared<Request>(
268        addr, RubySystem::getBlockSizeBytes(), 0, m_masterId);
269
270    PacketPtr pkt = Packet::createWrite(req);
271    pkt->allocate();
272    pkt->setData(block.getData(0, RubySystem::getBlockSizeBytes()));
273
274    SenderState *s = new SenderState(id);
275    pkt->pushSenderState(s);
276
277    // Use functional rather than timing accesses during warmup
278    if (RubySystem::getWarmupEnabled()) {
279        memoryPort.sendFunctional(pkt);
280        recvTimingResp(pkt);
281        return;
282    }
283
284    // Create a block and copy data from the block.
285    memoryPort.schedTimingReq(pkt, clockEdge(latency));
286}
287
288void
289AbstractController::queueMemoryWritePartial(const MachineID &id, Addr addr,
290                                            Cycles latency,
291                                            const DataBlock &block, int size)
292{
293    RequestPtr req = std::make_shared<Request>(addr, size, 0, m_masterId);
294
295    PacketPtr pkt = Packet::createWrite(req);
296    pkt->allocate();
297    pkt->setData(block.getData(getOffset(addr), size));
298
299    SenderState *s = new SenderState(id);
300    pkt->pushSenderState(s);
301
302    // Create a block and copy data from the block.
303    memoryPort.schedTimingReq(pkt, clockEdge(latency));
304}
305
306void
307AbstractController::functionalMemoryRead(PacketPtr pkt)
308{
309    memoryPort.sendFunctional(pkt);
310}
311
312int
313AbstractController::functionalMemoryWrite(PacketPtr pkt)
314{
315    int num_functional_writes = 0;
316
317    // Check the buffer from the controller to the memory.
318    if (memoryPort.trySatisfyFunctional(pkt)) {
319        num_functional_writes++;
320    }
321
322    // Update memory itself.
323    memoryPort.sendFunctional(pkt);
324    return num_functional_writes + 1;
325}
326
327void
328AbstractController::recvTimingResp(PacketPtr pkt)
329{
330    assert(getMemoryQueue());
331    assert(pkt->isResponse());
332
333    std::shared_ptr<MemoryMsg> msg = std::make_shared<MemoryMsg>(clockEdge());
334    (*msg).m_addr = pkt->getAddr();
335    (*msg).m_Sender = m_machineID;
336
337    SenderState *s = dynamic_cast<SenderState *>(pkt->senderState);
338    (*msg).m_OriginalRequestorMachId = s->id;
339    delete s;
340
341    if (pkt->isRead()) {
342        (*msg).m_Type = MemoryRequestType_MEMORY_READ;
343        (*msg).m_MessageSize = MessageSizeType_Response_Data;
344
345        // Copy data from the packet
346        (*msg).m_DataBlk.setData(pkt->getPtr<uint8_t>(), 0,
347                                 RubySystem::getBlockSizeBytes());
348    } else if (pkt->isWrite()) {
349        (*msg).m_Type = MemoryRequestType_MEMORY_WB;
350        (*msg).m_MessageSize = MessageSizeType_Writeback_Control;
351    } else {
352        panic("Incorrect packet type received from memory controller!");
353    }
354
355    getMemoryQueue()->enqueue(msg, clockEdge(), cyclesToTicks(Cycles(1)));
356    delete pkt;
357}
358
359Tick
360AbstractController::recvAtomic(PacketPtr pkt)
361{
362   return ticksToCycles(memoryPort.sendAtomic(pkt));
363}
364
365MachineID
366AbstractController::mapAddressToMachine(Addr addr, MachineType mtype) const
367{
368    NodeID node = m_net_ptr->addressToNodeID(addr, mtype);
369    MachineID mach = {mtype, node};
370    return mach;
371}
372
373bool
374AbstractController::MemoryPort::recvTimingResp(PacketPtr pkt)
375{
376    controller->recvTimingResp(pkt);
377    return true;
378}
379
380AbstractController::MemoryPort::MemoryPort(const std::string &_name,
381                                           AbstractController *_controller,
382                                           const std::string &_label)
383    : QueuedMasterPort(_name, _controller, reqQueue, snoopRespQueue),
384      reqQueue(*_controller, *this, _label),
385      snoopRespQueue(*_controller, *this, false, _label),
386      controller(_controller)
387{
388}
389