physical.cc revision 9413
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Hansson
38 */
39
40#include <sys/mman.h>
41#include <sys/types.h>
42#include <sys/user.h>
43#include <fcntl.h>
44#include <unistd.h>
45#include <zlib.h>
46
47#include <cerrno>
48#include <climits>
49#include <cstdio>
50#include <iostream>
51#include <string>
52
53#include "base/trace.hh"
54#include "debug/BusAddrRanges.hh"
55#include "debug/Checkpoint.hh"
56#include "mem/abstract_mem.hh"
57#include "mem/physical.hh"
58
59using namespace std;
60
61PhysicalMemory::PhysicalMemory(const string& _name,
62                               const vector<AbstractMemory*>& _memories) :
63    _name(_name), size(0)
64{
65    // add the memories from the system to the address map as
66    // appropriate
67    for (vector<AbstractMemory*>::const_iterator m = _memories.begin();
68         m != _memories.end(); ++m) {
69        // only add the memory if it is part of the global address map
70        if ((*m)->isInAddrMap()) {
71            memories.push_back(*m);
72
73            // calculate the total size once and for all
74            size += (*m)->size();
75
76            // add the range to our interval tree and make sure it does not
77            // intersect an existing range
78            if (addrMap.insert((*m)->getAddrRange(), *m) == addrMap.end())
79                fatal("Memory address range for %s is overlapping\n",
80                      (*m)->name());
81        } else {
82            DPRINTF(BusAddrRanges,
83                    "Skipping memory %s that is not in global address map\n",
84                    (*m)->name());
85            // this type of memory is used e.g. as reference memory by
86            // Ruby, and they also needs a backing store, but should
87            // not be part of the global address map
88
89            // simply do it independently, also note that this kind of
90            // memories are allowed to overlap in the logic address
91            // map
92            vector<AbstractMemory*> unmapped_mems;
93            unmapped_mems.push_back(*m);
94            createBackingStore((*m)->getAddrRange(), unmapped_mems);
95        }
96    }
97
98    // iterate over the increasing addresses and chunks of contigous
99    // space to be mapped to backing store, also remember what
100    // memories constitute the range so we can go and find out if we
101    // have to init their parts to zero
102    vector<AbstractMemory*> curr_memories;
103    for (AddrRangeMap<AbstractMemory*>::const_iterator r = addrMap.begin();
104         r != addrMap.end(); ++r) {
105        // simply skip past all memories that are null and hence do
106        // not need any backing store
107        if (!r->second->isNull()) {
108            // this will eventually be extended to support merging of
109            // interleaved address ranges, and although it might seem
110            // overly complicated at this point it will all be used
111            curr_memories.push_back(r->second);
112            createBackingStore(r->first, curr_memories);
113            curr_memories.clear();
114        }
115    }
116}
117
118void
119PhysicalMemory::createBackingStore(AddrRange range,
120                                   const vector<AbstractMemory*>& _memories)
121{
122    if (range.interleaved())
123        panic("Cannot create backing store for interleaved range %s\n",
124              range.to_string());
125
126    // perform the actual mmap
127    DPRINTF(BusAddrRanges, "Creating backing store for range %s with size %d\n",
128            range.to_string(), range.size());
129    int map_flags = MAP_ANON | MAP_PRIVATE;
130    uint8_t* pmem = (uint8_t*) mmap(NULL, range.size(),
131                                    PROT_READ | PROT_WRITE,
132                                    map_flags, -1, 0);
133
134    if (pmem == (uint8_t*) MAP_FAILED) {
135        perror("mmap");
136        fatal("Could not mmap %d bytes for range %s!\n", range.size(),
137              range.to_string());
138    }
139
140    // remember this backing store so we can checkpoint it and unmap
141    // it appropriately
142    backingStore.push_back(make_pair(range, pmem));
143
144    // count how many of the memories are to be zero initialized so we
145    // can see if some but not all have this parameter set
146    uint32_t init_to_zero = 0;
147
148    // point the memories to their backing store, and if requested,
149    // initialize the memory range to 0
150    for (vector<AbstractMemory*>::const_iterator m = _memories.begin();
151         m != _memories.end(); ++m) {
152        DPRINTF(BusAddrRanges, "Mapping memory %s to backing store\n",
153                (*m)->name());
154        (*m)->setBackingStore(pmem);
155
156        // if it should be zero, then go and make it so
157        if ((*m)->initToZero()) {
158            ++init_to_zero;
159        }
160    }
161
162    if (init_to_zero != 0) {
163        if (init_to_zero != _memories.size())
164            fatal("Some, but not all memories in range %s are set zero\n",
165                  range.to_string());
166
167        memset(pmem, 0, range.size());
168    }
169}
170
171PhysicalMemory::~PhysicalMemory()
172{
173    // unmap the backing store
174    for (vector<pair<AddrRange, uint8_t*> >::iterator s = backingStore.begin();
175         s != backingStore.end(); ++s)
176        munmap((char*)s->second, s->first.size());
177}
178
179bool
180PhysicalMemory::isMemAddr(Addr addr) const
181{
182    // see if the address is within the last matched range
183    if (!rangeCache.contains(addr)) {
184        // lookup in the interval tree
185        AddrRangeMap<AbstractMemory*>::const_iterator r = addrMap.find(addr);
186        if (r == addrMap.end()) {
187            // not in the cache, and not in the tree
188            return false;
189        }
190        // the range is in the tree, update the cache
191        rangeCache = r->first;
192    }
193
194    assert(addrMap.find(addr) != addrMap.end());
195
196    // either matched the cache or found in the tree
197    return true;
198}
199
200AddrRangeList
201PhysicalMemory::getConfAddrRanges() const
202{
203    // this could be done once in the constructor, but since it is unlikely to
204    // be called more than once the iteration should not be a problem
205    AddrRangeList ranges;
206    vector<AddrRange> intlv_ranges;
207    for (AddrRangeMap<AbstractMemory*>::const_iterator r = addrMap.begin();
208         r != addrMap.end(); ++r) {
209        if (r->second->isConfReported()) {
210            // if the range is interleaved then save it for now
211            if (r->first.interleaved()) {
212                // if we already got interleaved ranges that are not
213                // part of the same range, then first do a merge
214                // before we add the new one
215                if (!intlv_ranges.empty() &&
216                    !intlv_ranges.back().mergesWith(r->first)) {
217                    ranges.push_back(AddrRange(intlv_ranges));
218                    intlv_ranges.clear();
219                }
220                intlv_ranges.push_back(r->first);
221            } else {
222                // keep the current range
223                ranges.push_back(r->first);
224            }
225        }
226    }
227
228    // if there is still interleaved ranges waiting to be merged,
229    // go ahead and do it
230    if (!intlv_ranges.empty()) {
231        ranges.push_back(AddrRange(intlv_ranges));
232    }
233
234    return ranges;
235}
236
237void
238PhysicalMemory::access(PacketPtr pkt)
239{
240    assert(pkt->isRequest());
241    Addr addr = pkt->getAddr();
242    AddrRangeMap<AbstractMemory*>::const_iterator m = addrMap.find(addr);
243    assert(m != addrMap.end());
244    m->second->access(pkt);
245}
246
247void
248PhysicalMemory::functionalAccess(PacketPtr pkt)
249{
250    assert(pkt->isRequest());
251    Addr addr = pkt->getAddr();
252    AddrRangeMap<AbstractMemory*>::const_iterator m = addrMap.find(addr);
253    assert(m != addrMap.end());
254    m->second->functionalAccess(pkt);
255}
256
257void
258PhysicalMemory::serialize(ostream& os)
259{
260    // serialize all the locked addresses and their context ids
261    vector<Addr> lal_addr;
262    vector<int> lal_cid;
263
264    for (vector<AbstractMemory*>::iterator m = memories.begin();
265         m != memories.end(); ++m) {
266        const list<LockedAddr>& locked_addrs = (*m)->getLockedAddrList();
267        for (list<LockedAddr>::const_iterator l = locked_addrs.begin();
268             l != locked_addrs.end(); ++l) {
269            lal_addr.push_back(l->addr);
270            lal_cid.push_back(l->contextId);
271        }
272    }
273
274    arrayParamOut(os, "lal_addr", lal_addr);
275    arrayParamOut(os, "lal_cid", lal_cid);
276
277    // serialize the backing stores
278    unsigned int nbr_of_stores = backingStore.size();
279    SERIALIZE_SCALAR(nbr_of_stores);
280
281    unsigned int store_id = 0;
282    // store each backing store memory segment in a file
283    for (vector<pair<AddrRange, uint8_t*> >::iterator s = backingStore.begin();
284         s != backingStore.end(); ++s) {
285        nameOut(os, csprintf("%s.store%d", name(), store_id));
286        serializeStore(os, store_id++, s->first, s->second);
287    }
288}
289
290void
291PhysicalMemory::serializeStore(ostream& os, unsigned int store_id,
292                               AddrRange range, uint8_t* pmem)
293{
294    // we cannot use the address range for the name as the
295    // memories that are not part of the address map can overlap
296    string filename = name() + ".store" + to_string(store_id) + ".pmem";
297    long range_size = range.size();
298
299    DPRINTF(Checkpoint, "Serializing physical memory %s with size %d\n",
300            filename, range_size);
301
302    SERIALIZE_SCALAR(store_id);
303    SERIALIZE_SCALAR(filename);
304    SERIALIZE_SCALAR(range_size);
305
306    // write memory file
307    string filepath = Checkpoint::dir() + "/" + filename.c_str();
308    int fd = creat(filepath.c_str(), 0664);
309    if (fd < 0) {
310        perror("creat");
311        fatal("Can't open physical memory checkpoint file '%s'\n",
312              filename);
313    }
314
315    gzFile compressed_mem = gzdopen(fd, "wb");
316    if (compressed_mem == NULL)
317        fatal("Insufficient memory to allocate compression state for %s\n",
318              filename);
319
320    uint64_t pass_size = 0;
321
322    // gzwrite fails if (int)len < 0 (gzwrite returns int)
323    for (uint64_t written = 0; written < range.size();
324         written += pass_size) {
325        pass_size = (uint64_t)INT_MAX < (range.size() - written) ?
326            (uint64_t)INT_MAX : (range.size() - written);
327
328        if (gzwrite(compressed_mem, pmem + written,
329                    (unsigned int) pass_size) != (int) pass_size) {
330            fatal("Write failed on physical memory checkpoint file '%s'\n",
331                  filename);
332        }
333    }
334
335    // close the compressed stream and check that the exit status
336    // is zero
337    if (gzclose(compressed_mem))
338        fatal("Close failed on physical memory checkpoint file '%s'\n",
339              filename);
340
341}
342
343void
344PhysicalMemory::unserialize(Checkpoint* cp, const string& section)
345{
346    // unserialize the locked addresses and map them to the
347    // appropriate memory controller
348    vector<Addr> lal_addr;
349    vector<int> lal_cid;
350    arrayParamIn(cp, section, "lal_addr", lal_addr);
351    arrayParamIn(cp, section, "lal_cid", lal_cid);
352    for(size_t i = 0; i < lal_addr.size(); ++i) {
353        AddrRangeMap<AbstractMemory*>::const_iterator m =
354            addrMap.find(lal_addr[i]);
355        m->second->addLockedAddr(LockedAddr(lal_addr[i], lal_cid[i]));
356    }
357
358    // unserialize the backing stores
359    unsigned int nbr_of_stores;
360    UNSERIALIZE_SCALAR(nbr_of_stores);
361
362    for (unsigned int i = 0; i < nbr_of_stores; ++i) {
363        unserializeStore(cp, csprintf("%s.store%d", section, i));
364    }
365
366}
367
368void
369PhysicalMemory::unserializeStore(Checkpoint* cp, const string& section)
370{
371    const uint32_t chunk_size = 16384;
372
373    unsigned int store_id;
374    UNSERIALIZE_SCALAR(store_id);
375
376    string filename;
377    UNSERIALIZE_SCALAR(filename);
378    string filepath = cp->cptDir + "/" + filename;
379
380    // mmap memoryfile
381    int fd = open(filepath.c_str(), O_RDONLY);
382    if (fd < 0) {
383        perror("open");
384        fatal("Can't open physical memory checkpoint file '%s'", filename);
385    }
386
387    gzFile compressed_mem = gzdopen(fd, "rb");
388    if (compressed_mem == NULL)
389        fatal("Insufficient memory to allocate compression state for %s\n",
390              filename);
391
392    uint8_t* pmem = backingStore[store_id].second;
393    AddrRange range = backingStore[store_id].first;
394
395    // unmap file that was mmapped in the constructor, this is
396    // done here to make sure that gzip and open don't muck with
397    // our nice large space of memory before we reallocate it
398    munmap((char*) pmem, range.size());
399
400    long range_size;
401    UNSERIALIZE_SCALAR(range_size);
402
403    DPRINTF(Checkpoint, "Unserializing physical memory %s with size %d\n",
404            filename, range_size);
405
406    if (range_size != range.size())
407        fatal("Memory range size has changed! Saw %lld, expected %lld\n",
408              range_size, range.size());
409
410    pmem = (uint8_t*) mmap(NULL, range.size(), PROT_READ | PROT_WRITE,
411                           MAP_ANON | MAP_PRIVATE, -1, 0);
412
413    if (pmem == (void*) MAP_FAILED) {
414        perror("mmap");
415        fatal("Could not mmap physical memory!\n");
416    }
417
418    uint64_t curr_size = 0;
419    long* temp_page = new long[chunk_size];
420    long* pmem_current;
421    uint32_t bytes_read;
422    while (curr_size < range.size()) {
423        bytes_read = gzread(compressed_mem, temp_page, chunk_size);
424        if (bytes_read == 0)
425            break;
426
427        assert(bytes_read % sizeof(long) == 0);
428
429        for (uint32_t x = 0; x < bytes_read / sizeof(long); x++) {
430            // Only copy bytes that are non-zero, so we don't give
431            // the VM system hell
432            if (*(temp_page + x) != 0) {
433                pmem_current = (long*)(pmem + curr_size + x * sizeof(long));
434                *pmem_current = *(temp_page + x);
435            }
436        }
437        curr_size += bytes_read;
438    }
439
440    delete[] temp_page;
441
442    if (gzclose(compressed_mem))
443        fatal("Close failed on physical memory checkpoint file '%s'\n",
444              filename);
445}
446