1/*
2 * Copyright (c) 2012-2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 *          Omar Naji
44 *          Matthias Jung
45 *          Wendy Elsasser
46 *          Radhika Jagtap
47 */
48
49/**
50 * @file
51 * DRAMCtrl declaration
52 */
53
54#ifndef __MEM_DRAM_CTRL_HH__
55#define __MEM_DRAM_CTRL_HH__
56
57#include <deque>
58#include <string>
59#include <unordered_set>
60#include <vector>
61
62#include "base/callback.hh"
63#include "base/statistics.hh"
64#include "enums/AddrMap.hh"
65#include "enums/MemSched.hh"
66#include "enums/PageManage.hh"
67#include "mem/drampower.hh"
68#include "mem/qos/mem_ctrl.hh"
69#include "mem/qport.hh"
70#include "params/DRAMCtrl.hh"
71#include "sim/eventq.hh"
72
73/**
74 * The DRAM controller is a single-channel memory controller capturing
75 * the most important timing constraints associated with a
76 * contemporary DRAM. For multi-channel memory systems, the controller
77 * is combined with a crossbar model, with the channel address
78 * interleaving taking part in the crossbar.
79 *
80 * As a basic design principle, this controller
81 * model is not cycle callable, but instead uses events to: 1) decide
82 * when new decisions can be made, 2) when resources become available,
83 * 3) when things are to be considered done, and 4) when to send
84 * things back. Through these simple principles, the model delivers
85 * high performance, and lots of flexibility, allowing users to
86 * evaluate the system impact of a wide range of memory technologies,
87 * such as DDR3/4, LPDDR2/3/4, WideIO1/2, HBM and HMC.
88 *
89 * For more details, please see Hansson et al, "Simulating DRAM
90 * controllers for future system architecture exploration",
91 * Proc. ISPASS, 2014. If you use this model as part of your research
92 * please cite the paper.
93 *
94 * The low-power functionality implements a staggered powerdown
95 * similar to that described in "Optimized Active and Power-Down Mode
96 * Refresh Control in 3D-DRAMs" by Jung et al, VLSI-SoC, 2014.
97 */
98class DRAMCtrl : public QoS::MemCtrl
99{
100
101  private:
102
103    // For now, make use of a queued slave port to avoid dealing with
104    // flow control for the responses being sent back
105    class MemoryPort : public QueuedSlavePort
106    {
107
108        RespPacketQueue queue;
109        DRAMCtrl& memory;
110
111      public:
112
113        MemoryPort(const std::string& name, DRAMCtrl& _memory);
114
115      protected:
116
117        Tick recvAtomic(PacketPtr pkt);
118
119        void recvFunctional(PacketPtr pkt);
120
121        bool recvTimingReq(PacketPtr);
122
123        virtual AddrRangeList getAddrRanges() const;
124
125    };
126
127    /**
128     * Our incoming port, for a multi-ported controller add a crossbar
129     * in front of it
130     */
131    MemoryPort port;
132
133    /**
134     * Remember if the memory system is in timing mode
135     */
136    bool isTimingMode;
137
138    /**
139     * Remember if we have to retry a request when available.
140     */
141    bool retryRdReq;
142    bool retryWrReq;
143
144    /**/
145
146    /**
147     * Simple structure to hold the values needed to keep track of
148     * commands for DRAMPower
149     */
150    struct Command {
151       Data::MemCommand::cmds type;
152       uint8_t bank;
153       Tick timeStamp;
154
155       constexpr Command(Data::MemCommand::cmds _type, uint8_t _bank,
156                         Tick time_stamp)
157            : type(_type), bank(_bank), timeStamp(time_stamp)
158        { }
159    };
160
161    /**
162     * A basic class to track the bank state, i.e. what row is
163     * currently open (if any), when is the bank free to accept a new
164     * column (read/write) command, when can it be precharged, and
165     * when can it be activated.
166     *
167     * The bank also keeps track of how many bytes have been accessed
168     * in the open row since it was opened.
169     */
170    class Bank
171    {
172
173      public:
174
175        static const uint32_t NO_ROW = -1;
176
177        uint32_t openRow;
178        uint8_t bank;
179        uint8_t bankgr;
180
181        Tick rdAllowedAt;
182        Tick wrAllowedAt;
183        Tick preAllowedAt;
184        Tick actAllowedAt;
185
186        uint32_t rowAccesses;
187        uint32_t bytesAccessed;
188
189        Bank() :
190            openRow(NO_ROW), bank(0), bankgr(0),
191            rdAllowedAt(0), wrAllowedAt(0), preAllowedAt(0), actAllowedAt(0),
192            rowAccesses(0), bytesAccessed(0)
193        { }
194    };
195
196
197    /**
198     * The power state captures the different operational states of
199     * the DRAM and interacts with the bus read/write state machine,
200     * and the refresh state machine.
201     *
202     * PWR_IDLE      : The idle state in which all banks are closed
203     *                 From here can transition to:  PWR_REF, PWR_ACT,
204     *                 PWR_PRE_PDN
205     *
206     * PWR_REF       : Auto-refresh state.  Will transition when refresh is
207     *                 complete based on power state prior to PWR_REF
208     *                 From here can transition to:  PWR_IDLE, PWR_PRE_PDN,
209     *                 PWR_SREF
210     *
211     * PWR_SREF      : Self-refresh state.  Entered after refresh if
212     *                 previous state was PWR_PRE_PDN
213     *                 From here can transition to:  PWR_IDLE
214     *
215     * PWR_PRE_PDN   : Precharge power down state
216     *                 From here can transition to:  PWR_REF, PWR_IDLE
217     *
218     * PWR_ACT       : Activate state in which one or more banks are open
219     *                 From here can transition to:  PWR_IDLE, PWR_ACT_PDN
220     *
221     * PWR_ACT_PDN   : Activate power down state
222     *                 From here can transition to:  PWR_ACT
223     */
224     enum PowerState {
225         PWR_IDLE = 0,
226         PWR_REF,
227         PWR_SREF,
228         PWR_PRE_PDN,
229         PWR_ACT,
230         PWR_ACT_PDN
231     };
232
233    /**
234     * The refresh state is used to control the progress of the
235     * refresh scheduling. When normal operation is in progress the
236     * refresh state is idle. Once tREFI has elasped, a refresh event
237     * is triggered to start the following STM transitions which are
238     * used to issue a refresh and return back to normal operation
239     *
240     * REF_IDLE      : IDLE state used during normal operation
241     *                 From here can transition to:  REF_DRAIN
242     *
243     * REF_SREF_EXIT : Exiting a self-refresh; refresh event scheduled
244     *                 after self-refresh exit completes
245     *                 From here can transition to:  REF_DRAIN
246     *
247     * REF_DRAIN     : Drain state in which on going accesses complete.
248     *                 From here can transition to:  REF_PD_EXIT
249     *
250     * REF_PD_EXIT   : Evaluate pwrState and issue wakeup if needed
251     *                 Next state dependent on whether banks are open
252     *                 From here can transition to:  REF_PRE, REF_START
253     *
254     * REF_PRE       : Close (precharge) all open banks
255     *                 From here can transition to:  REF_START
256     *
257     * REF_START     : Issue refresh command and update DRAMPower stats
258     *                 From here can transition to:  REF_RUN
259     *
260     * REF_RUN       : Refresh running, waiting for tRFC to expire
261     *                 From here can transition to:  REF_IDLE, REF_SREF_EXIT
262     */
263     enum RefreshState {
264         REF_IDLE = 0,
265         REF_DRAIN,
266         REF_PD_EXIT,
267         REF_SREF_EXIT,
268         REF_PRE,
269         REF_START,
270         REF_RUN
271     };
272
273    /**
274     * Rank class includes a vector of banks. Refresh and Power state
275     * machines are defined per rank. Events required to change the
276     * state of the refresh and power state machine are scheduled per
277     * rank. This class allows the implementation of rank-wise refresh
278     * and rank-wise power-down.
279     */
280    class Rank : public EventManager
281    {
282
283      private:
284
285        /**
286         * A reference to the parent DRAMCtrl instance
287         */
288        DRAMCtrl& memory;
289
290        /**
291         * Since we are taking decisions out of order, we need to keep
292         * track of what power transition is happening at what time
293         */
294        PowerState pwrStateTrans;
295
296        /**
297         * Previous low-power state, which will be re-entered after refresh.
298         */
299        PowerState pwrStatePostRefresh;
300
301        /**
302         * Track when we transitioned to the current power state
303         */
304        Tick pwrStateTick;
305
306        /**
307         * Keep track of when a refresh is due.
308         */
309        Tick refreshDueAt;
310
311        /*
312         * Command energies
313         */
314        Stats::Scalar actEnergy;
315        Stats::Scalar preEnergy;
316        Stats::Scalar readEnergy;
317        Stats::Scalar writeEnergy;
318        Stats::Scalar refreshEnergy;
319
320        /*
321         * Active Background Energy
322         */
323        Stats::Scalar actBackEnergy;
324
325        /*
326         * Precharge Background Energy
327         */
328        Stats::Scalar preBackEnergy;
329
330        /*
331         * Active Power-Down Energy
332         */
333        Stats::Scalar actPowerDownEnergy;
334
335        /*
336         * Precharge Power-Down Energy
337         */
338        Stats::Scalar prePowerDownEnergy;
339
340        /*
341         * self Refresh Energy
342         */
343        Stats::Scalar selfRefreshEnergy;
344
345        Stats::Scalar totalEnergy;
346        Stats::Scalar averagePower;
347
348        /**
349         * Stat to track total DRAM idle time
350         *
351         */
352        Stats::Scalar totalIdleTime;
353
354        /**
355         * Track time spent in each power state.
356         */
357        Stats::Vector pwrStateTime;
358
359        /**
360         * Function to update Power Stats
361         */
362        void updatePowerStats();
363
364        /**
365         * Schedule a power state transition in the future, and
366         * potentially override an already scheduled transition.
367         *
368         * @param pwr_state Power state to transition to
369         * @param tick Tick when transition should take place
370         */
371        void schedulePowerEvent(PowerState pwr_state, Tick tick);
372
373      public:
374
375        /**
376         * Current power state.
377         */
378        PowerState pwrState;
379
380       /**
381         * current refresh state
382         */
383        RefreshState refreshState;
384
385        /**
386         * rank is in or transitioning to power-down or self-refresh
387         */
388        bool inLowPowerState;
389
390        /**
391         * Current Rank index
392         */
393        uint8_t rank;
394
395       /**
396         * Track number of packets in read queue going to this rank
397         */
398        uint32_t readEntries;
399
400       /**
401         * Track number of packets in write queue going to this rank
402         */
403        uint32_t writeEntries;
404
405        /**
406         * Number of ACT, RD, and WR events currently scheduled
407         * Incremented when a refresh event is started as well
408         * Used to determine when a low-power state can be entered
409         */
410        uint8_t outstandingEvents;
411
412        /**
413         * delay power-down and self-refresh exit until this requirement is met
414         */
415        Tick wakeUpAllowedAt;
416
417        /**
418         * One DRAMPower instance per rank
419         */
420        DRAMPower power;
421
422        /**
423         * List of commands issued, to be sent to DRAMPpower at refresh
424         * and stats dump.  Keep commands here since commands to different
425         * banks are added out of order.  Will only pass commands up to
426         * curTick() to DRAMPower after sorting.
427         */
428        std::vector<Command> cmdList;
429
430        /**
431         * Vector of Banks. Each rank is made of several devices which in
432         * term are made from several banks.
433         */
434        std::vector<Bank> banks;
435
436        /**
437         *  To track number of banks which are currently active for
438         *  this rank.
439         */
440        unsigned int numBanksActive;
441
442        /** List to keep track of activate ticks */
443        std::deque<Tick> actTicks;
444
445        Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p, int rank);
446
447        const std::string name() const
448        {
449            return csprintf("%s_%d", memory.name(), rank);
450        }
451
452        /**
453         * Kick off accounting for power and refresh states and
454         * schedule initial refresh.
455         *
456         * @param ref_tick Tick for first refresh
457         */
458        void startup(Tick ref_tick);
459
460        /**
461         * Stop the refresh events.
462         */
463        void suspend();
464
465        /**
466         * Check if there is no refresh and no preparation of refresh ongoing
467         * i.e. the refresh state machine is in idle
468         *
469         * @param Return true if the rank is idle from a refresh point of view
470         */
471        bool inRefIdleState() const { return refreshState == REF_IDLE; }
472
473        /**
474         * Check if the current rank has all banks closed and is not
475         * in a low power state
476         *
477         * @param Return true if the rank is idle from a bank
478         *        and power point of view
479         */
480        bool inPwrIdleState() const { return pwrState == PWR_IDLE; }
481
482        /**
483         * Trigger a self-refresh exit if there are entries enqueued
484         * Exit if there are any read entries regardless of the bus state.
485         * If we are currently issuing write commands, exit if we have any
486         * write commands enqueued as well.
487         * Could expand this in the future to analyze state of entire queue
488         * if needed.
489         *
490         * @return boolean indicating self-refresh exit should be scheduled
491         */
492        bool forceSelfRefreshExit() const {
493            return (readEntries != 0) ||
494                   ((memory.busStateNext == WRITE) && (writeEntries != 0));
495        }
496
497        /**
498         * Check if the command queue of current rank is idle
499         *
500         * @param Return true if the there are no commands in Q.
501         *                    Bus direction determines queue checked.
502         */
503        bool isQueueEmpty() const;
504
505        /**
506         * Let the rank check if it was waiting for requests to drain
507         * to allow it to transition states.
508         */
509        void checkDrainDone();
510
511        /**
512         * Push command out of cmdList queue that are scheduled at
513         * or before curTick() to DRAMPower library
514         * All commands before curTick are guaranteed to be complete
515         * and can safely be flushed.
516         */
517        void flushCmdList();
518
519        /*
520         * Function to register Stats
521         */
522        void regStats();
523
524        /**
525         * Computes stats just prior to dump event
526         */
527        void computeStats();
528
529        /**
530         * Reset stats on a stats event
531         */
532        void resetStats();
533
534        /**
535         * Schedule a transition to power-down (sleep)
536         *
537         * @param pwr_state Power state to transition to
538         * @param tick Absolute tick when transition should take place
539         */
540        void powerDownSleep(PowerState pwr_state, Tick tick);
541
542       /**
543         * schedule and event to wake-up from power-down or self-refresh
544         * and update bank timing parameters
545         *
546         * @param exit_delay Relative tick defining the delay required between
547         *                   low-power exit and the next command
548         */
549        void scheduleWakeUpEvent(Tick exit_delay);
550
551        void processWriteDoneEvent();
552        EventFunctionWrapper writeDoneEvent;
553
554        void processActivateEvent();
555        EventFunctionWrapper activateEvent;
556
557        void processPrechargeEvent();
558        EventFunctionWrapper prechargeEvent;
559
560        void processRefreshEvent();
561        EventFunctionWrapper refreshEvent;
562
563        void processPowerEvent();
564        EventFunctionWrapper powerEvent;
565
566        void processWakeUpEvent();
567        EventFunctionWrapper wakeUpEvent;
568
569    };
570
571    /**
572     * Define the process to compute stats on a stats dump event, e.g. on
573     * simulation exit or intermediate stats dump. This is defined per rank
574     * as the per rank stats are based on state transition and periodically
575     * updated, requiring re-sync at exit.
576     */
577    class RankDumpCallback : public Callback
578    {
579        Rank *ranks;
580      public:
581        RankDumpCallback(Rank *r) : ranks(r) {}
582        virtual void process() { ranks->computeStats(); };
583    };
584
585    /** Define a process to clear power lib counters on a stats reset */
586    class RankResetCallback : public Callback
587    {
588      private:
589        /** Pointer to the rank, thus we instantiate per rank */
590        Rank *rank;
591
592      public:
593        RankResetCallback(Rank *r) : rank(r) {}
594        virtual void process() { rank->resetStats(); };
595    };
596
597    /** Define a process to store the time on a stats reset */
598    class MemResetCallback : public Callback
599    {
600      private:
601        /** A reference to the DRAMCtrl instance */
602        DRAMCtrl *mem;
603
604      public:
605        MemResetCallback(DRAMCtrl *_mem) : mem(_mem) {}
606        virtual void process() { mem->lastStatsResetTick = curTick(); };
607    };
608
609    /**
610     * A burst helper helps organize and manage a packet that is larger than
611     * the DRAM burst size. A system packet that is larger than the burst size
612     * is split into multiple DRAM packets and all those DRAM packets point to
613     * a single burst helper such that we know when the whole packet is served.
614     */
615    class BurstHelper {
616
617      public:
618
619        /** Number of DRAM bursts requred for a system packet **/
620        const unsigned int burstCount;
621
622        /** Number of DRAM bursts serviced so far for a system packet **/
623        unsigned int burstsServiced;
624
625        BurstHelper(unsigned int _burstCount)
626            : burstCount(_burstCount), burstsServiced(0)
627        { }
628    };
629
630    /**
631     * A DRAM packet stores packets along with the timestamp of when
632     * the packet entered the queue, and also the decoded address.
633     */
634    class DRAMPacket {
635
636      public:
637
638        /** When did request enter the controller */
639        const Tick entryTime;
640
641        /** When will request leave the controller */
642        Tick readyTime;
643
644        /** This comes from the outside world */
645        const PacketPtr pkt;
646
647        /** MasterID associated with the packet */
648        const MasterID _masterId;
649
650        const bool read;
651
652        /** Will be populated by address decoder */
653        const uint8_t rank;
654        const uint8_t bank;
655        const uint32_t row;
656
657        /**
658         * Bank id is calculated considering banks in all the ranks
659         * eg: 2 ranks each with 8 banks, then bankId = 0 --> rank0, bank0 and
660         * bankId = 8 --> rank1, bank0
661         */
662        const uint16_t bankId;
663
664        /**
665         * The starting address of the DRAM packet.
666         * This address could be unaligned to burst size boundaries. The
667         * reason is to keep the address offset so we can accurately check
668         * incoming read packets with packets in the write queue.
669         */
670        Addr addr;
671
672        /**
673         * The size of this dram packet in bytes
674         * It is always equal or smaller than DRAM burst size
675         */
676        unsigned int size;
677
678        /**
679         * A pointer to the BurstHelper if this DRAMPacket is a split packet
680         * If not a split packet (common case), this is set to NULL
681         */
682        BurstHelper* burstHelper;
683        Bank& bankRef;
684        Rank& rankRef;
685
686        /**
687         * QoS value of the encapsulated packet read at queuing time
688         */
689        uint8_t _qosValue;
690
691        /**
692         * Set the packet QoS value
693         * (interface compatibility with Packet)
694         */
695        inline void qosValue(const uint8_t qv) { _qosValue = qv; }
696
697        /**
698         * Get the packet QoS value
699         * (interface compatibility with Packet)
700         */
701        inline uint8_t qosValue() const { return _qosValue; }
702
703        /**
704         * Get the packet MasterID
705         * (interface compatibility with Packet)
706         */
707        inline MasterID masterId() const { return _masterId; }
708
709        /**
710         * Get the packet size
711         * (interface compatibility with Packet)
712         */
713        inline unsigned int getSize() const { return size; }
714
715        /**
716         * Get the packet address
717         * (interface compatibility with Packet)
718         */
719        inline Addr getAddr() const { return addr; }
720
721        /**
722         * Return true if its a read packet
723         * (interface compatibility with Packet)
724         */
725        inline bool isRead() const { return read; }
726
727        /**
728         * Return true if its a write packet
729         * (interface compatibility with Packet)
730         */
731        inline bool isWrite() const { return !read; }
732
733
734        DRAMPacket(PacketPtr _pkt, bool is_read, uint8_t _rank, uint8_t _bank,
735                   uint32_t _row, uint16_t bank_id, Addr _addr,
736                   unsigned int _size, Bank& bank_ref, Rank& rank_ref)
737            : entryTime(curTick()), readyTime(curTick()), pkt(_pkt),
738              _masterId(pkt->masterId()),
739              read(is_read), rank(_rank), bank(_bank), row(_row),
740              bankId(bank_id), addr(_addr), size(_size), burstHelper(NULL),
741              bankRef(bank_ref), rankRef(rank_ref), _qosValue(_pkt->qosValue())
742        { }
743
744    };
745
746    // The DRAM packets are store in a multiple dequeue structure,
747    // based on their QoS priority
748    typedef std::deque<DRAMPacket*> DRAMPacketQueue;
749
750    /**
751     * Bunch of things requires to setup "events" in gem5
752     * When event "respondEvent" occurs for example, the method
753     * processRespondEvent is called; no parameters are allowed
754     * in these methods
755     */
756    void processNextReqEvent();
757    EventFunctionWrapper nextReqEvent;
758
759    void processRespondEvent();
760    EventFunctionWrapper respondEvent;
761
762    /**
763     * Check if the read queue has room for more entries
764     *
765     * @param pktCount The number of entries needed in the read queue
766     * @return true if read queue is full, false otherwise
767     */
768    bool readQueueFull(unsigned int pktCount) const;
769
770    /**
771     * Check if the write queue has room for more entries
772     *
773     * @param pktCount The number of entries needed in the write queue
774     * @return true if write queue is full, false otherwise
775     */
776    bool writeQueueFull(unsigned int pktCount) const;
777
778    /**
779     * When a new read comes in, first check if the write q has a
780     * pending request to the same address.\ If not, decode the
781     * address to populate rank/bank/row, create one or mutliple
782     * "dram_pkt", and push them to the back of the read queue.\
783     * If this is the only
784     * read request in the system, schedule an event to start
785     * servicing it.
786     *
787     * @param pkt The request packet from the outside world
788     * @param pktCount The number of DRAM bursts the pkt
789     * translate to. If pkt size is larger then one full burst,
790     * then pktCount is greater than one.
791     */
792    void addToReadQueue(PacketPtr pkt, unsigned int pktCount);
793
794    /**
795     * Decode the incoming pkt, create a dram_pkt and push to the
796     * back of the write queue. \If the write q length is more than
797     * the threshold specified by the user, ie the queue is beginning
798     * to get full, stop reads, and start draining writes.
799     *
800     * @param pkt The request packet from the outside world
801     * @param pktCount The number of DRAM bursts the pkt
802     * translate to. If pkt size is larger then one full burst,
803     * then pktCount is greater than one.
804     */
805    void addToWriteQueue(PacketPtr pkt, unsigned int pktCount);
806
807    /**
808     * Actually do the DRAM access - figure out the latency it
809     * will take to service the req based on bank state, channel state etc
810     * and then update those states to account for this request.\ Based
811     * on this, update the packet's "readyTime" and move it to the
812     * response q from where it will eventually go back to the outside
813     * world.
814     *
815     * @param pkt The DRAM packet created from the outside world pkt
816     */
817    void doDRAMAccess(DRAMPacket* dram_pkt);
818
819    /**
820     * When a packet reaches its "readyTime" in the response Q,
821     * use the "access()" method in AbstractMemory to actually
822     * create the response packet, and send it back to the outside
823     * world requestor.
824     *
825     * @param pkt The packet from the outside world
826     * @param static_latency Static latency to add before sending the packet
827     */
828    void accessAndRespond(PacketPtr pkt, Tick static_latency);
829
830    /**
831     * Address decoder to figure out physical mapping onto ranks,
832     * banks, and rows. This function is called multiple times on the same
833     * system packet if the pakcet is larger than burst of the memory. The
834     * dramPktAddr is used for the offset within the packet.
835     *
836     * @param pkt The packet from the outside world
837     * @param dramPktAddr The starting address of the DRAM packet
838     * @param size The size of the DRAM packet in bytes
839     * @param isRead Is the request for a read or a write to DRAM
840     * @return A DRAMPacket pointer with the decoded information
841     */
842    DRAMPacket* decodeAddr(const PacketPtr pkt, Addr dramPktAddr,
843                           unsigned int size, bool isRead) const;
844
845    /**
846     * The memory schduler/arbiter - picks which request needs to
847     * go next, based on the specified policy such as FCFS or FR-FCFS
848     * and moves it to the head of the queue.
849     * Prioritizes accesses to the same rank as previous burst unless
850     * controller is switching command type.
851     *
852     * @param queue Queued requests to consider
853     * @param extra_col_delay Any extra delay due to a read/write switch
854     * @return an iterator to the selected packet, else queue.end()
855     */
856    DRAMPacketQueue::iterator chooseNext(DRAMPacketQueue& queue,
857        Tick extra_col_delay);
858
859    /**
860     * For FR-FCFS policy reorder the read/write queue depending on row buffer
861     * hits and earliest bursts available in DRAM
862     *
863     * @param queue Queued requests to consider
864     * @param extra_col_delay Any extra delay due to a read/write switch
865     * @return an iterator to the selected packet, else queue.end()
866     */
867    DRAMPacketQueue::iterator chooseNextFRFCFS(DRAMPacketQueue& queue,
868            Tick extra_col_delay);
869
870    /**
871     * Find which are the earliest banks ready to issue an activate
872     * for the enqueued requests. Assumes maximum of 32 banks per rank
873     * Also checks if the bank is already prepped.
874     *
875     * @param queue Queued requests to consider
876     * @param min_col_at time of seamless burst command
877     * @return One-hot encoded mask of bank indices
878     * @return boolean indicating burst can issue seamlessly, with no gaps
879     */
880    std::pair<std::vector<uint32_t>, bool>
881    minBankPrep(const DRAMPacketQueue& queue, Tick min_col_at) const;
882
883    /**
884     * Keep track of when row activations happen, in order to enforce
885     * the maximum number of activations in the activation window. The
886     * method updates the time that the banks become available based
887     * on the current limits.
888     *
889     * @param rank_ref Reference to the rank
890     * @param bank_ref Reference to the bank
891     * @param act_tick Time when the activation takes place
892     * @param row Index of the row
893     */
894    void activateBank(Rank& rank_ref, Bank& bank_ref, Tick act_tick,
895                      uint32_t row);
896
897    /**
898     * Precharge a given bank and also update when the precharge is
899     * done. This will also deal with any stats related to the
900     * accesses to the open page.
901     *
902     * @param rank_ref The rank to precharge
903     * @param bank_ref The bank to precharge
904     * @param pre_at Time when the precharge takes place
905     * @param trace Is this an auto precharge then do not add to trace
906     */
907    void prechargeBank(Rank& rank_ref, Bank& bank_ref,
908                       Tick pre_at, bool trace = true);
909
910    /**
911     * Used for debugging to observe the contents of the queues.
912     */
913    void printQs() const;
914
915    /**
916     * Burst-align an address.
917     *
918     * @param addr The potentially unaligned address
919     *
920     * @return An address aligned to a DRAM burst
921     */
922    Addr burstAlign(Addr addr) const { return (addr & ~(Addr(burstSize - 1))); }
923
924    /**
925     * The controller's main read and write queues, with support for QoS reordering
926     */
927    std::vector<DRAMPacketQueue> readQueue;
928    std::vector<DRAMPacketQueue> writeQueue;
929
930    /**
931     * To avoid iterating over the write queue to check for
932     * overlapping transactions, maintain a set of burst addresses
933     * that are currently queued. Since we merge writes to the same
934     * location we never have more than one address to the same burst
935     * address.
936     */
937    std::unordered_set<Addr> isInWriteQueue;
938
939    /**
940     * Response queue where read packets wait after we're done working
941     * with them, but it's not time to send the response yet. The
942     * responses are stored separately mostly to keep the code clean
943     * and help with events scheduling. For all logical purposes such
944     * as sizing the read queue, this and the main read queue need to
945     * be added together.
946     */
947    std::deque<DRAMPacket*> respQueue;
948
949    /**
950     * Vector of ranks
951     */
952    std::vector<Rank*> ranks;
953
954    /**
955     * The following are basic design parameters of the memory
956     * controller, and are initialized based on parameter values.
957     * The rowsPerBank is determined based on the capacity, number of
958     * ranks and banks, the burst size, and the row buffer size.
959     */
960    const uint32_t deviceSize;
961    const uint32_t deviceBusWidth;
962    const uint32_t burstLength;
963    const uint32_t deviceRowBufferSize;
964    const uint32_t devicesPerRank;
965    const uint32_t burstSize;
966    const uint32_t rowBufferSize;
967    const uint32_t columnsPerRowBuffer;
968    const uint32_t columnsPerStripe;
969    const uint32_t ranksPerChannel;
970    const uint32_t bankGroupsPerRank;
971    const bool bankGroupArch;
972    const uint32_t banksPerRank;
973    const uint32_t channels;
974    uint32_t rowsPerBank;
975    const uint32_t readBufferSize;
976    const uint32_t writeBufferSize;
977    const uint32_t writeHighThreshold;
978    const uint32_t writeLowThreshold;
979    const uint32_t minWritesPerSwitch;
980    uint32_t writesThisTime;
981    uint32_t readsThisTime;
982
983    /**
984     * Basic memory timing parameters initialized based on parameter
985     * values.
986     */
987    const Tick M5_CLASS_VAR_USED tCK;
988    const Tick tRTW;
989    const Tick tCS;
990    const Tick tBURST;
991    const Tick tCCD_L_WR;
992    const Tick tCCD_L;
993    const Tick tRCD;
994    const Tick tCL;
995    const Tick tRP;
996    const Tick tRAS;
997    const Tick tWR;
998    const Tick tRTP;
999    const Tick tRFC;
1000    const Tick tREFI;
1001    const Tick tRRD;
1002    const Tick tRRD_L;
1003    const Tick tXAW;
1004    const Tick tXP;
1005    const Tick tXS;
1006    const uint32_t activationLimit;
1007    const Tick rankToRankDly;
1008    const Tick wrToRdDly;
1009    const Tick rdToWrDly;
1010
1011    /**
1012     * Memory controller configuration initialized based on parameter
1013     * values.
1014     */
1015    Enums::MemSched memSchedPolicy;
1016    Enums::AddrMap addrMapping;
1017    Enums::PageManage pageMgmt;
1018
1019    /**
1020     * Max column accesses (read and write) per row, before forcefully
1021     * closing it.
1022     */
1023    const uint32_t maxAccessesPerRow;
1024
1025    /**
1026     * Pipeline latency of the controller frontend. The frontend
1027     * contribution is added to writes (that complete when they are in
1028     * the write buffer) and reads that are serviced the write buffer.
1029     */
1030    const Tick frontendLatency;
1031
1032    /**
1033     * Pipeline latency of the backend and PHY. Along with the
1034     * frontend contribution, this latency is added to reads serviced
1035     * by the DRAM.
1036     */
1037    const Tick backendLatency;
1038
1039    /**
1040     * Till when must we wait before issuing next RD/WR burst?
1041     */
1042    Tick nextBurstAt;
1043
1044    Tick prevArrival;
1045
1046    /**
1047     * The soonest you have to start thinking about the next request
1048     * is the longest access time that can occur before
1049     * nextBurstAt. Assuming you need to precharge, open a new row,
1050     * and access, it is tRP + tRCD + tCL.
1051     */
1052    Tick nextReqTime;
1053
1054    // All statistics that the model needs to capture
1055    Stats::Scalar readReqs;
1056    Stats::Scalar writeReqs;
1057    Stats::Scalar readBursts;
1058    Stats::Scalar writeBursts;
1059    Stats::Scalar bytesReadDRAM;
1060    Stats::Scalar bytesReadWrQ;
1061    Stats::Scalar bytesWritten;
1062    Stats::Scalar bytesReadSys;
1063    Stats::Scalar bytesWrittenSys;
1064    Stats::Scalar servicedByWrQ;
1065    Stats::Scalar mergedWrBursts;
1066    Stats::Scalar neitherReadNorWrite;
1067    Stats::Vector perBankRdBursts;
1068    Stats::Vector perBankWrBursts;
1069    Stats::Scalar numRdRetry;
1070    Stats::Scalar numWrRetry;
1071    Stats::Scalar totGap;
1072    Stats::Vector readPktSize;
1073    Stats::Vector writePktSize;
1074    Stats::Vector rdQLenPdf;
1075    Stats::Vector wrQLenPdf;
1076    Stats::Histogram bytesPerActivate;
1077    Stats::Histogram rdPerTurnAround;
1078    Stats::Histogram wrPerTurnAround;
1079
1080    // per-master bytes read and written to memory
1081    Stats::Vector masterReadBytes;
1082    Stats::Vector masterWriteBytes;
1083
1084    // per-master bytes read and written to memory rate
1085    Stats::Formula masterReadRate;
1086    Stats::Formula masterWriteRate;
1087
1088    // per-master read and write serviced memory accesses
1089    Stats::Vector masterReadAccesses;
1090    Stats::Vector masterWriteAccesses;
1091
1092    // per-master read and write total memory access latency
1093    Stats::Vector masterReadTotalLat;
1094    Stats::Vector masterWriteTotalLat;
1095
1096    // per-master raed and write average memory access latency
1097    Stats::Formula masterReadAvgLat;
1098    Stats::Formula masterWriteAvgLat;
1099
1100    // Latencies summed over all requests
1101    Stats::Scalar totQLat;
1102    Stats::Scalar totMemAccLat;
1103    Stats::Scalar totBusLat;
1104
1105    // Average latencies per request
1106    Stats::Formula avgQLat;
1107    Stats::Formula avgBusLat;
1108    Stats::Formula avgMemAccLat;
1109
1110    // Average bandwidth
1111    Stats::Formula avgRdBW;
1112    Stats::Formula avgWrBW;
1113    Stats::Formula avgRdBWSys;
1114    Stats::Formula avgWrBWSys;
1115    Stats::Formula peakBW;
1116    Stats::Formula busUtil;
1117    Stats::Formula busUtilRead;
1118    Stats::Formula busUtilWrite;
1119
1120    // Average queue lengths
1121    Stats::Average avgRdQLen;
1122    Stats::Average avgWrQLen;
1123
1124    // Row hit count and rate
1125    Stats::Scalar readRowHits;
1126    Stats::Scalar writeRowHits;
1127    Stats::Formula readRowHitRate;
1128    Stats::Formula writeRowHitRate;
1129    Stats::Formula avgGap;
1130
1131    // DRAM Power Calculation
1132    Stats::Formula pageHitRate;
1133
1134    // Holds the value of the rank of burst issued
1135    uint8_t activeRank;
1136
1137    // timestamp offset
1138    uint64_t timeStampOffset;
1139
1140    /** The time when stats were last reset used to calculate average power */
1141    Tick lastStatsResetTick;
1142
1143    /** Enable or disable DRAM powerdown states. */
1144    bool enableDRAMPowerdown;
1145
1146    /**
1147     * Upstream caches need this packet until true is returned, so
1148     * hold it for deletion until a subsequent call
1149     */
1150    std::unique_ptr<Packet> pendingDelete;
1151
1152    /**
1153     * This function increments the energy when called. If stats are
1154     * dumped periodically, note accumulated energy values will
1155     * appear in the stats (even if the stats are reset). This is a
1156     * result of the energy values coming from DRAMPower, and there
1157     * is currently no support for resetting the state.
1158     *
1159     * @param rank Current rank
1160     */
1161    void updatePowerStats(Rank& rank_ref);
1162
1163    /**
1164     * Function for sorting Command structures based on timeStamp
1165     *
1166     * @param a Memory Command
1167     * @param next Memory Command
1168     * @return true if timeStamp of Command 1 < timeStamp of Command 2
1169     */
1170    static bool sortTime(const Command& cmd, const Command& cmd_next) {
1171        return cmd.timeStamp < cmd_next.timeStamp;
1172    };
1173
1174  public:
1175
1176    void regStats() override;
1177
1178    DRAMCtrl(const DRAMCtrlParams* p);
1179
1180    DrainState drain() override;
1181
1182    Port &getPort(const std::string &if_name,
1183                  PortID idx=InvalidPortID) override;
1184
1185    virtual void init() override;
1186    virtual void startup() override;
1187    virtual void drainResume() override;
1188
1189    /**
1190     * Return true once refresh is complete for all ranks and there are no
1191     * additional commands enqueued.  (only evaluated when draining)
1192     * This will ensure that all banks are closed, power state is IDLE, and
1193     * power stats have been updated
1194     *
1195     * @return true if all ranks have refreshed, with no commands enqueued
1196     *
1197     */
1198    bool allRanksDrained() const;
1199
1200  protected:
1201
1202    Tick recvAtomic(PacketPtr pkt);
1203    void recvFunctional(PacketPtr pkt);
1204    bool recvTimingReq(PacketPtr pkt);
1205
1206};
1207
1208#endif //__MEM_DRAM_CTRL_HH__
1209