physical.cc revision 9409
1/*
2 * Copyright (c) 2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Hansson
38 */
39
40#include <sys/mman.h>
41#include <sys/types.h>
42#include <sys/user.h>
43#include <fcntl.h>
44#include <unistd.h>
45#include <zlib.h>
46
47#include <cerrno>
48#include <climits>
49#include <cstdio>
50#include <iostream>
51#include <string>
52
53#include "base/trace.hh"
54#include "debug/BusAddrRanges.hh"
55#include "debug/Checkpoint.hh"
56#include "mem/abstract_mem.hh"
57#include "mem/physical.hh"
58
59using namespace std;
60
61PhysicalMemory::PhysicalMemory(const string& _name,
62                               const vector<AbstractMemory*>& _memories) :
63    _name(_name), size(0)
64{
65    // add the memories from the system to the address map as
66    // appropriate
67    for (vector<AbstractMemory*>::const_iterator m = _memories.begin();
68         m != _memories.end(); ++m) {
69        // only add the memory if it is part of the global address map
70        if ((*m)->isInAddrMap()) {
71            memories.push_back(*m);
72
73            // calculate the total size once and for all
74            size += (*m)->size();
75
76            // add the range to our interval tree and make sure it does not
77            // intersect an existing range
78            if (addrMap.insert((*m)->getAddrRange(), *m) == addrMap.end())
79                fatal("Memory address range for %s is overlapping\n",
80                      (*m)->name());
81        } else {
82            DPRINTF(BusAddrRanges,
83                    "Skipping memory %s that is not in global address map\n",
84                    (*m)->name());
85            // this type of memory is used e.g. as reference memory by
86            // Ruby, and they also needs a backing store, but should
87            // not be part of the global address map
88
89            // simply do it independently, also note that this kind of
90            // memories are allowed to overlap in the logic address
91            // map
92            vector<AbstractMemory*> unmapped_mems;
93            unmapped_mems.push_back(*m);
94            createBackingStore((*m)->getAddrRange(), unmapped_mems);
95        }
96    }
97
98    // iterate over the increasing addresses and chunks of contigous
99    // space to be mapped to backing store, also remember what
100    // memories constitute the range so we can go and find out if we
101    // have to init their parts to zero
102    vector<AbstractMemory*> curr_memories;
103    for (AddrRangeMap<AbstractMemory*>::const_iterator r = addrMap.begin();
104         r != addrMap.end(); ++r) {
105        // simply skip past all memories that are null and hence do
106        // not need any backing store
107        if (!r->second->isNull()) {
108            // this will eventually be extended to support merging of
109            // interleaved address ranges, and although it might seem
110            // overly complicated at this point it will all be used
111            curr_memories.push_back(r->second);
112            createBackingStore(r->first, curr_memories);
113            curr_memories.clear();
114        }
115    }
116}
117
118void
119PhysicalMemory::createBackingStore(AddrRange range,
120                                   const vector<AbstractMemory*>& _memories)
121{
122    // perform the actual mmap
123    DPRINTF(BusAddrRanges, "Creating backing store for range %s\n",
124            range.to_string());
125    int map_flags = MAP_ANON | MAP_PRIVATE;
126    uint8_t* pmem = (uint8_t*) mmap(NULL, range.size(),
127                                    PROT_READ | PROT_WRITE,
128                                    map_flags, -1, 0);
129
130    if (pmem == (uint8_t*) MAP_FAILED) {
131        perror("mmap");
132        fatal("Could not mmap %d bytes for range %s!\n", range.size(),
133              range.to_string());
134    }
135
136    // remember this backing store so we can checkpoint it and unmap
137    // it appropriately
138    backingStore.push_back(make_pair(range, pmem));
139
140    // count how many of the memories are to be zero initialized so we
141    // can see if some but not all have this parameter set
142    uint32_t init_to_zero = 0;
143
144    // point the memories to their backing store, and if requested,
145    // initialize the memory range to 0
146    for (vector<AbstractMemory*>::const_iterator m = _memories.begin();
147         m != _memories.end(); ++m) {
148        DPRINTF(BusAddrRanges, "Mapping memory %s to backing store\n",
149                (*m)->name());
150        (*m)->setBackingStore(pmem);
151
152        // if it should be zero, then go and make it so
153        if ((*m)->initToZero()) {
154            ++init_to_zero;
155        }
156    }
157
158    if (init_to_zero != 0) {
159        if (init_to_zero != _memories.size())
160            fatal("Some, but not all memories in range %s are set zero\n",
161                  range.to_string());
162
163        memset(pmem, 0, range.size());
164    }
165}
166
167PhysicalMemory::~PhysicalMemory()
168{
169    // unmap the backing store
170    for (vector<pair<AddrRange, uint8_t*> >::iterator s = backingStore.begin();
171         s != backingStore.end(); ++s)
172        munmap((char*)s->second, s->first.size());
173}
174
175bool
176PhysicalMemory::isMemAddr(Addr addr) const
177{
178    // see if the address is within the last matched range
179    if (!rangeCache.contains(addr)) {
180        // lookup in the interval tree
181        AddrRangeMap<AbstractMemory*>::const_iterator r = addrMap.find(addr);
182        if (r == addrMap.end()) {
183            // not in the cache, and not in the tree
184            return false;
185        }
186        // the range is in the tree, update the cache
187        rangeCache = r->first;
188    }
189
190    assert(addrMap.find(addr) != addrMap.end());
191
192    // either matched the cache or found in the tree
193    return true;
194}
195
196AddrRangeList
197PhysicalMemory::getConfAddrRanges() const
198{
199    // this could be done once in the constructor, but since it is unlikely to
200    // be called more than once the iteration should not be a problem
201    AddrRangeList ranges;
202    for (vector<AbstractMemory*>::const_iterator m = memories.begin();
203         m != memories.end(); ++m) {
204        if ((*m)->isConfReported()) {
205            ranges.push_back((*m)->getAddrRange());
206        }
207    }
208
209    return ranges;
210}
211
212void
213PhysicalMemory::access(PacketPtr pkt)
214{
215    assert(pkt->isRequest());
216    Addr addr = pkt->getAddr();
217    AddrRangeMap<AbstractMemory*>::const_iterator m = addrMap.find(addr);
218    assert(m != addrMap.end());
219    m->second->access(pkt);
220}
221
222void
223PhysicalMemory::functionalAccess(PacketPtr pkt)
224{
225    assert(pkt->isRequest());
226    Addr addr = pkt->getAddr();
227    AddrRangeMap<AbstractMemory*>::const_iterator m = addrMap.find(addr);
228    assert(m != addrMap.end());
229    m->second->functionalAccess(pkt);
230}
231
232void
233PhysicalMemory::serialize(ostream& os)
234{
235    // serialize all the locked addresses and their context ids
236    vector<Addr> lal_addr;
237    vector<int> lal_cid;
238
239    for (vector<AbstractMemory*>::iterator m = memories.begin();
240         m != memories.end(); ++m) {
241        const list<LockedAddr>& locked_addrs = (*m)->getLockedAddrList();
242        for (list<LockedAddr>::const_iterator l = locked_addrs.begin();
243             l != locked_addrs.end(); ++l) {
244            lal_addr.push_back(l->addr);
245            lal_cid.push_back(l->contextId);
246        }
247    }
248
249    arrayParamOut(os, "lal_addr", lal_addr);
250    arrayParamOut(os, "lal_cid", lal_cid);
251
252    // serialize the backing stores
253    unsigned int nbr_of_stores = backingStore.size();
254    SERIALIZE_SCALAR(nbr_of_stores);
255
256    unsigned int store_id = 0;
257    // store each backing store memory segment in a file
258    for (vector<pair<AddrRange, uint8_t*> >::iterator s = backingStore.begin();
259         s != backingStore.end(); ++s) {
260        nameOut(os, csprintf("%s.store%d", name(), store_id));
261        serializeStore(os, store_id++, s->first, s->second);
262    }
263}
264
265void
266PhysicalMemory::serializeStore(ostream& os, unsigned int store_id,
267                               AddrRange range, uint8_t* pmem)
268{
269    // we cannot use the address range for the name as the
270    // memories that are not part of the address map can overlap
271    string filename = name() + ".store" + to_string(store_id) + ".pmem";
272    long range_size = range.size();
273
274    DPRINTF(Checkpoint, "Serializing physical memory %s with size %d\n",
275            filename, range_size);
276
277    SERIALIZE_SCALAR(store_id);
278    SERIALIZE_SCALAR(filename);
279    SERIALIZE_SCALAR(range_size);
280
281    // write memory file
282    string filepath = Checkpoint::dir() + "/" + filename.c_str();
283    int fd = creat(filepath.c_str(), 0664);
284    if (fd < 0) {
285        perror("creat");
286        fatal("Can't open physical memory checkpoint file '%s'\n",
287              filename);
288    }
289
290    gzFile compressed_mem = gzdopen(fd, "wb");
291    if (compressed_mem == NULL)
292        fatal("Insufficient memory to allocate compression state for %s\n",
293              filename);
294
295    uint64_t pass_size = 0;
296
297    // gzwrite fails if (int)len < 0 (gzwrite returns int)
298    for (uint64_t written = 0; written < range.size();
299         written += pass_size) {
300        pass_size = (uint64_t)INT_MAX < (range.size() - written) ?
301            (uint64_t)INT_MAX : (range.size() - written);
302
303        if (gzwrite(compressed_mem, pmem + written,
304                    (unsigned int) pass_size) != (int) pass_size) {
305            fatal("Write failed on physical memory checkpoint file '%s'\n",
306                  filename);
307        }
308    }
309
310    // close the compressed stream and check that the exit status
311    // is zero
312    if (gzclose(compressed_mem))
313        fatal("Close failed on physical memory checkpoint file '%s'\n",
314              filename);
315
316}
317
318void
319PhysicalMemory::unserialize(Checkpoint* cp, const string& section)
320{
321    // unserialize the locked addresses and map them to the
322    // appropriate memory controller
323    vector<Addr> lal_addr;
324    vector<int> lal_cid;
325    arrayParamIn(cp, section, "lal_addr", lal_addr);
326    arrayParamIn(cp, section, "lal_cid", lal_cid);
327    for(size_t i = 0; i < lal_addr.size(); ++i) {
328        AddrRangeMap<AbstractMemory*>::const_iterator m =
329            addrMap.find(lal_addr[i]);
330        m->second->addLockedAddr(LockedAddr(lal_addr[i], lal_cid[i]));
331    }
332
333    // unserialize the backing stores
334    unsigned int nbr_of_stores;
335    UNSERIALIZE_SCALAR(nbr_of_stores);
336
337    for (unsigned int i = 0; i < nbr_of_stores; ++i) {
338        unserializeStore(cp, csprintf("%s.store%d", section, i));
339    }
340
341}
342
343void
344PhysicalMemory::unserializeStore(Checkpoint* cp, const string& section)
345{
346    const uint32_t chunk_size = 16384;
347
348    unsigned int store_id;
349    UNSERIALIZE_SCALAR(store_id);
350
351    string filename;
352    UNSERIALIZE_SCALAR(filename);
353    string filepath = cp->cptDir + "/" + filename;
354
355    // mmap memoryfile
356    int fd = open(filepath.c_str(), O_RDONLY);
357    if (fd < 0) {
358        perror("open");
359        fatal("Can't open physical memory checkpoint file '%s'", filename);
360    }
361
362    gzFile compressed_mem = gzdopen(fd, "rb");
363    if (compressed_mem == NULL)
364        fatal("Insufficient memory to allocate compression state for %s\n",
365              filename);
366
367    uint8_t* pmem = backingStore[store_id].second;
368    AddrRange range = backingStore[store_id].first;
369
370    // unmap file that was mmapped in the constructor, this is
371    // done here to make sure that gzip and open don't muck with
372    // our nice large space of memory before we reallocate it
373    munmap((char*) pmem, range.size());
374
375    long range_size;
376    UNSERIALIZE_SCALAR(range_size);
377
378    DPRINTF(Checkpoint, "Unserializing physical memory %s with size %d\n",
379            filename, range_size);
380
381    if (range_size != range.size())
382        fatal("Memory range size has changed! Saw %lld, expected %lld\n",
383              range_size, range.size());
384
385    pmem = (uint8_t*) mmap(NULL, range.size(), PROT_READ | PROT_WRITE,
386                           MAP_ANON | MAP_PRIVATE, -1, 0);
387
388    if (pmem == (void*) MAP_FAILED) {
389        perror("mmap");
390        fatal("Could not mmap physical memory!\n");
391    }
392
393    uint64_t curr_size = 0;
394    long* temp_page = new long[chunk_size];
395    long* pmem_current;
396    uint32_t bytes_read;
397    while (curr_size < range.size()) {
398        bytes_read = gzread(compressed_mem, temp_page, chunk_size);
399        if (bytes_read == 0)
400            break;
401
402        assert(bytes_read % sizeof(long) == 0);
403
404        for (uint32_t x = 0; x < bytes_read / sizeof(long); x++) {
405            // Only copy bytes that are non-zero, so we don't give
406            // the VM system hell
407            if (*(temp_page + x) != 0) {
408                pmem_current = (long*)(pmem + curr_size + x * sizeof(long));
409                *pmem_current = *(temp_page + x);
410            }
411        }
412        curr_size += bytes_read;
413    }
414
415    delete[] temp_page;
416
417    if (gzclose(compressed_mem))
418        fatal("Close failed on physical memory checkpoint file '%s'\n",
419              filename);
420}
421