dram_ctrl.hh revision 10889
1/*
2 * Copyright (c) 2012-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 *          Omar Naji
44 */
45
46/**
47 * @file
48 * DRAMCtrl declaration
49 */
50
51#ifndef __MEM_DRAM_CTRL_HH__
52#define __MEM_DRAM_CTRL_HH__
53
54#include <deque>
55#include <string>
56#include <unordered_set>
57
58#include "base/statistics.hh"
59#include "enums/AddrMap.hh"
60#include "enums/MemSched.hh"
61#include "enums/PageManage.hh"
62#include "mem/abstract_mem.hh"
63#include "mem/qport.hh"
64#include "params/DRAMCtrl.hh"
65#include "sim/eventq.hh"
66#include "mem/drampower.hh"
67
68/**
69 * The DRAM controller is a single-channel memory controller capturing
70 * the most important timing constraints associated with a
71 * contemporary DRAM. For multi-channel memory systems, the controller
72 * is combined with a crossbar model, with the channel address
73 * interleaving taking part in the crossbar.
74 *
75 * As a basic design principle, this controller
76 * model is not cycle callable, but instead uses events to: 1) decide
77 * when new decisions can be made, 2) when resources become available,
78 * 3) when things are to be considered done, and 4) when to send
79 * things back. Through these simple principles, the model delivers
80 * high performance, and lots of flexibility, allowing users to
81 * evaluate the system impact of a wide range of memory technologies,
82 * such as DDR3/4, LPDDR2/3/4, WideIO1/2, HBM and HMC.
83 *
84 * For more details, please see Hansson et al, "Simulating DRAM
85 * controllers for future system architecture exploration",
86 * Proc. ISPASS, 2014. If you use this model as part of your research
87 * please cite the paper.
88 */
89class DRAMCtrl : public AbstractMemory
90{
91
92  private:
93
94    // For now, make use of a queued slave port to avoid dealing with
95    // flow control for the responses being sent back
96    class MemoryPort : public QueuedSlavePort
97    {
98
99        RespPacketQueue queue;
100        DRAMCtrl& memory;
101
102      public:
103
104        MemoryPort(const std::string& name, DRAMCtrl& _memory);
105
106      protected:
107
108        Tick recvAtomic(PacketPtr pkt);
109
110        void recvFunctional(PacketPtr pkt);
111
112        bool recvTimingReq(PacketPtr);
113
114        virtual AddrRangeList getAddrRanges() const;
115
116    };
117
118    /**
119     * Our incoming port, for a multi-ported controller add a crossbar
120     * in front of it
121     */
122    MemoryPort port;
123
124    /**
125     * Remeber if the memory system is in timing mode
126     */
127    bool isTimingMode;
128
129    /**
130     * Remember if we have to retry a request when available.
131     */
132    bool retryRdReq;
133    bool retryWrReq;
134
135    /**
136     * Bus state used to control the read/write switching and drive
137     * the scheduling of the next request.
138     */
139    enum BusState {
140        READ = 0,
141        READ_TO_WRITE,
142        WRITE,
143        WRITE_TO_READ
144    };
145
146    BusState busState;
147
148    /**
149     * A basic class to track the bank state, i.e. what row is
150     * currently open (if any), when is the bank free to accept a new
151     * column (read/write) command, when can it be precharged, and
152     * when can it be activated.
153     *
154     * The bank also keeps track of how many bytes have been accessed
155     * in the open row since it was opened.
156     */
157    class Bank
158    {
159
160      public:
161
162        static const uint32_t NO_ROW = -1;
163
164        uint32_t openRow;
165        uint8_t bank;
166        uint8_t bankgr;
167
168        Tick colAllowedAt;
169        Tick preAllowedAt;
170        Tick actAllowedAt;
171
172        uint32_t rowAccesses;
173        uint32_t bytesAccessed;
174
175        Bank() :
176            openRow(NO_ROW), bank(0), bankgr(0),
177            colAllowedAt(0), preAllowedAt(0), actAllowedAt(0),
178            rowAccesses(0), bytesAccessed(0)
179        { }
180    };
181
182
183    /**
184     * Rank class includes a vector of banks. Refresh and Power state
185     * machines are defined per rank. Events required to change the
186     * state of the refresh and power state machine are scheduled per
187     * rank. This class allows the implementation of rank-wise refresh
188     * and rank-wise power-down.
189     */
190    class Rank : public EventManager
191    {
192
193      private:
194
195        /**
196         * The power state captures the different operational states of
197         * the DRAM and interacts with the bus read/write state machine,
198         * and the refresh state machine. In the idle state all banks are
199         * precharged. From there we either go to an auto refresh (as
200         * determined by the refresh state machine), or to a precharge
201         * power down mode. From idle the memory can also go to the active
202         * state (with one or more banks active), and in turn from there
203         * to active power down. At the moment we do not capture the deep
204         * power down and self-refresh state.
205         */
206        enum PowerState {
207            PWR_IDLE = 0,
208            PWR_REF,
209            PWR_PRE_PDN,
210            PWR_ACT,
211            PWR_ACT_PDN
212        };
213
214        /**
215         * The refresh state is used to control the progress of the
216         * refresh scheduling. When normal operation is in progress the
217         * refresh state is idle. From there, it progresses to the refresh
218         * drain state once tREFI has passed. The refresh drain state
219         * captures the DRAM row active state, as it will stay there until
220         * all ongoing accesses complete. Thereafter all banks are
221         * precharged, and lastly, the DRAM is refreshed.
222         */
223        enum RefreshState {
224            REF_IDLE = 0,
225            REF_DRAIN,
226            REF_PRE,
227            REF_RUN
228        };
229
230        /**
231         * A reference to the parent DRAMCtrl instance
232         */
233        DRAMCtrl& memory;
234
235        /**
236         * Since we are taking decisions out of order, we need to keep
237         * track of what power transition is happening at what time, such
238         * that we can go back in time and change history. For example, if
239         * we precharge all banks and schedule going to the idle state, we
240         * might at a later point decide to activate a bank before the
241         * transition to idle would have taken place.
242         */
243        PowerState pwrStateTrans;
244
245        /**
246         * Current power state.
247         */
248        PowerState pwrState;
249
250        /**
251         * Track when we transitioned to the current power state
252         */
253        Tick pwrStateTick;
254
255        /**
256         * current refresh state
257         */
258        RefreshState refreshState;
259
260        /**
261         * Keep track of when a refresh is due.
262         */
263        Tick refreshDueAt;
264
265        /*
266         * Command energies
267         */
268        Stats::Scalar actEnergy;
269        Stats::Scalar preEnergy;
270        Stats::Scalar readEnergy;
271        Stats::Scalar writeEnergy;
272        Stats::Scalar refreshEnergy;
273
274        /*
275         * Active Background Energy
276         */
277        Stats::Scalar actBackEnergy;
278
279        /*
280         * Precharge Background Energy
281         */
282        Stats::Scalar preBackEnergy;
283
284        Stats::Scalar totalEnergy;
285        Stats::Scalar averagePower;
286
287        /**
288         * Track time spent in each power state.
289         */
290        Stats::Vector pwrStateTime;
291
292        /**
293         * Function to update Power Stats
294         */
295        void updatePowerStats();
296
297        /**
298         * Schedule a power state transition in the future, and
299         * potentially override an already scheduled transition.
300         *
301         * @param pwr_state Power state to transition to
302         * @param tick Tick when transition should take place
303         */
304        void schedulePowerEvent(PowerState pwr_state, Tick tick);
305
306      public:
307
308        /**
309         * Current Rank index
310         */
311        uint8_t rank;
312
313        /**
314         * One DRAMPower instance per rank
315         */
316        DRAMPower power;
317
318        /**
319         * Vector of Banks. Each rank is made of several devices which in
320         * term are made from several banks.
321         */
322        std::vector<Bank> banks;
323
324        /**
325         *  To track number of banks which are currently active for
326         *  this rank.
327         */
328        unsigned int numBanksActive;
329
330        /** List to keep track of activate ticks */
331        std::deque<Tick> actTicks;
332
333        Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p);
334
335        const std::string name() const
336        {
337            return csprintf("%s_%d", memory.name(), rank);
338        }
339
340        /**
341         * Kick off accounting for power and refresh states and
342         * schedule initial refresh.
343         *
344         * @param ref_tick Tick for first refresh
345         */
346        void startup(Tick ref_tick);
347
348        /**
349         * Stop the refresh events.
350         */
351        void suspend();
352
353        /**
354         * Check if the current rank is available for scheduling.
355         *
356         * @param Return true if the rank is idle from a refresh point of view
357         */
358        bool isAvailable() const { return refreshState == REF_IDLE; }
359
360        /**
361         * Let the rank check if it was waiting for requests to drain
362         * to allow it to transition states.
363         */
364        void checkDrainDone();
365
366        /*
367         * Function to register Stats
368         */
369        void regStats();
370
371        void processActivateEvent();
372        EventWrapper<Rank, &Rank::processActivateEvent>
373        activateEvent;
374
375        void processPrechargeEvent();
376        EventWrapper<Rank, &Rank::processPrechargeEvent>
377        prechargeEvent;
378
379        void processRefreshEvent();
380        EventWrapper<Rank, &Rank::processRefreshEvent>
381        refreshEvent;
382
383        void processPowerEvent();
384        EventWrapper<Rank, &Rank::processPowerEvent>
385        powerEvent;
386
387    };
388
389    /**
390     * A burst helper helps organize and manage a packet that is larger than
391     * the DRAM burst size. A system packet that is larger than the burst size
392     * is split into multiple DRAM packets and all those DRAM packets point to
393     * a single burst helper such that we know when the whole packet is served.
394     */
395    class BurstHelper {
396
397      public:
398
399        /** Number of DRAM bursts requred for a system packet **/
400        const unsigned int burstCount;
401
402        /** Number of DRAM bursts serviced so far for a system packet **/
403        unsigned int burstsServiced;
404
405        BurstHelper(unsigned int _burstCount)
406            : burstCount(_burstCount), burstsServiced(0)
407        { }
408    };
409
410    /**
411     * A DRAM packet stores packets along with the timestamp of when
412     * the packet entered the queue, and also the decoded address.
413     */
414    class DRAMPacket {
415
416      public:
417
418        /** When did request enter the controller */
419        const Tick entryTime;
420
421        /** When will request leave the controller */
422        Tick readyTime;
423
424        /** This comes from the outside world */
425        const PacketPtr pkt;
426
427        const bool isRead;
428
429        /** Will be populated by address decoder */
430        const uint8_t rank;
431        const uint8_t bank;
432        const uint32_t row;
433
434        /**
435         * Bank id is calculated considering banks in all the ranks
436         * eg: 2 ranks each with 8 banks, then bankId = 0 --> rank0, bank0 and
437         * bankId = 8 --> rank1, bank0
438         */
439        const uint16_t bankId;
440
441        /**
442         * The starting address of the DRAM packet.
443         * This address could be unaligned to burst size boundaries. The
444         * reason is to keep the address offset so we can accurately check
445         * incoming read packets with packets in the write queue.
446         */
447        Addr addr;
448
449        /**
450         * The size of this dram packet in bytes
451         * It is always equal or smaller than DRAM burst size
452         */
453        unsigned int size;
454
455        /**
456         * A pointer to the BurstHelper if this DRAMPacket is a split packet
457         * If not a split packet (common case), this is set to NULL
458         */
459        BurstHelper* burstHelper;
460        Bank& bankRef;
461        Rank& rankRef;
462
463        DRAMPacket(PacketPtr _pkt, bool is_read, uint8_t _rank, uint8_t _bank,
464                   uint32_t _row, uint16_t bank_id, Addr _addr,
465                   unsigned int _size, Bank& bank_ref, Rank& rank_ref)
466            : entryTime(curTick()), readyTime(curTick()),
467              pkt(_pkt), isRead(is_read), rank(_rank), bank(_bank), row(_row),
468              bankId(bank_id), addr(_addr), size(_size), burstHelper(NULL),
469              bankRef(bank_ref), rankRef(rank_ref)
470        { }
471
472    };
473
474    /**
475     * Bunch of things requires to setup "events" in gem5
476     * When event "respondEvent" occurs for example, the method
477     * processRespondEvent is called; no parameters are allowed
478     * in these methods
479     */
480    void processNextReqEvent();
481    EventWrapper<DRAMCtrl,&DRAMCtrl::processNextReqEvent> nextReqEvent;
482
483    void processRespondEvent();
484    EventWrapper<DRAMCtrl, &DRAMCtrl::processRespondEvent> respondEvent;
485
486    /**
487     * Check if the read queue has room for more entries
488     *
489     * @param pktCount The number of entries needed in the read queue
490     * @return true if read queue is full, false otherwise
491     */
492    bool readQueueFull(unsigned int pktCount) const;
493
494    /**
495     * Check if the write queue has room for more entries
496     *
497     * @param pktCount The number of entries needed in the write queue
498     * @return true if write queue is full, false otherwise
499     */
500    bool writeQueueFull(unsigned int pktCount) const;
501
502    /**
503     * When a new read comes in, first check if the write q has a
504     * pending request to the same address.\ If not, decode the
505     * address to populate rank/bank/row, create one or mutliple
506     * "dram_pkt", and push them to the back of the read queue.\
507     * If this is the only
508     * read request in the system, schedule an event to start
509     * servicing it.
510     *
511     * @param pkt The request packet from the outside world
512     * @param pktCount The number of DRAM bursts the pkt
513     * translate to. If pkt size is larger then one full burst,
514     * then pktCount is greater than one.
515     */
516    void addToReadQueue(PacketPtr pkt, unsigned int pktCount);
517
518    /**
519     * Decode the incoming pkt, create a dram_pkt and push to the
520     * back of the write queue. \If the write q length is more than
521     * the threshold specified by the user, ie the queue is beginning
522     * to get full, stop reads, and start draining writes.
523     *
524     * @param pkt The request packet from the outside world
525     * @param pktCount The number of DRAM bursts the pkt
526     * translate to. If pkt size is larger then one full burst,
527     * then pktCount is greater than one.
528     */
529    void addToWriteQueue(PacketPtr pkt, unsigned int pktCount);
530
531    /**
532     * Actually do the DRAM access - figure out the latency it
533     * will take to service the req based on bank state, channel state etc
534     * and then update those states to account for this request.\ Based
535     * on this, update the packet's "readyTime" and move it to the
536     * response q from where it will eventually go back to the outside
537     * world.
538     *
539     * @param pkt The DRAM packet created from the outside world pkt
540     */
541    void doDRAMAccess(DRAMPacket* dram_pkt);
542
543    /**
544     * When a packet reaches its "readyTime" in the response Q,
545     * use the "access()" method in AbstractMemory to actually
546     * create the response packet, and send it back to the outside
547     * world requestor.
548     *
549     * @param pkt The packet from the outside world
550     * @param static_latency Static latency to add before sending the packet
551     */
552    void accessAndRespond(PacketPtr pkt, Tick static_latency);
553
554    /**
555     * Address decoder to figure out physical mapping onto ranks,
556     * banks, and rows. This function is called multiple times on the same
557     * system packet if the pakcet is larger than burst of the memory. The
558     * dramPktAddr is used for the offset within the packet.
559     *
560     * @param pkt The packet from the outside world
561     * @param dramPktAddr The starting address of the DRAM packet
562     * @param size The size of the DRAM packet in bytes
563     * @param isRead Is the request for a read or a write to DRAM
564     * @return A DRAMPacket pointer with the decoded information
565     */
566    DRAMPacket* decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned int size,
567                           bool isRead);
568
569    /**
570     * The memory schduler/arbiter - picks which request needs to
571     * go next, based on the specified policy such as FCFS or FR-FCFS
572     * and moves it to the head of the queue.
573     * Prioritizes accesses to the same rank as previous burst unless
574     * controller is switching command type.
575     *
576     * @param queue Queued requests to consider
577     * @param switched_cmd_type Command type is changing
578     * @return true if a packet is scheduled to a rank which is available else
579     * false
580     */
581    bool chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type);
582
583    /**
584     * For FR-FCFS policy reorder the read/write queue depending on row buffer
585     * hits and earliest banks available in DRAM
586     * Prioritizes accesses to the same rank as previous burst unless
587     * controller is switching command type.
588     *
589     * @param queue Queued requests to consider
590     * @param switched_cmd_type Command type is changing
591     * @return true if a packet is scheduled to a rank which is available else
592     * false
593     */
594    bool reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type);
595
596    /**
597     * Find which are the earliest banks ready to issue an activate
598     * for the enqueued requests. Assumes maximum of 64 banks per DIMM
599     * Also checks if the bank is already prepped.
600     *
601     * @param queue Queued requests to consider
602     * @param switched_cmd_type Command type is changing
603     * @return One-hot encoded mask of bank indices
604     */
605    uint64_t minBankPrep(const std::deque<DRAMPacket*>& queue,
606                         bool switched_cmd_type) const;
607
608    /**
609     * Keep track of when row activations happen, in order to enforce
610     * the maximum number of activations in the activation window. The
611     * method updates the time that the banks become available based
612     * on the current limits.
613     *
614     * @param rank_ref Reference to the rank
615     * @param bank_ref Reference to the bank
616     * @param act_tick Time when the activation takes place
617     * @param row Index of the row
618     */
619    void activateBank(Rank& rank_ref, Bank& bank_ref, Tick act_tick,
620                      uint32_t row);
621
622    /**
623     * Precharge a given bank and also update when the precharge is
624     * done. This will also deal with any stats related to the
625     * accesses to the open page.
626     *
627     * @param rank_ref The rank to precharge
628     * @param bank_ref The bank to precharge
629     * @param pre_at Time when the precharge takes place
630     * @param trace Is this an auto precharge then do not add to trace
631     */
632    void prechargeBank(Rank& rank_ref, Bank& bank_ref,
633                       Tick pre_at, bool trace = true);
634
635    /**
636     * Used for debugging to observe the contents of the queues.
637     */
638    void printQs() const;
639
640    /**
641     * Burst-align an address.
642     *
643     * @param addr The potentially unaligned address
644     *
645     * @return An address aligned to a DRAM burst
646     */
647    Addr burstAlign(Addr addr) const { return (addr & ~(Addr(burstSize - 1))); }
648
649    /**
650     * The controller's main read and write queues
651     */
652    std::deque<DRAMPacket*> readQueue;
653    std::deque<DRAMPacket*> writeQueue;
654
655    /**
656     * To avoid iterating over the write queue to check for
657     * overlapping transactions, maintain a set of burst addresses
658     * that are currently queued. Since we merge writes to the same
659     * location we never have more than one address to the same burst
660     * address.
661     */
662    std::unordered_set<Addr> isInWriteQueue;
663
664    /**
665     * Response queue where read packets wait after we're done working
666     * with them, but it's not time to send the response yet. The
667     * responses are stored seperately mostly to keep the code clean
668     * and help with events scheduling. For all logical purposes such
669     * as sizing the read queue, this and the main read queue need to
670     * be added together.
671     */
672    std::deque<DRAMPacket*> respQueue;
673
674    /**
675     * If we need to drain, keep the drain manager around until we're
676     * done here.
677     */
678    DrainManager *drainManager;
679
680    /**
681     * Vector of ranks
682     */
683    std::vector<Rank*> ranks;
684
685    /**
686     * The following are basic design parameters of the memory
687     * controller, and are initialized based on parameter values.
688     * The rowsPerBank is determined based on the capacity, number of
689     * ranks and banks, the burst size, and the row buffer size.
690     */
691    const uint32_t deviceSize;
692    const uint32_t deviceBusWidth;
693    const uint32_t burstLength;
694    const uint32_t deviceRowBufferSize;
695    const uint32_t devicesPerRank;
696    const uint32_t burstSize;
697    const uint32_t rowBufferSize;
698    const uint32_t columnsPerRowBuffer;
699    const uint32_t columnsPerStripe;
700    const uint32_t ranksPerChannel;
701    const uint32_t bankGroupsPerRank;
702    const bool bankGroupArch;
703    const uint32_t banksPerRank;
704    const uint32_t channels;
705    uint32_t rowsPerBank;
706    const uint32_t readBufferSize;
707    const uint32_t writeBufferSize;
708    const uint32_t writeHighThreshold;
709    const uint32_t writeLowThreshold;
710    const uint32_t minWritesPerSwitch;
711    uint32_t writesThisTime;
712    uint32_t readsThisTime;
713
714    /**
715     * Basic memory timing parameters initialized based on parameter
716     * values.
717     */
718    const Tick M5_CLASS_VAR_USED tCK;
719    const Tick tWTR;
720    const Tick tRTW;
721    const Tick tCS;
722    const Tick tBURST;
723    const Tick tCCD_L;
724    const Tick tRCD;
725    const Tick tCL;
726    const Tick tRP;
727    const Tick tRAS;
728    const Tick tWR;
729    const Tick tRTP;
730    const Tick tRFC;
731    const Tick tREFI;
732    const Tick tRRD;
733    const Tick tRRD_L;
734    const Tick tXAW;
735    const uint32_t activationLimit;
736
737    /**
738     * Memory controller configuration initialized based on parameter
739     * values.
740     */
741    Enums::MemSched memSchedPolicy;
742    Enums::AddrMap addrMapping;
743    Enums::PageManage pageMgmt;
744
745    /**
746     * Max column accesses (read and write) per row, before forefully
747     * closing it.
748     */
749    const uint32_t maxAccessesPerRow;
750
751    /**
752     * Pipeline latency of the controller frontend. The frontend
753     * contribution is added to writes (that complete when they are in
754     * the write buffer) and reads that are serviced the write buffer.
755     */
756    const Tick frontendLatency;
757
758    /**
759     * Pipeline latency of the backend and PHY. Along with the
760     * frontend contribution, this latency is added to reads serviced
761     * by the DRAM.
762     */
763    const Tick backendLatency;
764
765    /**
766     * Till when has the main data bus been spoken for already?
767     */
768    Tick busBusyUntil;
769
770    Tick prevArrival;
771
772    /**
773     * The soonest you have to start thinking about the next request
774     * is the longest access time that can occur before
775     * busBusyUntil. Assuming you need to precharge, open a new row,
776     * and access, it is tRP + tRCD + tCL.
777     */
778    Tick nextReqTime;
779
780    // All statistics that the model needs to capture
781    Stats::Scalar readReqs;
782    Stats::Scalar writeReqs;
783    Stats::Scalar readBursts;
784    Stats::Scalar writeBursts;
785    Stats::Scalar bytesReadDRAM;
786    Stats::Scalar bytesReadWrQ;
787    Stats::Scalar bytesWritten;
788    Stats::Scalar bytesReadSys;
789    Stats::Scalar bytesWrittenSys;
790    Stats::Scalar servicedByWrQ;
791    Stats::Scalar mergedWrBursts;
792    Stats::Scalar neitherReadNorWrite;
793    Stats::Vector perBankRdBursts;
794    Stats::Vector perBankWrBursts;
795    Stats::Scalar numRdRetry;
796    Stats::Scalar numWrRetry;
797    Stats::Scalar totGap;
798    Stats::Vector readPktSize;
799    Stats::Vector writePktSize;
800    Stats::Vector rdQLenPdf;
801    Stats::Vector wrQLenPdf;
802    Stats::Histogram bytesPerActivate;
803    Stats::Histogram rdPerTurnAround;
804    Stats::Histogram wrPerTurnAround;
805
806    // Latencies summed over all requests
807    Stats::Scalar totQLat;
808    Stats::Scalar totMemAccLat;
809    Stats::Scalar totBusLat;
810
811    // Average latencies per request
812    Stats::Formula avgQLat;
813    Stats::Formula avgBusLat;
814    Stats::Formula avgMemAccLat;
815
816    // Average bandwidth
817    Stats::Formula avgRdBW;
818    Stats::Formula avgWrBW;
819    Stats::Formula avgRdBWSys;
820    Stats::Formula avgWrBWSys;
821    Stats::Formula peakBW;
822    Stats::Formula busUtil;
823    Stats::Formula busUtilRead;
824    Stats::Formula busUtilWrite;
825
826    // Average queue lengths
827    Stats::Average avgRdQLen;
828    Stats::Average avgWrQLen;
829
830    // Row hit count and rate
831    Stats::Scalar readRowHits;
832    Stats::Scalar writeRowHits;
833    Stats::Formula readRowHitRate;
834    Stats::Formula writeRowHitRate;
835    Stats::Formula avgGap;
836
837    // DRAM Power Calculation
838    Stats::Formula pageHitRate;
839
840    // Holds the value of the rank of burst issued
841    uint8_t activeRank;
842
843    // timestamp offset
844    uint64_t timeStampOffset;
845
846    /** @todo this is a temporary workaround until the 4-phase code is
847     * committed. upstream caches needs this packet until true is returned, so
848     * hold onto it for deletion until a subsequent call
849     */
850    std::vector<PacketPtr> pendingDelete;
851
852    /**
853     * This function increments the energy when called. If stats are
854     * dumped periodically, note accumulated energy values will
855     * appear in the stats (even if the stats are reset). This is a
856     * result of the energy values coming from DRAMPower, and there
857     * is currently no support for resetting the state.
858     *
859     * @param rank Currrent rank
860     */
861    void updatePowerStats(Rank& rank_ref);
862
863    /**
864     * Function for sorting commands in the command list of DRAMPower.
865     *
866     * @param a Memory Command in command list of DRAMPower library
867     * @param next Memory Command in command list of DRAMPower
868     * @return true if timestamp of Command 1 < timestamp of Command 2
869     */
870    static bool sortTime(const Data::MemCommand& m1,
871                         const Data::MemCommand& m2) {
872        return m1.getTime() < m2.getTime();
873    };
874
875
876  public:
877
878    void regStats();
879
880    DRAMCtrl(const DRAMCtrlParams* p);
881
882    unsigned int drain(DrainManager* dm);
883
884    virtual BaseSlavePort& getSlavePort(const std::string& if_name,
885                                        PortID idx = InvalidPortID);
886
887    virtual void init() M5_ATTR_OVERRIDE;
888    virtual void startup() M5_ATTR_OVERRIDE;
889    virtual void drainResume() M5_ATTR_OVERRIDE;
890
891  protected:
892
893    Tick recvAtomic(PacketPtr pkt);
894    void recvFunctional(PacketPtr pkt);
895    bool recvTimingReq(PacketPtr pkt);
896
897};
898
899#endif //__MEM_DRAM_CTRL_HH__
900