dram_ctrl.hh revision 10146:27dfed4c8403
15081Sgblack@eecs.umich.edu/*
25081Sgblack@eecs.umich.edu * Copyright (c) 2012 ARM Limited
35081Sgblack@eecs.umich.edu * All rights reserved
47087Snate@binkert.org *
57087Snate@binkert.org * The license below extends only to copyright in the software and shall
67087Snate@binkert.org * not be construed as granting a license to any other intellectual
77087Snate@binkert.org * property including but not limited to intellectual property relating
87087Snate@binkert.org * to a hardware implementation of the functionality of the software
97087Snate@binkert.org * licensed hereunder.  You may use the software subject to the license
107087Snate@binkert.org * terms below provided that you ensure that this notice is replicated
117087Snate@binkert.org * unmodified and in its entirety in all distributions of the software,
125081Sgblack@eecs.umich.edu * modified or unmodified, in source code or in binary form.
137087Snate@binkert.org *
147087Snate@binkert.org * Copyright (c) 2013 Amin Farmahini-Farahani
157087Snate@binkert.org * All rights reserved.
167087Snate@binkert.org *
177087Snate@binkert.org * Redistribution and use in source and binary forms, with or without
187087Snate@binkert.org * modification, are permitted provided that the following conditions are
197087Snate@binkert.org * met: redistributions of source code must retain the above copyright
207087Snate@binkert.org * notice, this list of conditions and the following disclaimer;
215081Sgblack@eecs.umich.edu * redistributions in binary form must reproduce the above copyright
227087Snate@binkert.org * notice, this list of conditions and the following disclaimer in the
235081Sgblack@eecs.umich.edu * documentation and/or other materials provided with the distribution;
245081Sgblack@eecs.umich.edu * neither the name of the copyright holders nor the names of its
255081Sgblack@eecs.umich.edu * contributors may be used to endorse or promote products derived from
265081Sgblack@eecs.umich.edu * this software without specific prior written permission.
275081Sgblack@eecs.umich.edu *
285081Sgblack@eecs.umich.edu * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
295081Sgblack@eecs.umich.edu * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
305081Sgblack@eecs.umich.edu * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
315081Sgblack@eecs.umich.edu * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
325081Sgblack@eecs.umich.edu * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
335081Sgblack@eecs.umich.edu * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
345081Sgblack@eecs.umich.edu * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
355081Sgblack@eecs.umich.edu * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
365081Sgblack@eecs.umich.edu * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
375081Sgblack@eecs.umich.edu * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
385081Sgblack@eecs.umich.edu * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
395081Sgblack@eecs.umich.edu *
405081Sgblack@eecs.umich.edu * Authors: Andreas Hansson
415081Sgblack@eecs.umich.edu *          Ani Udipi
425081Sgblack@eecs.umich.edu *          Neha Agarwal
435081Sgblack@eecs.umich.edu */
445081Sgblack@eecs.umich.edu
455081Sgblack@eecs.umich.edu/**
465119Sgblack@eecs.umich.edu * @file
475176Sgblack@eecs.umich.edu * DRAMCtrl declaration
485081Sgblack@eecs.umich.edu */
495081Sgblack@eecs.umich.edu
505081Sgblack@eecs.umich.edu#ifndef __MEM_DRAM_CTRL_HH__
515081Sgblack@eecs.umich.edu#define __MEM_DRAM_CTRL_HH__
525081Sgblack@eecs.umich.edu
535081Sgblack@eecs.umich.edu#include <deque>
545081Sgblack@eecs.umich.edu
555081Sgblack@eecs.umich.edu#include "base/statistics.hh"
565081Sgblack@eecs.umich.edu#include "enums/AddrMap.hh"
575119Sgblack@eecs.umich.edu#include "enums/MemSched.hh"
585176Sgblack@eecs.umich.edu#include "enums/PageManage.hh"
595081Sgblack@eecs.umich.edu#include "mem/abstract_mem.hh"
605081Sgblack@eecs.umich.edu#include "mem/qport.hh"
615081Sgblack@eecs.umich.edu#include "params/DRAMCtrl.hh"
625081Sgblack@eecs.umich.edu#include "sim/eventq.hh"
635081Sgblack@eecs.umich.edu
645081Sgblack@eecs.umich.edu/**
655081Sgblack@eecs.umich.edu * The DRAM controller is a basic single-channel memory controller
665081Sgblack@eecs.umich.edu * aiming to mimic a high-level DRAM controller and the most important
675081Sgblack@eecs.umich.edu * timing constraints associated with the DRAM. The focus is really on
685081Sgblack@eecs.umich.edu * modelling the impact on the system rather than the DRAM itself,
695119Sgblack@eecs.umich.edu * hence the focus is on the controller model and not on the
705176Sgblack@eecs.umich.edu * memory. By adhering to the correct timing constraints, ultimately
715081Sgblack@eecs.umich.edu * there is no need for a memory model in addition to the controller
725081Sgblack@eecs.umich.edu * model.
735081Sgblack@eecs.umich.edu *
745081Sgblack@eecs.umich.edu * As a basic design principle, this controller is not cycle callable,
755081Sgblack@eecs.umich.edu * but instead uses events to decide when new decisions can be made,
765081Sgblack@eecs.umich.edu * when resources become available, when things are to be considered
775081Sgblack@eecs.umich.edu * done, and when to send things back. Through these simple
785081Sgblack@eecs.umich.edu * principles, we achieve a performant model that is not
795081Sgblack@eecs.umich.edu * cycle-accurate, but enables us to evaluate the system impact of a
805081Sgblack@eecs.umich.edu * wide range of memory technologies, and also collect statistics
815119Sgblack@eecs.umich.edu * about the use of the memory.
825176Sgblack@eecs.umich.edu */
835081Sgblack@eecs.umich.educlass DRAMCtrl : public AbstractMemory
845081Sgblack@eecs.umich.edu{
855081Sgblack@eecs.umich.edu
865081Sgblack@eecs.umich.edu  private:
875081Sgblack@eecs.umich.edu
885543Ssaidi@eecs.umich.edu    // For now, make use of a queued slave port to avoid dealing with
895081Sgblack@eecs.umich.edu    // flow control for the responses being sent back
90    class MemoryPort : public QueuedSlavePort
91    {
92
93        SlavePacketQueue queue;
94        DRAMCtrl& memory;
95
96      public:
97
98        MemoryPort(const std::string& name, DRAMCtrl& _memory);
99
100      protected:
101
102        Tick recvAtomic(PacketPtr pkt);
103
104        void recvFunctional(PacketPtr pkt);
105
106        bool recvTimingReq(PacketPtr);
107
108        virtual AddrRangeList getAddrRanges() const;
109
110    };
111
112    /**
113     * Our incoming port, for a multi-ported controller add a crossbar
114     * in front of it
115     */
116    MemoryPort port;
117
118    /**
119     * Remember if we have to retry a request when available.
120     */
121    bool retryRdReq;
122    bool retryWrReq;
123
124    /**
125     * Remember that a row buffer hit occured
126     */
127    bool rowHitFlag;
128
129    /**
130     * Use this flag to shutoff reads, i.e. do not schedule any reads
131     * beyond those already done so that we can turn the bus around
132     * and do a few writes, or refresh, or whatever
133     */
134    bool stopReads;
135
136    /** List to keep track of activate ticks */
137    std::vector<std::deque<Tick>> actTicks;
138
139    /**
140     * A basic class to track the bank state indirectly via times
141     * "freeAt" and "tRASDoneAt" and what page is currently open. The
142     * bank also keeps track of how many bytes have been accessed in
143     * the open row since it was opened.
144     */
145    class Bank
146    {
147
148      public:
149
150        static const uint32_t INVALID_ROW = -1;
151
152        uint32_t openRow;
153
154        Tick freeAt;
155        Tick tRASDoneAt;
156        Tick actAllowedAt;
157
158        uint32_t rowAccesses;
159        uint32_t bytesAccessed;
160
161        Bank() :
162            openRow(INVALID_ROW), freeAt(0), tRASDoneAt(0), actAllowedAt(0),
163            rowAccesses(0), bytesAccessed(0)
164        { }
165    };
166
167    /**
168     * A burst helper helps organize and manage a packet that is larger than
169     * the DRAM burst size. A system packet that is larger than the burst size
170     * is split into multiple DRAM packets and all those DRAM packets point to
171     * a single burst helper such that we know when the whole packet is served.
172     */
173    class BurstHelper {
174
175      public:
176
177        /** Number of DRAM bursts requred for a system packet **/
178        const unsigned int burstCount;
179
180        /** Number of DRAM bursts serviced so far for a system packet **/
181        unsigned int burstsServiced;
182
183        BurstHelper(unsigned int _burstCount)
184            : burstCount(_burstCount), burstsServiced(0)
185            { }
186    };
187
188    /**
189     * A DRAM packet stores packets along with the timestamp of when
190     * the packet entered the queue, and also the decoded address.
191     */
192    class DRAMPacket {
193
194      public:
195
196        /** When did request enter the controller */
197        const Tick entryTime;
198
199        /** When will request leave the controller */
200        Tick readyTime;
201
202        /** This comes from the outside world */
203        const PacketPtr pkt;
204
205        const bool isRead;
206
207        /** Will be populated by address decoder */
208        const uint8_t rank;
209        const uint8_t bank;
210        const uint16_t row;
211
212        /**
213         * Bank id is calculated considering banks in all the ranks
214         * eg: 2 ranks each with 8 banks, then bankId = 0 --> rank0, bank0 and
215         * bankId = 8 --> rank1, bank0
216         */
217        const uint16_t bankId;
218
219        /**
220         * The starting address of the DRAM packet.
221         * This address could be unaligned to burst size boundaries. The
222         * reason is to keep the address offset so we can accurately check
223         * incoming read packets with packets in the write queue.
224         */
225        Addr addr;
226
227        /**
228         * The size of this dram packet in bytes
229         * It is always equal or smaller than DRAM burst size
230         */
231        unsigned int size;
232
233        /**
234         * A pointer to the BurstHelper if this DRAMPacket is a split packet
235         * If not a split packet (common case), this is set to NULL
236         */
237        BurstHelper* burstHelper;
238        Bank& bankRef;
239
240        DRAMPacket(PacketPtr _pkt, bool is_read, uint8_t _rank, uint8_t _bank,
241                   uint16_t _row, uint16_t bank_id, Addr _addr,
242                   unsigned int _size, Bank& bank_ref)
243            : entryTime(curTick()), readyTime(curTick()),
244              pkt(_pkt), isRead(is_read), rank(_rank), bank(_bank), row(_row),
245              bankId(bank_id), addr(_addr), size(_size), burstHelper(NULL),
246              bankRef(bank_ref)
247        { }
248
249    };
250
251    /**
252     * Bunch of things requires to setup "events" in gem5
253     * When event "writeEvent" occurs for example, the method
254     * processWriteEvent is called; no parameters are allowed
255     * in these methods
256     */
257    void processWriteEvent();
258    EventWrapper<DRAMCtrl, &DRAMCtrl::processWriteEvent> writeEvent;
259
260    void processRespondEvent();
261    EventWrapper<DRAMCtrl, &DRAMCtrl::processRespondEvent> respondEvent;
262
263    void processRefreshEvent();
264    EventWrapper<DRAMCtrl, &DRAMCtrl::processRefreshEvent> refreshEvent;
265
266    void processNextReqEvent();
267    EventWrapper<DRAMCtrl,&DRAMCtrl::processNextReqEvent> nextReqEvent;
268
269
270    /**
271     * Check if the read queue has room for more entries
272     *
273     * @param pktCount The number of entries needed in the read queue
274     * @return true if read queue is full, false otherwise
275     */
276    bool readQueueFull(unsigned int pktCount) const;
277
278    /**
279     * Check if the write queue has room for more entries
280     *
281     * @param pktCount The number of entries needed in the write queue
282     * @return true if write queue is full, false otherwise
283     */
284    bool writeQueueFull(unsigned int pktCount) const;
285
286    /**
287     * When a new read comes in, first check if the write q has a
288     * pending request to the same address.\ If not, decode the
289     * address to populate rank/bank/row, create one or mutliple
290     * "dram_pkt", and push them to the back of the read queue.\
291     * If this is the only
292     * read request in the system, schedule an event to start
293     * servicing it.
294     *
295     * @param pkt The request packet from the outside world
296     * @param pktCount The number of DRAM bursts the pkt
297     * translate to. If pkt size is larger then one full burst,
298     * then pktCount is greater than one.
299     */
300    void addToReadQueue(PacketPtr pkt, unsigned int pktCount);
301
302    /**
303     * Decode the incoming pkt, create a dram_pkt and push to the
304     * back of the write queue. \If the write q length is more than
305     * the threshold specified by the user, ie the queue is beginning
306     * to get full, stop reads, and start draining writes.
307     *
308     * @param pkt The request packet from the outside world
309     * @param pktCount The number of DRAM bursts the pkt
310     * translate to. If pkt size is larger then one full burst,
311     * then pktCount is greater than one.
312     */
313    void addToWriteQueue(PacketPtr pkt, unsigned int pktCount);
314
315    /**
316     * Actually do the DRAM access - figure out the latency it
317     * will take to service the req based on bank state, channel state etc
318     * and then update those states to account for this request.\ Based
319     * on this, update the packet's "readyTime" and move it to the
320     * response q from where it will eventually go back to the outside
321     * world.
322     *
323     * @param pkt The DRAM packet created from the outside world pkt
324     */
325    void doDRAMAccess(DRAMPacket* dram_pkt);
326
327    /**
328     * Check when the channel is free to turnaround, add turnaround
329     * delay and schedule a whole bunch of writes.
330     */
331    void triggerWrites();
332
333    /**
334     * When a packet reaches its "readyTime" in the response Q,
335     * use the "access()" method in AbstractMemory to actually
336     * create the response packet, and send it back to the outside
337     * world requestor.
338     *
339     * @param pkt The packet from the outside world
340     * @param static_latency Static latency to add before sending the packet
341     */
342    void accessAndRespond(PacketPtr pkt, Tick static_latency);
343
344    /**
345     * Address decoder to figure out physical mapping onto ranks,
346     * banks, and rows. This function is called multiple times on the same
347     * system packet if the pakcet is larger than burst of the memory. The
348     * dramPktAddr is used for the offset within the packet.
349     *
350     * @param pkt The packet from the outside world
351     * @param dramPktAddr The starting address of the DRAM packet
352     * @param size The size of the DRAM packet in bytes
353     * @param isRead Is the request for a read or a write to DRAM
354     * @return A DRAMPacket pointer with the decoded information
355     */
356    DRAMPacket* decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned int size,
357                           bool isRead);
358
359    /**
360     * The memory schduler/arbiter - picks which read request needs to
361     * go next, based on the specified policy such as FCFS or FR-FCFS
362     * and moves it to the head of the read queue.
363     *
364     * @return True if a request was chosen and false if queue is empty
365     */
366    bool chooseNextRead();
367
368    /**
369     * Calls chooseNextReq() to pick the right request, then calls
370     * doDRAMAccess on that request in order to actually service
371     * that request
372     */
373    void scheduleNextReq();
374
375    /**
376     *Looks at the state of the banks, channels, row buffer hits etc
377     * to estimate how long a request will take to complete.
378     *
379     * @param dram_pkt The request for which we want to estimate latency
380     * @param inTime The tick at which you want to probe the memory
381     *
382     * @return A pair of ticks, one indicating how many ticks *after*
383     *         inTime the request require, and the other indicating how
384     *         much of that was just the bank access time, ignoring the
385     *         ticks spent simply waiting for resources to become free
386     */
387    std::pair<Tick, Tick> estimateLatency(DRAMPacket* dram_pkt, Tick inTime);
388
389    /**
390     * Move the request at the head of the read queue to the response
391     * queue, sorting by readyTime.\ If it is the only packet in the
392     * response queue, schedule a respond event to send it back to the
393     * outside world
394     */
395    void moveToRespQ();
396
397    /**
398     * Scheduling policy within the write queue
399     */
400    void chooseNextWrite();
401
402    /**
403     * For FR-FCFS policy reorder the read/write queue depending on row buffer
404     * hits and earliest banks available in DRAM
405     */
406    void reorderQueue(std::deque<DRAMPacket*>& queue);
407
408    /**
409     * Looking at all banks, determine the moment in time when they
410     * are all free.
411     *
412     * @return The tick when all banks are free
413     */
414    Tick maxBankFreeAt() const;
415
416    /**
417     * Find which are the earliest available banks for the enqueued
418     * requests. Assumes maximum of 64 banks per DIMM
419     *
420     * @param Queued requests to consider
421     * @return One-hot encoded mask of bank indices
422     */
423    uint64_t minBankFreeAt(const std::deque<DRAMPacket*>& queue) const;
424
425    /**
426     * Keep track of when row activations happen, in order to enforce
427     * the maximum number of activations in the activation window. The
428     * method updates the time that the banks become available based
429     * on the current limits.
430     */
431    void recordActivate(Tick act_tick, uint8_t rank, uint8_t bank);
432
433    void printParams() const;
434
435    /**
436     * Used for debugging to observe the contents of the queues.
437     */
438    void printQs() const;
439
440    /**
441     * The controller's main read and write queues
442     */
443    std::deque<DRAMPacket*> readQueue;
444    std::deque<DRAMPacket*> writeQueue;
445
446    /**
447     * Response queue where read packets wait after we're done working
448     * with them, but it's not time to send the response yet. The
449     * responses are stored seperately mostly to keep the code clean
450     * and help with events scheduling. For all logical purposes such
451     * as sizing the read queue, this and the main read queue need to
452     * be added together.
453     */
454    std::deque<DRAMPacket*> respQueue;
455
456    /**
457     * If we need to drain, keep the drain manager around until we're
458     * done here.
459     */
460    DrainManager *drainManager;
461
462    /**
463     * Multi-dimensional vector of banks, first dimension is ranks,
464     * second is bank
465     */
466    std::vector<std::vector<Bank> > banks;
467
468    /**
469     * The following are basic design parameters of the memory
470     * controller, and are initialized based on parameter values.
471     * The rowsPerBank is determined based on the capacity, number of
472     * ranks and banks, the burst size, and the row buffer size.
473     */
474    const uint32_t deviceBusWidth;
475    const uint32_t burstLength;
476    const uint32_t deviceRowBufferSize;
477    const uint32_t devicesPerRank;
478    const uint32_t burstSize;
479    const uint32_t rowBufferSize;
480    const uint32_t columnsPerRowBuffer;
481    const uint32_t ranksPerChannel;
482    const uint32_t banksPerRank;
483    const uint32_t channels;
484    uint32_t rowsPerBank;
485    const uint32_t readBufferSize;
486    const uint32_t writeBufferSize;
487    const uint32_t writeHighThreshold;
488    const uint32_t writeLowThreshold;
489    const uint32_t minWritesPerSwitch;
490    uint32_t writesThisTime;
491
492    /**
493     * Basic memory timing parameters initialized based on parameter
494     * values.
495     */
496    const Tick tWTR;
497    const Tick tBURST;
498    const Tick tRCD;
499    const Tick tCL;
500    const Tick tRP;
501    const Tick tRAS;
502    const Tick tRFC;
503    const Tick tREFI;
504    const Tick tRRD;
505    const Tick tXAW;
506    const uint32_t activationLimit;
507
508    /**
509     * Memory controller configuration initialized based on parameter
510     * values.
511     */
512    Enums::MemSched memSchedPolicy;
513    Enums::AddrMap addrMapping;
514    Enums::PageManage pageMgmt;
515
516    /**
517     * Max column accesses (read and write) per row, before forefully
518     * closing it.
519     */
520    const uint32_t maxAccessesPerRow;
521
522    /**
523     * Pipeline latency of the controller frontend. The frontend
524     * contribution is added to writes (that complete when they are in
525     * the write buffer) and reads that are serviced the write buffer.
526     */
527    const Tick frontendLatency;
528
529    /**
530     * Pipeline latency of the backend and PHY. Along with the
531     * frontend contribution, this latency is added to reads serviced
532     * by the DRAM.
533     */
534    const Tick backendLatency;
535
536    /**
537     * Till when has the main data bus been spoken for already?
538     */
539    Tick busBusyUntil;
540
541    Tick prevArrival;
542
543    // The absolute soonest you have to start thinking about the
544    // next request is the longest access time that can occur before
545    // busBusyUntil. Assuming you need to precharge,
546    // open a new row, and access, it is tRP + tRCD + tCL
547    Tick newTime;
548
549    // All statistics that the model needs to capture
550    Stats::Scalar readReqs;
551    Stats::Scalar writeReqs;
552    Stats::Scalar readBursts;
553    Stats::Scalar writeBursts;
554    Stats::Scalar bytesReadDRAM;
555    Stats::Scalar bytesReadWrQ;
556    Stats::Scalar bytesWritten;
557    Stats::Scalar bytesReadSys;
558    Stats::Scalar bytesWrittenSys;
559    Stats::Scalar servicedByWrQ;
560    Stats::Scalar mergedWrBursts;
561    Stats::Scalar neitherReadNorWrite;
562    Stats::Vector perBankRdBursts;
563    Stats::Vector perBankWrBursts;
564    Stats::Scalar numRdRetry;
565    Stats::Scalar numWrRetry;
566    Stats::Scalar totGap;
567    Stats::Vector readPktSize;
568    Stats::Vector writePktSize;
569    Stats::Vector rdQLenPdf;
570    Stats::Vector wrQLenPdf;
571    Stats::Histogram bytesPerActivate;
572
573    // Latencies summed over all requests
574    Stats::Scalar totQLat;
575    Stats::Scalar totMemAccLat;
576    Stats::Scalar totBusLat;
577    Stats::Scalar totBankLat;
578
579    // Average latencies per request
580    Stats::Formula avgQLat;
581    Stats::Formula avgBankLat;
582    Stats::Formula avgBusLat;
583    Stats::Formula avgMemAccLat;
584
585    // Average bandwidth
586    Stats::Formula avgRdBW;
587    Stats::Formula avgWrBW;
588    Stats::Formula avgRdBWSys;
589    Stats::Formula avgWrBWSys;
590    Stats::Formula peakBW;
591    Stats::Formula busUtil;
592    Stats::Formula busUtilRead;
593    Stats::Formula busUtilWrite;
594
595    // Average queue lengths
596    Stats::Average avgRdQLen;
597    Stats::Average avgWrQLen;
598
599    // Row hit count and rate
600    Stats::Scalar readRowHits;
601    Stats::Scalar writeRowHits;
602    Stats::Formula readRowHitRate;
603    Stats::Formula writeRowHitRate;
604    Stats::Formula avgGap;
605
606    // DRAM Power Calculation
607    Stats::Formula pageHitRate;
608    Stats::Formula prechargeAllPercent;
609    Stats::Scalar prechargeAllTime;
610
611    // To track number of cycles all the banks are precharged
612    Tick startTickPrechargeAll;
613    // To track number of banks which are currently active
614    unsigned int numBanksActive;
615
616    /** @todo this is a temporary workaround until the 4-phase code is
617     * committed. upstream caches needs this packet until true is returned, so
618     * hold onto it for deletion until a subsequent call
619     */
620    std::vector<PacketPtr> pendingDelete;
621
622  public:
623
624    void regStats();
625
626    DRAMCtrl(const DRAMCtrlParams* p);
627
628    unsigned int drain(DrainManager* dm);
629
630    virtual BaseSlavePort& getSlavePort(const std::string& if_name,
631                                        PortID idx = InvalidPortID);
632
633    virtual void init();
634    virtual void startup();
635
636  protected:
637
638    Tick recvAtomic(PacketPtr pkt);
639    void recvFunctional(PacketPtr pkt);
640    bool recvTimingReq(PacketPtr pkt);
641
642};
643
644#endif //__MEM_DRAM_CTRL_HH__
645