physical.cc revision 12779
1/*
2 * Copyright (c) 2012, 2014, 2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Hansson
38 */
39
40#include "mem/physical.hh"
41
42#include <fcntl.h>
43#include <sys/mman.h>
44#include <sys/types.h>
45#include <sys/user.h>
46#include <unistd.h>
47#include <zlib.h>
48
49#include <cerrno>
50#include <climits>
51#include <cstdio>
52#include <iostream>
53#include <string>
54
55#include "base/trace.hh"
56#include "debug/AddrRanges.hh"
57#include "debug/Checkpoint.hh"
58#include "mem/abstract_mem.hh"
59
60/**
61 * On Linux, MAP_NORESERVE allow us to simulate a very large memory
62 * without committing to actually providing the swap space on the
63 * host. On FreeBSD or OSX the MAP_NORESERVE flag does not exist,
64 * so simply make it 0.
65 */
66#if defined(__APPLE__) || defined(__FreeBSD__)
67#ifndef MAP_NORESERVE
68#define MAP_NORESERVE 0
69#endif
70#endif
71
72using namespace std;
73
74PhysicalMemory::PhysicalMemory(const string& _name,
75                               const vector<AbstractMemory*>& _memories,
76                               bool mmap_using_noreserve) :
77    _name(_name), size(0), mmapUsingNoReserve(mmap_using_noreserve)
78{
79    if (mmap_using_noreserve)
80        warn("Not reserving swap space. May cause SIGSEGV on actual usage\n");
81
82    // add the memories from the system to the address map as
83    // appropriate
84    for (const auto& m : _memories) {
85        // only add the memory if it is part of the global address map
86        if (m->isInAddrMap()) {
87            memories.push_back(m);
88
89            // calculate the total size once and for all
90            size += m->size();
91
92            // add the range to our interval tree and make sure it does not
93            // intersect an existing range
94            fatal_if(addrMap.insert(m->getAddrRange(), m) == addrMap.end(),
95                     "Memory address range for %s is overlapping\n",
96                     m->name());
97        } else {
98            // this type of memory is used e.g. as reference memory by
99            // Ruby, and they also needs a backing store, but should
100            // not be part of the global address map
101            DPRINTF(AddrRanges,
102                    "Skipping memory %s that is not in global address map\n",
103                    m->name());
104
105            // sanity check
106            fatal_if(m->getAddrRange().interleaved(),
107                     "Memory %s that is not in the global address map cannot "
108                     "be interleaved\n", m->name());
109
110            // simply do it independently, also note that this kind of
111            // memories are allowed to overlap in the logic address
112            // map
113            vector<AbstractMemory*> unmapped_mems{m};
114            createBackingStore(m->getAddrRange(), unmapped_mems,
115                               m->isConfReported(), m->isInAddrMap(),
116                               m->isKvmMap());
117        }
118    }
119
120    // iterate over the increasing addresses and chunks of contiguous
121    // space to be mapped to backing store, create it and inform the
122    // memories
123    vector<AddrRange> intlv_ranges;
124    vector<AbstractMemory*> curr_memories;
125    for (const auto& r : addrMap) {
126        // simply skip past all memories that are null and hence do
127        // not need any backing store
128        if (!r.second->isNull()) {
129            // if the range is interleaved then save it for now
130            if (r.first.interleaved()) {
131                // if we already got interleaved ranges that are not
132                // part of the same range, then first do a merge
133                // before we add the new one
134                if (!intlv_ranges.empty() &&
135                    !intlv_ranges.back().mergesWith(r.first)) {
136                    AddrRange merged_range(intlv_ranges);
137
138                    AbstractMemory *f = curr_memories.front();
139                    for (const auto& c : curr_memories)
140                        if (f->isConfReported() != c->isConfReported() ||
141                            f->isInAddrMap() != c->isInAddrMap() ||
142                            f->isKvmMap() != c->isKvmMap())
143                            fatal("Inconsistent flags in an interleaved "
144                                  "range\n");
145
146                    createBackingStore(merged_range, curr_memories,
147                                       f->isConfReported(), f->isInAddrMap(),
148                                       f->isKvmMap());
149
150                    intlv_ranges.clear();
151                    curr_memories.clear();
152                }
153                intlv_ranges.push_back(r.first);
154                curr_memories.push_back(r.second);
155            } else {
156                vector<AbstractMemory*> single_memory{r.second};
157                createBackingStore(r.first, single_memory,
158                                   r.second->isConfReported(),
159                                   r.second->isInAddrMap(),
160                                   r.second->isKvmMap());
161            }
162        }
163    }
164
165    // if there is still interleaved ranges waiting to be merged, go
166    // ahead and do it
167    if (!intlv_ranges.empty()) {
168        AddrRange merged_range(intlv_ranges);
169
170        AbstractMemory *f = curr_memories.front();
171        for (const auto& c : curr_memories)
172            if (f->isConfReported() != c->isConfReported() ||
173                f->isInAddrMap() != c->isInAddrMap() ||
174                f->isKvmMap() != c->isKvmMap())
175                fatal("Inconsistent flags in an interleaved "
176                      "range\n");
177
178        createBackingStore(merged_range, curr_memories,
179                           f->isConfReported(), f->isInAddrMap(),
180                           f->isKvmMap());
181    }
182}
183
184void
185PhysicalMemory::createBackingStore(AddrRange range,
186                                   const vector<AbstractMemory*>& _memories,
187                                   bool conf_table_reported,
188                                   bool in_addr_map, bool kvm_map)
189{
190    panic_if(range.interleaved(),
191             "Cannot create backing store for interleaved range %s\n",
192              range.to_string());
193
194    // perform the actual mmap
195    DPRINTF(AddrRanges, "Creating backing store for range %s with size %d\n",
196            range.to_string(), range.size());
197    int map_flags = MAP_ANON | MAP_PRIVATE;
198
199    // to be able to simulate very large memories, the user can opt to
200    // pass noreserve to mmap
201    if (mmapUsingNoReserve) {
202        map_flags |= MAP_NORESERVE;
203    }
204
205    uint8_t* pmem = (uint8_t*) mmap(NULL, range.size(),
206                                    PROT_READ | PROT_WRITE,
207                                    map_flags, -1, 0);
208
209    if (pmem == (uint8_t*) MAP_FAILED) {
210        perror("mmap");
211        fatal("Could not mmap %d bytes for range %s!\n", range.size(),
212              range.to_string());
213    }
214
215    // remember this backing store so we can checkpoint it and unmap
216    // it appropriately
217    backingStore.emplace_back(range, pmem,
218                              conf_table_reported, in_addr_map, kvm_map);
219
220    // point the memories to their backing store
221    for (const auto& m : _memories) {
222        DPRINTF(AddrRanges, "Mapping memory %s to backing store\n",
223                m->name());
224        m->setBackingStore(pmem);
225    }
226}
227
228PhysicalMemory::~PhysicalMemory()
229{
230    // unmap the backing store
231    for (auto& s : backingStore)
232        munmap((char*)s.pmem, s.range.size());
233}
234
235bool
236PhysicalMemory::isMemAddr(Addr addr) const
237{
238    return addrMap.contains(addr) != addrMap.end();
239}
240
241AddrRangeList
242PhysicalMemory::getConfAddrRanges() const
243{
244    // this could be done once in the constructor, but since it is unlikely to
245    // be called more than once the iteration should not be a problem
246    AddrRangeList ranges;
247    vector<AddrRange> intlv_ranges;
248    for (const auto& r : addrMap) {
249        if (r.second->isConfReported()) {
250            // if the range is interleaved then save it for now
251            if (r.first.interleaved()) {
252                // if we already got interleaved ranges that are not
253                // part of the same range, then first do a merge
254                // before we add the new one
255                if (!intlv_ranges.empty() &&
256                    !intlv_ranges.back().mergesWith(r.first)) {
257                    ranges.push_back(AddrRange(intlv_ranges));
258                    intlv_ranges.clear();
259                }
260                intlv_ranges.push_back(r.first);
261            } else {
262                // keep the current range
263                ranges.push_back(r.first);
264            }
265        }
266    }
267
268    // if there is still interleaved ranges waiting to be merged,
269    // go ahead and do it
270    if (!intlv_ranges.empty()) {
271        ranges.push_back(AddrRange(intlv_ranges));
272    }
273
274    return ranges;
275}
276
277void
278PhysicalMemory::access(PacketPtr pkt)
279{
280    assert(pkt->isRequest());
281    Addr addr = pkt->getAddr();
282    const auto& m = addrMap.contains(addr);
283    assert(m != addrMap.end());
284    m->second->access(pkt);
285}
286
287void
288PhysicalMemory::functionalAccess(PacketPtr pkt)
289{
290    assert(pkt->isRequest());
291    Addr addr = pkt->getAddr();
292    const auto& m = addrMap.contains(addr);
293    assert(m != addrMap.end());
294    m->second->functionalAccess(pkt);
295}
296
297void
298PhysicalMemory::serialize(CheckpointOut &cp) const
299{
300    // serialize all the locked addresses and their context ids
301    vector<Addr> lal_addr;
302    vector<ContextID> lal_cid;
303
304    for (auto& m : memories) {
305        const list<LockedAddr>& locked_addrs = m->getLockedAddrList();
306        for (const auto& l : locked_addrs) {
307            lal_addr.push_back(l.addr);
308            lal_cid.push_back(l.contextId);
309        }
310    }
311
312    SERIALIZE_CONTAINER(lal_addr);
313    SERIALIZE_CONTAINER(lal_cid);
314
315    // serialize the backing stores
316    unsigned int nbr_of_stores = backingStore.size();
317    SERIALIZE_SCALAR(nbr_of_stores);
318
319    unsigned int store_id = 0;
320    // store each backing store memory segment in a file
321    for (auto& s : backingStore) {
322        ScopedCheckpointSection sec(cp, csprintf("store%d", store_id));
323        serializeStore(cp, store_id++, s.range, s.pmem);
324    }
325}
326
327void
328PhysicalMemory::serializeStore(CheckpointOut &cp, unsigned int store_id,
329                               AddrRange range, uint8_t* pmem) const
330{
331    // we cannot use the address range for the name as the
332    // memories that are not part of the address map can overlap
333    string filename = name() + ".store" + to_string(store_id) + ".pmem";
334    long range_size = range.size();
335
336    DPRINTF(Checkpoint, "Serializing physical memory %s with size %d\n",
337            filename, range_size);
338
339    SERIALIZE_SCALAR(store_id);
340    SERIALIZE_SCALAR(filename);
341    SERIALIZE_SCALAR(range_size);
342
343    // write memory file
344    string filepath = CheckpointIn::dir() + "/" + filename.c_str();
345    gzFile compressed_mem = gzopen(filepath.c_str(), "wb");
346    if (compressed_mem == NULL)
347        fatal("Can't open physical memory checkpoint file '%s'\n",
348              filename);
349
350    uint64_t pass_size = 0;
351
352    // gzwrite fails if (int)len < 0 (gzwrite returns int)
353    for (uint64_t written = 0; written < range.size();
354         written += pass_size) {
355        pass_size = (uint64_t)INT_MAX < (range.size() - written) ?
356            (uint64_t)INT_MAX : (range.size() - written);
357
358        if (gzwrite(compressed_mem, pmem + written,
359                    (unsigned int) pass_size) != (int) pass_size) {
360            fatal("Write failed on physical memory checkpoint file '%s'\n",
361                  filename);
362        }
363    }
364
365    // close the compressed stream and check that the exit status
366    // is zero
367    if (gzclose(compressed_mem))
368        fatal("Close failed on physical memory checkpoint file '%s'\n",
369              filename);
370
371}
372
373void
374PhysicalMemory::unserialize(CheckpointIn &cp)
375{
376    // unserialize the locked addresses and map them to the
377    // appropriate memory controller
378    vector<Addr> lal_addr;
379    vector<ContextID> lal_cid;
380    UNSERIALIZE_CONTAINER(lal_addr);
381    UNSERIALIZE_CONTAINER(lal_cid);
382    for (size_t i = 0; i < lal_addr.size(); ++i) {
383        const auto& m = addrMap.contains(lal_addr[i]);
384        m->second->addLockedAddr(LockedAddr(lal_addr[i], lal_cid[i]));
385    }
386
387    // unserialize the backing stores
388    unsigned int nbr_of_stores;
389    UNSERIALIZE_SCALAR(nbr_of_stores);
390
391    for (unsigned int i = 0; i < nbr_of_stores; ++i) {
392        ScopedCheckpointSection sec(cp, csprintf("store%d", i));
393        unserializeStore(cp);
394    }
395
396}
397
398void
399PhysicalMemory::unserializeStore(CheckpointIn &cp)
400{
401    const uint32_t chunk_size = 16384;
402
403    unsigned int store_id;
404    UNSERIALIZE_SCALAR(store_id);
405
406    string filename;
407    UNSERIALIZE_SCALAR(filename);
408    string filepath = cp.cptDir + "/" + filename;
409
410    // mmap memoryfile
411    gzFile compressed_mem = gzopen(filepath.c_str(), "rb");
412    if (compressed_mem == NULL)
413        fatal("Can't open physical memory checkpoint file '%s'", filename);
414
415    // we've already got the actual backing store mapped
416    uint8_t* pmem = backingStore[store_id].pmem;
417    AddrRange range = backingStore[store_id].range;
418
419    long range_size;
420    UNSERIALIZE_SCALAR(range_size);
421
422    DPRINTF(Checkpoint, "Unserializing physical memory %s with size %d\n",
423            filename, range_size);
424
425    if (range_size != range.size())
426        fatal("Memory range size has changed! Saw %lld, expected %lld\n",
427              range_size, range.size());
428
429    uint64_t curr_size = 0;
430    long* temp_page = new long[chunk_size];
431    long* pmem_current;
432    uint32_t bytes_read;
433    while (curr_size < range.size()) {
434        bytes_read = gzread(compressed_mem, temp_page, chunk_size);
435        if (bytes_read == 0)
436            break;
437
438        assert(bytes_read % sizeof(long) == 0);
439
440        for (uint32_t x = 0; x < bytes_read / sizeof(long); x++) {
441            // Only copy bytes that are non-zero, so we don't give
442            // the VM system hell
443            if (*(temp_page + x) != 0) {
444                pmem_current = (long*)(pmem + curr_size + x * sizeof(long));
445                *pmem_current = *(temp_page + x);
446            }
447        }
448        curr_size += bytes_read;
449    }
450
451    delete[] temp_page;
452
453    if (gzclose(compressed_mem))
454        fatal("Close failed on physical memory checkpoint file '%s'\n",
455              filename);
456}
457