dram_ctrl.cc revision 12706
1/*
2 * Copyright (c) 2010-2018 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 *          Omar Naji
44 *          Wendy Elsasser
45 *          Radhika Jagtap
46 */
47
48#include "mem/dram_ctrl.hh"
49
50#include "base/bitfield.hh"
51#include "base/trace.hh"
52#include "debug/DRAM.hh"
53#include "debug/DRAMPower.hh"
54#include "debug/DRAMState.hh"
55#include "debug/Drain.hh"
56#include "sim/system.hh"
57
58using namespace std;
59using namespace Data;
60
61DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
62    AbstractMemory(p),
63    port(name() + ".port", *this), isTimingMode(false),
64    retryRdReq(false), retryWrReq(false),
65    busState(READ),
66    busStateNext(READ),
67    nextReqEvent([this]{ processNextReqEvent(); }, name()),
68    respondEvent([this]{ processRespondEvent(); }, name()),
69    deviceSize(p->device_size),
70    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
71    deviceRowBufferSize(p->device_rowbuffer_size),
72    devicesPerRank(p->devices_per_rank),
73    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
74    rowBufferSize(devicesPerRank * deviceRowBufferSize),
75    columnsPerRowBuffer(rowBufferSize / burstSize),
76    columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1),
77    ranksPerChannel(p->ranks_per_channel),
78    bankGroupsPerRank(p->bank_groups_per_rank),
79    bankGroupArch(p->bank_groups_per_rank > 0),
80    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
81    readBufferSize(p->read_buffer_size),
82    writeBufferSize(p->write_buffer_size),
83    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
84    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
85    minWritesPerSwitch(p->min_writes_per_switch),
86    writesThisTime(0), readsThisTime(0),
87    tCK(p->tCK), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
88    tCCD_L_WR(p->tCCD_L_WR),
89    tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
90    tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
91    tRRD_L(p->tRRD_L), tXAW(p->tXAW), tXP(p->tXP), tXS(p->tXS),
92    activationLimit(p->activation_limit), rankToRankDly(tCS + tBURST),
93    wrToRdDly(tCL + tBURST + p->tWTR), rdToWrDly(tRTW + tBURST),
94    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
95    pageMgmt(p->page_policy),
96    maxAccessesPerRow(p->max_accesses_per_row),
97    frontendLatency(p->static_frontend_latency),
98    backendLatency(p->static_backend_latency),
99    nextBurstAt(0), prevArrival(0),
100    nextReqTime(0), activeRank(0), timeStampOffset(0),
101    lastStatsResetTick(0)
102{
103    // sanity check the ranks since we rely on bit slicing for the
104    // address decoding
105    fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
106             "allowed, must be a power of two\n", ranksPerChannel);
107
108    fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, "
109             "must be a power of two\n", burstSize);
110
111    for (int i = 0; i < ranksPerChannel; i++) {
112        Rank* rank = new Rank(*this, p, i);
113        ranks.push_back(rank);
114    }
115
116    // perform a basic check of the write thresholds
117    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
118        fatal("Write buffer low threshold %d must be smaller than the "
119              "high threshold %d\n", p->write_low_thresh_perc,
120              p->write_high_thresh_perc);
121
122    // determine the rows per bank by looking at the total capacity
123    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
124
125    // determine the dram actual capacity from the DRAM config in Mbytes
126    uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
127        ranksPerChannel;
128
129    // if actual DRAM size does not match memory capacity in system warn!
130    if (deviceCapacity != capacity / (1024 * 1024))
131        warn("DRAM device capacity (%d Mbytes) does not match the "
132             "address range assigned (%d Mbytes)\n", deviceCapacity,
133             capacity / (1024 * 1024));
134
135    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
136            AbstractMemory::size());
137
138    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
139            rowBufferSize, columnsPerRowBuffer);
140
141    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
142
143    // some basic sanity checks
144    if (tREFI <= tRP || tREFI <= tRFC) {
145        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
146              tREFI, tRP, tRFC);
147    }
148
149    // basic bank group architecture checks ->
150    if (bankGroupArch) {
151        // must have at least one bank per bank group
152        if (bankGroupsPerRank > banksPerRank) {
153            fatal("banks per rank (%d) must be equal to or larger than "
154                  "banks groups per rank (%d)\n",
155                  banksPerRank, bankGroupsPerRank);
156        }
157        // must have same number of banks in each bank group
158        if ((banksPerRank % bankGroupsPerRank) != 0) {
159            fatal("Banks per rank (%d) must be evenly divisible by bank groups "
160                  "per rank (%d) for equal banks per bank group\n",
161                  banksPerRank, bankGroupsPerRank);
162        }
163        // tCCD_L should be greater than minimal, back-to-back burst delay
164        if (tCCD_L <= tBURST) {
165            fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
166                  "bank groups per rank (%d) is greater than 1\n",
167                  tCCD_L, tBURST, bankGroupsPerRank);
168        }
169        // tCCD_L_WR should be greater than minimal, back-to-back burst delay
170        if (tCCD_L_WR <= tBURST) {
171            fatal("tCCD_L_WR (%d) should be larger than tBURST (%d) when "
172                  "bank groups per rank (%d) is greater than 1\n",
173                  tCCD_L_WR, tBURST, bankGroupsPerRank);
174        }
175        // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
176        // some datasheets might specify it equal to tRRD
177        if (tRRD_L < tRRD) {
178            fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
179                  "bank groups per rank (%d) is greater than 1\n",
180                  tRRD_L, tRRD, bankGroupsPerRank);
181        }
182    }
183
184}
185
186void
187DRAMCtrl::init()
188{
189    AbstractMemory::init();
190
191   if (!port.isConnected()) {
192        fatal("DRAMCtrl %s is unconnected!\n", name());
193    } else {
194        port.sendRangeChange();
195    }
196
197    // a bit of sanity checks on the interleaving, save it for here to
198    // ensure that the system pointer is initialised
199    if (range.interleaved()) {
200        if (channels != range.stripes())
201            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
202                  name(), range.stripes(), channels);
203
204        if (addrMapping == Enums::RoRaBaChCo) {
205            if (rowBufferSize != range.granularity()) {
206                fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
207                      "address map\n", name());
208            }
209        } else if (addrMapping == Enums::RoRaBaCoCh ||
210                   addrMapping == Enums::RoCoRaBaCh) {
211            // for the interleavings with channel bits in the bottom,
212            // if the system uses a channel striping granularity that
213            // is larger than the DRAM burst size, then map the
214            // sequential accesses within a stripe to a number of
215            // columns in the DRAM, effectively placing some of the
216            // lower-order column bits as the least-significant bits
217            // of the address (above the ones denoting the burst size)
218            assert(columnsPerStripe >= 1);
219
220            // channel striping has to be done at a granularity that
221            // is equal or larger to a cache line
222            if (system()->cacheLineSize() > range.granularity()) {
223                fatal("Channel interleaving of %s must be at least as large "
224                      "as the cache line size\n", name());
225            }
226
227            // ...and equal or smaller than the row-buffer size
228            if (rowBufferSize < range.granularity()) {
229                fatal("Channel interleaving of %s must be at most as large "
230                      "as the row-buffer size\n", name());
231            }
232            // this is essentially the check above, so just to be sure
233            assert(columnsPerStripe <= columnsPerRowBuffer);
234        }
235    }
236}
237
238void
239DRAMCtrl::startup()
240{
241    // remember the memory system mode of operation
242    isTimingMode = system()->isTimingMode();
243
244    if (isTimingMode) {
245        // timestamp offset should be in clock cycles for DRAMPower
246        timeStampOffset = divCeil(curTick(), tCK);
247
248        // update the start tick for the precharge accounting to the
249        // current tick
250        for (auto r : ranks) {
251            r->startup(curTick() + tREFI - tRP);
252        }
253
254        // shift the bus busy time sufficiently far ahead that we never
255        // have to worry about negative values when computing the time for
256        // the next request, this will add an insignificant bubble at the
257        // start of simulation
258        nextBurstAt = curTick() + tRP + tRCD;
259    }
260}
261
262Tick
263DRAMCtrl::recvAtomic(PacketPtr pkt)
264{
265    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
266
267    panic_if(pkt->cacheResponding(), "Should not see packets where cache "
268             "is responding");
269
270    // do the actual memory access and turn the packet into a response
271    access(pkt);
272
273    Tick latency = 0;
274    if (pkt->hasData()) {
275        // this value is not supposed to be accurate, just enough to
276        // keep things going, mimic a closed page
277        latency = tRP + tRCD + tCL;
278    }
279    return latency;
280}
281
282bool
283DRAMCtrl::readQueueFull(unsigned int neededEntries) const
284{
285    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
286            readBufferSize, readQueue.size() + respQueue.size(),
287            neededEntries);
288
289    return
290        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
291}
292
293bool
294DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
295{
296    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
297            writeBufferSize, writeQueue.size(), neededEntries);
298    return (writeQueue.size() + neededEntries) > writeBufferSize;
299}
300
301DRAMCtrl::DRAMPacket*
302DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
303                       bool isRead)
304{
305    // decode the address based on the address mapping scheme, with
306    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
307    // channel, respectively
308    uint8_t rank;
309    uint8_t bank;
310    // use a 64-bit unsigned during the computations as the row is
311    // always the top bits, and check before creating the DRAMPacket
312    uint64_t row;
313
314    // truncate the address to a DRAM burst, which makes it unique to
315    // a specific column, row, bank, rank and channel
316    Addr addr = dramPktAddr / burstSize;
317
318    // we have removed the lowest order address bits that denote the
319    // position within the column
320    if (addrMapping == Enums::RoRaBaChCo) {
321        // the lowest order bits denote the column to ensure that
322        // sequential cache lines occupy the same row
323        addr = addr / columnsPerRowBuffer;
324
325        // take out the channel part of the address
326        addr = addr / channels;
327
328        // after the channel bits, get the bank bits to interleave
329        // over the banks
330        bank = addr % banksPerRank;
331        addr = addr / banksPerRank;
332
333        // after the bank, we get the rank bits which thus interleaves
334        // over the ranks
335        rank = addr % ranksPerChannel;
336        addr = addr / ranksPerChannel;
337
338        // lastly, get the row bits, no need to remove them from addr
339        row = addr % rowsPerBank;
340    } else if (addrMapping == Enums::RoRaBaCoCh) {
341        // take out the lower-order column bits
342        addr = addr / columnsPerStripe;
343
344        // take out the channel part of the address
345        addr = addr / channels;
346
347        // next, the higher-order column bites
348        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
349
350        // after the column bits, we get the bank bits to interleave
351        // over the banks
352        bank = addr % banksPerRank;
353        addr = addr / banksPerRank;
354
355        // after the bank, we get the rank bits which thus interleaves
356        // over the ranks
357        rank = addr % ranksPerChannel;
358        addr = addr / ranksPerChannel;
359
360        // lastly, get the row bits, no need to remove them from addr
361        row = addr % rowsPerBank;
362    } else if (addrMapping == Enums::RoCoRaBaCh) {
363        // optimise for closed page mode and utilise maximum
364        // parallelism of the DRAM (at the cost of power)
365
366        // take out the lower-order column bits
367        addr = addr / columnsPerStripe;
368
369        // take out the channel part of the address, not that this has
370        // to match with how accesses are interleaved between the
371        // controllers in the address mapping
372        addr = addr / channels;
373
374        // start with the bank bits, as this provides the maximum
375        // opportunity for parallelism between requests
376        bank = addr % banksPerRank;
377        addr = addr / banksPerRank;
378
379        // next get the rank bits
380        rank = addr % ranksPerChannel;
381        addr = addr / ranksPerChannel;
382
383        // next, the higher-order column bites
384        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
385
386        // lastly, get the row bits, no need to remove them from addr
387        row = addr % rowsPerBank;
388    } else
389        panic("Unknown address mapping policy chosen!");
390
391    assert(rank < ranksPerChannel);
392    assert(bank < banksPerRank);
393    assert(row < rowsPerBank);
394    assert(row < Bank::NO_ROW);
395
396    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
397            dramPktAddr, rank, bank, row);
398
399    // create the corresponding DRAM packet with the entry time and
400    // ready time set to the current tick, the latter will be updated
401    // later
402    uint16_t bank_id = banksPerRank * rank + bank;
403    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
404                          size, ranks[rank]->banks[bank], *ranks[rank]);
405}
406
407void
408DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
409{
410    // only add to the read queue here. whenever the request is
411    // eventually done, set the readyTime, and call schedule()
412    assert(!pkt->isWrite());
413
414    assert(pktCount != 0);
415
416    // if the request size is larger than burst size, the pkt is split into
417    // multiple DRAM packets
418    // Note if the pkt starting address is not aligened to burst size, the
419    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
420    // are aligned to burst size boundaries. This is to ensure we accurately
421    // check read packets against packets in write queue.
422    Addr addr = pkt->getAddr();
423    unsigned pktsServicedByWrQ = 0;
424    BurstHelper* burst_helper = NULL;
425    for (int cnt = 0; cnt < pktCount; ++cnt) {
426        unsigned size = std::min((addr | (burstSize - 1)) + 1,
427                        pkt->getAddr() + pkt->getSize()) - addr;
428        readPktSize[ceilLog2(size)]++;
429        readBursts++;
430
431        // First check write buffer to see if the data is already at
432        // the controller
433        bool foundInWrQ = false;
434        Addr burst_addr = burstAlign(addr);
435        // if the burst address is not present then there is no need
436        // looking any further
437        if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) {
438            for (const auto& p : writeQueue) {
439                // check if the read is subsumed in the write queue
440                // packet we are looking at
441                if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) {
442                    foundInWrQ = true;
443                    servicedByWrQ++;
444                    pktsServicedByWrQ++;
445                    DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
446                            "write queue\n", addr, size);
447                    bytesReadWrQ += burstSize;
448                    break;
449                }
450            }
451        }
452
453        // If not found in the write q, make a DRAM packet and
454        // push it onto the read queue
455        if (!foundInWrQ) {
456
457            // Make the burst helper for split packets
458            if (pktCount > 1 && burst_helper == NULL) {
459                DPRINTF(DRAM, "Read to addr %lld translates to %d "
460                        "dram requests\n", pkt->getAddr(), pktCount);
461                burst_helper = new BurstHelper(pktCount);
462            }
463
464            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
465            dram_pkt->burstHelper = burst_helper;
466
467            assert(!readQueueFull(1));
468            rdQLenPdf[readQueue.size() + respQueue.size()]++;
469
470            DPRINTF(DRAM, "Adding to read queue\n");
471
472            readQueue.push_back(dram_pkt);
473
474            // increment read entries of the rank
475            ++dram_pkt->rankRef.readEntries;
476
477            // Update stats
478            avgRdQLen = readQueue.size() + respQueue.size();
479        }
480
481        // Starting address of next dram pkt (aligend to burstSize boundary)
482        addr = (addr | (burstSize - 1)) + 1;
483    }
484
485    // If all packets are serviced by write queue, we send the repsonse back
486    if (pktsServicedByWrQ == pktCount) {
487        accessAndRespond(pkt, frontendLatency);
488        return;
489    }
490
491    // Update how many split packets are serviced by write queue
492    if (burst_helper != NULL)
493        burst_helper->burstsServiced = pktsServicedByWrQ;
494
495    // If we are not already scheduled to get a request out of the
496    // queue, do so now
497    if (!nextReqEvent.scheduled()) {
498        DPRINTF(DRAM, "Request scheduled immediately\n");
499        schedule(nextReqEvent, curTick());
500    }
501}
502
503void
504DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
505{
506    // only add to the write queue here. whenever the request is
507    // eventually done, set the readyTime, and call schedule()
508    assert(pkt->isWrite());
509
510    // if the request size is larger than burst size, the pkt is split into
511    // multiple DRAM packets
512    Addr addr = pkt->getAddr();
513    for (int cnt = 0; cnt < pktCount; ++cnt) {
514        unsigned size = std::min((addr | (burstSize - 1)) + 1,
515                        pkt->getAddr() + pkt->getSize()) - addr;
516        writePktSize[ceilLog2(size)]++;
517        writeBursts++;
518
519        // see if we can merge with an existing item in the write
520        // queue and keep track of whether we have merged or not
521        bool merged = isInWriteQueue.find(burstAlign(addr)) !=
522            isInWriteQueue.end();
523
524        // if the item was not merged we need to create a new write
525        // and enqueue it
526        if (!merged) {
527            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
528
529            assert(writeQueue.size() < writeBufferSize);
530            wrQLenPdf[writeQueue.size()]++;
531
532            DPRINTF(DRAM, "Adding to write queue\n");
533
534            writeQueue.push_back(dram_pkt);
535            isInWriteQueue.insert(burstAlign(addr));
536            assert(writeQueue.size() == isInWriteQueue.size());
537
538            // Update stats
539            avgWrQLen = writeQueue.size();
540
541            // increment write entries of the rank
542            ++dram_pkt->rankRef.writeEntries;
543        } else {
544            DPRINTF(DRAM, "Merging write burst with existing queue entry\n");
545
546            // keep track of the fact that this burst effectively
547            // disappeared as it was merged with an existing one
548            mergedWrBursts++;
549        }
550
551        // Starting address of next dram pkt (aligend to burstSize boundary)
552        addr = (addr | (burstSize - 1)) + 1;
553    }
554
555    // we do not wait for the writes to be send to the actual memory,
556    // but instead take responsibility for the consistency here and
557    // snoop the write queue for any upcoming reads
558    // @todo, if a pkt size is larger than burst size, we might need a
559    // different front end latency
560    accessAndRespond(pkt, frontendLatency);
561
562    // If we are not already scheduled to get a request out of the
563    // queue, do so now
564    if (!nextReqEvent.scheduled()) {
565        DPRINTF(DRAM, "Request scheduled immediately\n");
566        schedule(nextReqEvent, curTick());
567    }
568}
569
570void
571DRAMCtrl::printQs() const {
572    DPRINTF(DRAM, "===READ QUEUE===\n\n");
573    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
574        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
575    }
576    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
577    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
578        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
579    }
580    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
581    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
582        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
583    }
584}
585
586bool
587DRAMCtrl::recvTimingReq(PacketPtr pkt)
588{
589    // This is where we enter from the outside world
590    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
591            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
592
593    panic_if(pkt->cacheResponding(), "Should not see packets where cache "
594             "is responding");
595
596    panic_if(!(pkt->isRead() || pkt->isWrite()),
597             "Should only see read and writes at memory controller\n");
598
599    // Calc avg gap between requests
600    if (prevArrival != 0) {
601        totGap += curTick() - prevArrival;
602    }
603    prevArrival = curTick();
604
605
606    // Find out how many dram packets a pkt translates to
607    // If the burst size is equal or larger than the pkt size, then a pkt
608    // translates to only one dram packet. Otherwise, a pkt translates to
609    // multiple dram packets
610    unsigned size = pkt->getSize();
611    unsigned offset = pkt->getAddr() & (burstSize - 1);
612    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
613
614    // check local buffers and do not accept if full
615    if (pkt->isRead()) {
616        assert(size != 0);
617        if (readQueueFull(dram_pkt_count)) {
618            DPRINTF(DRAM, "Read queue full, not accepting\n");
619            // remember that we have to retry this port
620            retryRdReq = true;
621            numRdRetry++;
622            return false;
623        } else {
624            addToReadQueue(pkt, dram_pkt_count);
625            readReqs++;
626            bytesReadSys += size;
627        }
628    } else {
629        assert(pkt->isWrite());
630        assert(size != 0);
631        if (writeQueueFull(dram_pkt_count)) {
632            DPRINTF(DRAM, "Write queue full, not accepting\n");
633            // remember that we have to retry this port
634            retryWrReq = true;
635            numWrRetry++;
636            return false;
637        } else {
638            addToWriteQueue(pkt, dram_pkt_count);
639            writeReqs++;
640            bytesWrittenSys += size;
641        }
642    }
643
644    return true;
645}
646
647void
648DRAMCtrl::processRespondEvent()
649{
650    DPRINTF(DRAM,
651            "processRespondEvent(): Some req has reached its readyTime\n");
652
653    DRAMPacket* dram_pkt = respQueue.front();
654
655    // if a read has reached its ready-time, decrement the number of reads
656    // At this point the packet has been handled and there is a possibility
657    // to switch to low-power mode if no other packet is available
658    --dram_pkt->rankRef.readEntries;
659    DPRINTF(DRAM, "number of read entries for rank %d is %d\n",
660            dram_pkt->rank, dram_pkt->rankRef.readEntries);
661
662    // counter should at least indicate one outstanding request
663    // for this read
664    assert(dram_pkt->rankRef.outstandingEvents > 0);
665    // read response received, decrement count
666    --dram_pkt->rankRef.outstandingEvents;
667
668    // at this moment should not have transitioned to a low-power state
669    assert((dram_pkt->rankRef.pwrState != PWR_SREF) &&
670           (dram_pkt->rankRef.pwrState != PWR_PRE_PDN) &&
671           (dram_pkt->rankRef.pwrState != PWR_ACT_PDN));
672
673    // track if this is the last packet before idling
674    // and that there are no outstanding commands to this rank
675    if (dram_pkt->rankRef.isQueueEmpty() &&
676        dram_pkt->rankRef.outstandingEvents == 0) {
677        // verify that there are no events scheduled
678        assert(!dram_pkt->rankRef.activateEvent.scheduled());
679        assert(!dram_pkt->rankRef.prechargeEvent.scheduled());
680
681        // if coming from active state, schedule power event to
682        // active power-down else go to precharge power-down
683        DPRINTF(DRAMState, "Rank %d sleep at tick %d; current power state is "
684                "%d\n", dram_pkt->rank, curTick(), dram_pkt->rankRef.pwrState);
685
686        // default to ACT power-down unless already in IDLE state
687        // could be in IDLE if PRE issued before data returned
688        PowerState next_pwr_state = PWR_ACT_PDN;
689        if (dram_pkt->rankRef.pwrState == PWR_IDLE) {
690            next_pwr_state = PWR_PRE_PDN;
691        }
692
693        dram_pkt->rankRef.powerDownSleep(next_pwr_state, curTick());
694    }
695
696    if (dram_pkt->burstHelper) {
697        // it is a split packet
698        dram_pkt->burstHelper->burstsServiced++;
699        if (dram_pkt->burstHelper->burstsServiced ==
700            dram_pkt->burstHelper->burstCount) {
701            // we have now serviced all children packets of a system packet
702            // so we can now respond to the requester
703            // @todo we probably want to have a different front end and back
704            // end latency for split packets
705            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
706            delete dram_pkt->burstHelper;
707            dram_pkt->burstHelper = NULL;
708        }
709    } else {
710        // it is not a split packet
711        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
712    }
713
714    delete respQueue.front();
715    respQueue.pop_front();
716
717    if (!respQueue.empty()) {
718        assert(respQueue.front()->readyTime >= curTick());
719        assert(!respondEvent.scheduled());
720        schedule(respondEvent, respQueue.front()->readyTime);
721    } else {
722        // if there is nothing left in any queue, signal a drain
723        if (drainState() == DrainState::Draining &&
724            writeQueue.empty() && readQueue.empty() && allRanksDrained()) {
725
726            DPRINTF(Drain, "DRAM controller done draining\n");
727            signalDrainDone();
728        }
729    }
730
731    // We have made a location in the queue available at this point,
732    // so if there is a read that was forced to wait, retry now
733    if (retryRdReq) {
734        retryRdReq = false;
735        port.sendRetryReq();
736    }
737}
738
739bool
740DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
741{
742    // This method does the arbitration between requests. The chosen
743    // packet is simply moved to the head of the queue. The other
744    // methods know that this is the place to look. For example, with
745    // FCFS, this method does nothing
746    assert(!queue.empty());
747
748    // bool to indicate if a packet to an available rank is found
749    bool found_packet = false;
750    if (queue.size() == 1) {
751        DRAMPacket* dram_pkt = queue.front();
752        // available rank corresponds to state refresh idle
753        if (ranks[dram_pkt->rank]->inRefIdleState()) {
754            found_packet = true;
755            DPRINTF(DRAM, "Single request, going to a free rank\n");
756        } else {
757            DPRINTF(DRAM, "Single request, going to a busy rank\n");
758        }
759        return found_packet;
760    }
761
762    if (memSchedPolicy == Enums::fcfs) {
763        // check if there is a packet going to a free rank
764        for (auto i = queue.begin(); i != queue.end() ; ++i) {
765            DRAMPacket* dram_pkt = *i;
766            if (ranks[dram_pkt->rank]->inRefIdleState()) {
767                queue.erase(i);
768                queue.push_front(dram_pkt);
769                found_packet = true;
770                break;
771            }
772        }
773    } else if (memSchedPolicy == Enums::frfcfs) {
774        found_packet = reorderQueue(queue, extra_col_delay);
775    } else
776        panic("No scheduling policy chosen\n");
777    return found_packet;
778}
779
780bool
781DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
782{
783    // Only determine this if needed
784    vector<uint32_t> earliest_banks(ranksPerChannel, 0);
785
786    // Has minBankPrep been called to populate earliest_banks?
787    bool filled_earliest_banks = false;
788    // can the PRE/ACT sequence be done without impacting utlization?
789    bool hidden_bank_prep = false;
790
791    // search for seamless row hits first, if no seamless row hit is
792    // found then determine if there are other packets that can be issued
793    // without incurring additional bus delay due to bank timing
794    // Will select closed rows first to enable more open row possibilies
795    // in future selections
796    bool found_hidden_bank = false;
797
798    // remember if we found a row hit, not seamless, but bank prepped
799    // and ready
800    bool found_prepped_pkt = false;
801
802    // if we have no row hit, prepped or not, and no seamless packet,
803    // just go for the earliest possible
804    bool found_earliest_pkt = false;
805
806    auto selected_pkt_it = queue.end();
807
808    // time we need to issue a column command to be seamless
809    const Tick min_col_at = std::max(nextBurstAt + extra_col_delay, curTick());
810
811    for (auto i = queue.begin(); i != queue.end() ; ++i) {
812        DRAMPacket* dram_pkt = *i;
813        const Bank& bank = dram_pkt->bankRef;
814        const Tick col_allowed_at = dram_pkt->isRead ? bank.rdAllowedAt :
815                                                       bank.wrAllowedAt;
816
817        // check if rank is not doing a refresh and thus is available, if not,
818        // jump to the next packet
819        if (dram_pkt->rankRef.inRefIdleState()) {
820            // check if it is a row hit
821            if (bank.openRow == dram_pkt->row) {
822                // no additional rank-to-rank or same bank-group
823                // delays, or we switched read/write and might as well
824                // go for the row hit
825                if (col_allowed_at <= min_col_at) {
826                    // FCFS within the hits, giving priority to
827                    // commands that can issue seamlessly, without
828                    // additional delay, such as same rank accesses
829                    // and/or different bank-group accesses
830                    DPRINTF(DRAM, "Seamless row buffer hit\n");
831                    selected_pkt_it = i;
832                    // no need to look through the remaining queue entries
833                    break;
834                } else if (!found_hidden_bank && !found_prepped_pkt) {
835                    // if we did not find a packet to a closed row that can
836                    // issue the bank commands without incurring delay, and
837                    // did not yet find a packet to a prepped row, remember
838                    // the current one
839                    selected_pkt_it = i;
840                    found_prepped_pkt = true;
841                    DPRINTF(DRAM, "Prepped row buffer hit\n");
842                }
843            } else if (!found_earliest_pkt) {
844                // if we have not initialised the bank status, do it
845                // now, and only once per scheduling decisions
846                if (!filled_earliest_banks) {
847                    // determine entries with earliest bank delay
848                    std::tie(earliest_banks, hidden_bank_prep) =
849                        minBankPrep(queue, min_col_at);
850                    filled_earliest_banks = true;
851                }
852
853                // bank is amongst first available banks
854                // minBankPrep will give priority to packets that can
855                // issue seamlessly
856                if (bits(earliest_banks[dram_pkt->rank],
857                         dram_pkt->bank, dram_pkt->bank)) {
858                    found_earliest_pkt = true;
859                    found_hidden_bank = hidden_bank_prep;
860
861                    // give priority to packets that can issue
862                    // bank commands 'behind the scenes'
863                    // any additional delay if any will be due to
864                    // col-to-col command requirements
865                    if (hidden_bank_prep || !found_prepped_pkt)
866                        selected_pkt_it = i;
867                }
868            }
869        }
870    }
871
872    if (selected_pkt_it != queue.end()) {
873        DRAMPacket* selected_pkt = *selected_pkt_it;
874        queue.erase(selected_pkt_it);
875        queue.push_front(selected_pkt);
876        return true;
877    }
878
879    return false;
880}
881
882void
883DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
884{
885    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
886
887    bool needsResponse = pkt->needsResponse();
888    // do the actual memory access which also turns the packet into a
889    // response
890    access(pkt);
891
892    // turn packet around to go back to requester if response expected
893    if (needsResponse) {
894        // access already turned the packet into a response
895        assert(pkt->isResponse());
896        // response_time consumes the static latency and is charged also
897        // with headerDelay that takes into account the delay provided by
898        // the xbar and also the payloadDelay that takes into account the
899        // number of data beats.
900        Tick response_time = curTick() + static_latency + pkt->headerDelay +
901                             pkt->payloadDelay;
902        // Here we reset the timing of the packet before sending it out.
903        pkt->headerDelay = pkt->payloadDelay = 0;
904
905        // queue the packet in the response queue to be sent out after
906        // the static latency has passed
907        port.schedTimingResp(pkt, response_time, true);
908    } else {
909        // @todo the packet is going to be deleted, and the DRAMPacket
910        // is still having a pointer to it
911        pendingDelete.reset(pkt);
912    }
913
914    DPRINTF(DRAM, "Done\n");
915
916    return;
917}
918
919void
920DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
921                       Tick act_tick, uint32_t row)
922{
923    assert(rank_ref.actTicks.size() == activationLimit);
924
925    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
926
927    // update the open row
928    assert(bank_ref.openRow == Bank::NO_ROW);
929    bank_ref.openRow = row;
930
931    // start counting anew, this covers both the case when we
932    // auto-precharged, and when this access is forced to
933    // precharge
934    bank_ref.bytesAccessed = 0;
935    bank_ref.rowAccesses = 0;
936
937    ++rank_ref.numBanksActive;
938    assert(rank_ref.numBanksActive <= banksPerRank);
939
940    DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
941            bank_ref.bank, rank_ref.rank, act_tick,
942            ranks[rank_ref.rank]->numBanksActive);
943
944    rank_ref.cmdList.push_back(Command(MemCommand::ACT, bank_ref.bank,
945                               act_tick));
946
947    DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
948            timeStampOffset, bank_ref.bank, rank_ref.rank);
949
950    // The next access has to respect tRAS for this bank
951    bank_ref.preAllowedAt = act_tick + tRAS;
952
953    // Respect the row-to-column command delay for both read and write cmds
954    bank_ref.rdAllowedAt = std::max(act_tick + tRCD, bank_ref.rdAllowedAt);
955    bank_ref.wrAllowedAt = std::max(act_tick + tRCD, bank_ref.wrAllowedAt);
956
957    // start by enforcing tRRD
958    for (int i = 0; i < banksPerRank; i++) {
959        // next activate to any bank in this rank must not happen
960        // before tRRD
961        if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
962            // bank group architecture requires longer delays between
963            // ACT commands within the same bank group.  Use tRRD_L
964            // in this case
965            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
966                                             rank_ref.banks[i].actAllowedAt);
967        } else {
968            // use shorter tRRD value when either
969            // 1) bank group architecture is not supportted
970            // 2) bank is in a different bank group
971            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
972                                             rank_ref.banks[i].actAllowedAt);
973        }
974    }
975
976    // next, we deal with tXAW, if the activation limit is disabled
977    // then we directly schedule an activate power event
978    if (!rank_ref.actTicks.empty()) {
979        // sanity check
980        if (rank_ref.actTicks.back() &&
981           (act_tick - rank_ref.actTicks.back()) < tXAW) {
982            panic("Got %d activates in window %d (%llu - %llu) which "
983                  "is smaller than %llu\n", activationLimit, act_tick -
984                  rank_ref.actTicks.back(), act_tick,
985                  rank_ref.actTicks.back(), tXAW);
986        }
987
988        // shift the times used for the book keeping, the last element
989        // (highest index) is the oldest one and hence the lowest value
990        rank_ref.actTicks.pop_back();
991
992        // record an new activation (in the future)
993        rank_ref.actTicks.push_front(act_tick);
994
995        // cannot activate more than X times in time window tXAW, push the
996        // next one (the X + 1'st activate) to be tXAW away from the
997        // oldest in our window of X
998        if (rank_ref.actTicks.back() &&
999           (act_tick - rank_ref.actTicks.back()) < tXAW) {
1000            DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
1001                    "no earlier than %llu\n", activationLimit,
1002                    rank_ref.actTicks.back() + tXAW);
1003            for (int j = 0; j < banksPerRank; j++)
1004                // next activate must not happen before end of window
1005                rank_ref.banks[j].actAllowedAt =
1006                    std::max(rank_ref.actTicks.back() + tXAW,
1007                             rank_ref.banks[j].actAllowedAt);
1008        }
1009    }
1010
1011    // at the point when this activate takes place, make sure we
1012    // transition to the active power state
1013    if (!rank_ref.activateEvent.scheduled())
1014        schedule(rank_ref.activateEvent, act_tick);
1015    else if (rank_ref.activateEvent.when() > act_tick)
1016        // move it sooner in time
1017        reschedule(rank_ref.activateEvent, act_tick);
1018}
1019
1020void
1021DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
1022{
1023    // make sure the bank has an open row
1024    assert(bank.openRow != Bank::NO_ROW);
1025
1026    // sample the bytes per activate here since we are closing
1027    // the page
1028    bytesPerActivate.sample(bank.bytesAccessed);
1029
1030    bank.openRow = Bank::NO_ROW;
1031
1032    // no precharge allowed before this one
1033    bank.preAllowedAt = pre_at;
1034
1035    Tick pre_done_at = pre_at + tRP;
1036
1037    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
1038
1039    assert(rank_ref.numBanksActive != 0);
1040    --rank_ref.numBanksActive;
1041
1042    DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
1043            "%d active\n", bank.bank, rank_ref.rank, pre_at,
1044            rank_ref.numBanksActive);
1045
1046    if (trace) {
1047
1048        rank_ref.cmdList.push_back(Command(MemCommand::PRE, bank.bank,
1049                                   pre_at));
1050        DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1051                timeStampOffset, bank.bank, rank_ref.rank);
1052    }
1053    // if we look at the current number of active banks we might be
1054    // tempted to think the DRAM is now idle, however this can be
1055    // undone by an activate that is scheduled to happen before we
1056    // would have reached the idle state, so schedule an event and
1057    // rather check once we actually make it to the point in time when
1058    // the (last) precharge takes place
1059    if (!rank_ref.prechargeEvent.scheduled()) {
1060        schedule(rank_ref.prechargeEvent, pre_done_at);
1061        // New event, increment count
1062        ++rank_ref.outstandingEvents;
1063    } else if (rank_ref.prechargeEvent.when() < pre_done_at) {
1064        reschedule(rank_ref.prechargeEvent, pre_done_at);
1065    }
1066}
1067
1068void
1069DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1070{
1071    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1072            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1073
1074    // get the rank
1075    Rank& rank = dram_pkt->rankRef;
1076
1077    // are we in or transitioning to a low-power state and have not scheduled
1078    // a power-up event?
1079    // if so, wake up from power down to issue RD/WR burst
1080    if (rank.inLowPowerState) {
1081        assert(rank.pwrState != PWR_SREF);
1082        rank.scheduleWakeUpEvent(tXP);
1083    }
1084
1085    // get the bank
1086    Bank& bank = dram_pkt->bankRef;
1087
1088    // for the state we need to track if it is a row hit or not
1089    bool row_hit = true;
1090
1091    // Determine the access latency and update the bank state
1092    if (bank.openRow == dram_pkt->row) {
1093        // nothing to do
1094    } else {
1095        row_hit = false;
1096
1097        // If there is a page open, precharge it.
1098        if (bank.openRow != Bank::NO_ROW) {
1099            prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1100        }
1101
1102        // next we need to account for the delay in activating the
1103        // page
1104        Tick act_tick = std::max(bank.actAllowedAt, curTick());
1105
1106        // Record the activation and deal with all the global timing
1107        // constraints caused be a new activation (tRRD and tXAW)
1108        activateBank(rank, bank, act_tick, dram_pkt->row);
1109    }
1110
1111    // respect any constraints on the command (e.g. tRCD or tCCD)
1112    const Tick col_allowed_at = dram_pkt->isRead ?
1113                                          bank.rdAllowedAt : bank.wrAllowedAt;
1114
1115    // we need to wait until the bus is available before we can issue
1116    // the command; need minimum of tBURST between commands
1117    Tick cmd_at = std::max({col_allowed_at, nextBurstAt, curTick()});
1118
1119    // update the packet ready time
1120    dram_pkt->readyTime = cmd_at + tCL + tBURST;
1121
1122    // update the time for the next read/write burst for each
1123    // bank (add a max with tCCD/tCCD_L/tCCD_L_WR here)
1124    Tick dly_to_rd_cmd;
1125    Tick dly_to_wr_cmd;
1126    for (int j = 0; j < ranksPerChannel; j++) {
1127        for (int i = 0; i < banksPerRank; i++) {
1128            // next burst to same bank group in this rank must not happen
1129            // before tCCD_L.  Different bank group timing requirement is
1130            // tBURST; Add tCS for different ranks
1131            if (dram_pkt->rank == j) {
1132                if (bankGroupArch &&
1133                   (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1134                    // bank group architecture requires longer delays between
1135                    // RD/WR burst commands to the same bank group.
1136                    // tCCD_L is default requirement for same BG timing
1137                    // tCCD_L_WR is required for write-to-write
1138                    // Need to also take bus turnaround delays into account
1139                    dly_to_rd_cmd = dram_pkt->isRead ?
1140                                    tCCD_L : std::max(tCCD_L, wrToRdDly);
1141                    dly_to_wr_cmd = dram_pkt->isRead ?
1142                                    std::max(tCCD_L, rdToWrDly) : tCCD_L_WR;
1143                } else {
1144                    // tBURST is default requirement for diff BG timing
1145                    // Need to also take bus turnaround delays into account
1146                    dly_to_rd_cmd = dram_pkt->isRead ? tBURST : wrToRdDly;
1147                    dly_to_wr_cmd = dram_pkt->isRead ? rdToWrDly : tBURST;
1148                }
1149            } else {
1150                // different rank is by default in a different bank group and
1151                // doesn't require longer tCCD or additional RTW, WTR delays
1152                // Need to account for rank-to-rank switching with tCS
1153                dly_to_wr_cmd = rankToRankDly;
1154                dly_to_rd_cmd = rankToRankDly;
1155            }
1156            ranks[j]->banks[i].rdAllowedAt = std::max(cmd_at + dly_to_rd_cmd,
1157                                             ranks[j]->banks[i].rdAllowedAt);
1158            ranks[j]->banks[i].wrAllowedAt = std::max(cmd_at + dly_to_wr_cmd,
1159                                             ranks[j]->banks[i].wrAllowedAt);
1160        }
1161    }
1162
1163    // Save rank of current access
1164    activeRank = dram_pkt->rank;
1165
1166    // If this is a write, we also need to respect the write recovery
1167    // time before a precharge, in the case of a read, respect the
1168    // read to precharge constraint
1169    bank.preAllowedAt = std::max(bank.preAllowedAt,
1170                                 dram_pkt->isRead ? cmd_at + tRTP :
1171                                 dram_pkt->readyTime + tWR);
1172
1173    // increment the bytes accessed and the accesses per row
1174    bank.bytesAccessed += burstSize;
1175    ++bank.rowAccesses;
1176
1177    // if we reached the max, then issue with an auto-precharge
1178    bool auto_precharge = pageMgmt == Enums::close ||
1179        bank.rowAccesses == maxAccessesPerRow;
1180
1181    // if we did not hit the limit, we might still want to
1182    // auto-precharge
1183    if (!auto_precharge &&
1184        (pageMgmt == Enums::open_adaptive ||
1185         pageMgmt == Enums::close_adaptive)) {
1186        // a twist on the open and close page policies:
1187        // 1) open_adaptive page policy does not blindly keep the
1188        // page open, but close it if there are no row hits, and there
1189        // are bank conflicts in the queue
1190        // 2) close_adaptive page policy does not blindly close the
1191        // page, but closes it only if there are no row hits in the queue.
1192        // In this case, only force an auto precharge when there
1193        // are no same page hits in the queue
1194        bool got_more_hits = false;
1195        bool got_bank_conflict = false;
1196
1197        // either look at the read queue or write queue
1198        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1199            writeQueue;
1200        auto p = queue.begin();
1201        // make sure we are not considering the packet that we are
1202        // currently dealing with (which is the head of the queue)
1203        ++p;
1204
1205        // keep on looking until we find a hit or reach the end of the queue
1206        // 1) if a hit is found, then both open and close adaptive policies keep
1207        // the page open
1208        // 2) if no hit is found, got_bank_conflict is set to true if a bank
1209        // conflict request is waiting in the queue
1210        while (!got_more_hits && p != queue.end()) {
1211            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1212                (dram_pkt->bank == (*p)->bank);
1213            bool same_row = dram_pkt->row == (*p)->row;
1214            got_more_hits |= same_rank_bank && same_row;
1215            got_bank_conflict |= same_rank_bank && !same_row;
1216            ++p;
1217        }
1218
1219        // auto pre-charge when either
1220        // 1) open_adaptive policy, we have not got any more hits, and
1221        //    have a bank conflict
1222        // 2) close_adaptive policy and we have not got any more hits
1223        auto_precharge = !got_more_hits &&
1224            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1225    }
1226
1227    // DRAMPower trace command to be written
1228    std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1229
1230    // MemCommand required for DRAMPower library
1231    MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1232                                                   MemCommand::WR;
1233
1234    // Update bus state to reflect when previous command was issued
1235    nextBurstAt = cmd_at + tBURST;
1236
1237    DPRINTF(DRAM, "Access to %lld, ready at %lld next burst at %lld.\n",
1238            dram_pkt->addr, dram_pkt->readyTime, nextBurstAt);
1239
1240    dram_pkt->rankRef.cmdList.push_back(Command(command, dram_pkt->bank,
1241                                        cmd_at));
1242
1243    DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1244            timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1245
1246    // if this access should use auto-precharge, then we are
1247    // closing the row after the read/write burst
1248    if (auto_precharge) {
1249        // if auto-precharge push a PRE command at the correct tick to the
1250        // list used by DRAMPower library to calculate power
1251        prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
1252
1253        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1254    }
1255
1256    // Update the minimum timing between the requests, this is a
1257    // conservative estimate of when we have to schedule the next
1258    // request to not introduce any unecessary bubbles. In most cases
1259    // we will wake up sooner than we have to.
1260    nextReqTime = nextBurstAt - (tRP + tRCD);
1261
1262    // Update the stats and schedule the next request
1263    if (dram_pkt->isRead) {
1264        ++readsThisTime;
1265        if (row_hit)
1266            readRowHits++;
1267        bytesReadDRAM += burstSize;
1268        perBankRdBursts[dram_pkt->bankId]++;
1269
1270        // Update latency stats
1271        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1272        totBusLat += tBURST;
1273        totQLat += cmd_at - dram_pkt->entryTime;
1274    } else {
1275        ++writesThisTime;
1276        if (row_hit)
1277            writeRowHits++;
1278        bytesWritten += burstSize;
1279        perBankWrBursts[dram_pkt->bankId]++;
1280    }
1281}
1282
1283void
1284DRAMCtrl::processNextReqEvent()
1285{
1286    int busyRanks = 0;
1287    for (auto r : ranks) {
1288        if (!r->inRefIdleState()) {
1289            if (r->pwrState != PWR_SREF) {
1290                // rank is busy refreshing
1291                DPRINTF(DRAMState, "Rank %d is not available\n", r->rank);
1292                busyRanks++;
1293
1294                // let the rank know that if it was waiting to drain, it
1295                // is now done and ready to proceed
1296                r->checkDrainDone();
1297            }
1298
1299            // check if we were in self-refresh and haven't started
1300            // to transition out
1301            if ((r->pwrState == PWR_SREF) && r->inLowPowerState) {
1302                DPRINTF(DRAMState, "Rank %d is in self-refresh\n", r->rank);
1303                // if we have commands queued to this rank and we don't have
1304                // a minimum number of active commands enqueued,
1305                // exit self-refresh
1306                if (r->forceSelfRefreshExit()) {
1307                    DPRINTF(DRAMState, "rank %d was in self refresh and"
1308                           " should wake up\n", r->rank);
1309                    //wake up from self-refresh
1310                    r->scheduleWakeUpEvent(tXS);
1311                    // things are brought back into action once a refresh is
1312                    // performed after self-refresh
1313                    // continue with selection for other ranks
1314                }
1315            }
1316        }
1317    }
1318
1319    if (busyRanks == ranksPerChannel) {
1320        // if all ranks are refreshing wait for them to finish
1321        // and stall this state machine without taking any further
1322        // action, and do not schedule a new nextReqEvent
1323        return;
1324    }
1325
1326    // pre-emptively set to false.  Overwrite if in transitioning to
1327    // a new state
1328    bool switched_cmd_type = false;
1329    if (busState != busStateNext) {
1330        if (busState == READ) {
1331            DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1332                    "waiting\n", readsThisTime, readQueue.size());
1333
1334            // sample and reset the read-related stats as we are now
1335            // transitioning to writes, and all reads are done
1336            rdPerTurnAround.sample(readsThisTime);
1337            readsThisTime = 0;
1338
1339            // now proceed to do the actual writes
1340            switched_cmd_type = true;
1341        } else {
1342            DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1343                    "waiting\n", writesThisTime, writeQueue.size());
1344
1345            wrPerTurnAround.sample(writesThisTime);
1346            writesThisTime = 0;
1347
1348            switched_cmd_type = true;
1349        }
1350        // update busState to match next state until next transition
1351        busState = busStateNext;
1352    }
1353
1354    // when we get here it is either a read or a write
1355    if (busState == READ) {
1356
1357        // track if we should switch or not
1358        bool switch_to_writes = false;
1359
1360        if (readQueue.empty()) {
1361            // In the case there is no read request to go next,
1362            // trigger writes if we have passed the low threshold (or
1363            // if we are draining)
1364            if (!writeQueue.empty() &&
1365                (drainState() == DrainState::Draining ||
1366                 writeQueue.size() > writeLowThreshold)) {
1367
1368                switch_to_writes = true;
1369            } else {
1370                // check if we are drained
1371                // not done draining until in PWR_IDLE state
1372                // ensuring all banks are closed and
1373                // have exited low power states
1374                if (drainState() == DrainState::Draining &&
1375                    respQueue.empty() && allRanksDrained()) {
1376
1377                    DPRINTF(Drain, "DRAM controller done draining\n");
1378                    signalDrainDone();
1379                }
1380
1381                // nothing to do, not even any point in scheduling an
1382                // event for the next request
1383                return;
1384            }
1385        } else {
1386            // bool to check if there is a read to a free rank
1387            bool found_read = false;
1388
1389            // Figure out which read request goes next, and move it to the
1390            // front of the read queue
1391            // If we are changing command type, incorporate the minimum
1392            // bus turnaround delay which will be tCS (different rank) case
1393            found_read = chooseNext(readQueue, switched_cmd_type ? tCS : 0);
1394
1395            // if no read to an available rank is found then return
1396            // at this point. There could be writes to the available ranks
1397            // which are above the required threshold. However, to
1398            // avoid adding more complexity to the code, return and wait
1399            // for a refresh event to kick things into action again.
1400            if (!found_read)
1401                return;
1402
1403            DRAMPacket* dram_pkt = readQueue.front();
1404            assert(dram_pkt->rankRef.inRefIdleState());
1405
1406            doDRAMAccess(dram_pkt);
1407
1408            // At this point we're done dealing with the request
1409            readQueue.pop_front();
1410
1411            // Every respQueue which will generate an event, increment count
1412            ++dram_pkt->rankRef.outstandingEvents;
1413
1414            // sanity check
1415            assert(dram_pkt->size <= burstSize);
1416            assert(dram_pkt->readyTime >= curTick());
1417
1418            // Insert into response queue. It will be sent back to the
1419            // requestor at its readyTime
1420            if (respQueue.empty()) {
1421                assert(!respondEvent.scheduled());
1422                schedule(respondEvent, dram_pkt->readyTime);
1423            } else {
1424                assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1425                assert(respondEvent.scheduled());
1426            }
1427
1428            respQueue.push_back(dram_pkt);
1429
1430            // we have so many writes that we have to transition
1431            if (writeQueue.size() > writeHighThreshold) {
1432                switch_to_writes = true;
1433            }
1434        }
1435
1436        // switching to writes, either because the read queue is empty
1437        // and the writes have passed the low threshold (or we are
1438        // draining), or because the writes hit the hight threshold
1439        if (switch_to_writes) {
1440            // transition to writing
1441            busStateNext = WRITE;
1442        }
1443    } else {
1444        // bool to check if write to free rank is found
1445        bool found_write = false;
1446
1447        // If we are changing command type, incorporate the minimum
1448        // bus turnaround delay
1449        found_write = chooseNext(writeQueue,
1450                                 switched_cmd_type ? std::min(tRTW, tCS) : 0);
1451
1452        // if there are no writes to a rank that is available to service
1453        // requests (i.e. rank is in refresh idle state) are found then
1454        // return. There could be reads to the available ranks. However, to
1455        // avoid adding more complexity to the code, return at this point and
1456        // wait for a refresh event to kick things into action again.
1457        if (!found_write)
1458            return;
1459
1460        DRAMPacket* dram_pkt = writeQueue.front();
1461        assert(dram_pkt->rankRef.inRefIdleState());
1462        // sanity check
1463        assert(dram_pkt->size <= burstSize);
1464
1465        doDRAMAccess(dram_pkt);
1466
1467        writeQueue.pop_front();
1468
1469        // removed write from queue, decrement count
1470        --dram_pkt->rankRef.writeEntries;
1471
1472        // Schedule write done event to decrement event count
1473        // after the readyTime has been reached
1474        // Only schedule latest write event to minimize events
1475        // required; only need to ensure that final event scheduled covers
1476        // the time that writes are outstanding and bus is active
1477        // to holdoff power-down entry events
1478        if (!dram_pkt->rankRef.writeDoneEvent.scheduled()) {
1479            schedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime);
1480            // New event, increment count
1481            ++dram_pkt->rankRef.outstandingEvents;
1482
1483        } else if (dram_pkt->rankRef.writeDoneEvent.when() <
1484                   dram_pkt-> readyTime) {
1485            reschedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime);
1486        }
1487
1488        isInWriteQueue.erase(burstAlign(dram_pkt->addr));
1489        delete dram_pkt;
1490
1491        // If we emptied the write queue, or got sufficiently below the
1492        // threshold (using the minWritesPerSwitch as the hysteresis) and
1493        // are not draining, or we have reads waiting and have done enough
1494        // writes, then switch to reads.
1495        if (writeQueue.empty() ||
1496            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1497             drainState() != DrainState::Draining) ||
1498            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1499            // turn the bus back around for reads again
1500            busStateNext = READ;
1501
1502            // note that the we switch back to reads also in the idle
1503            // case, which eventually will check for any draining and
1504            // also pause any further scheduling if there is really
1505            // nothing to do
1506        }
1507    }
1508    // It is possible that a refresh to another rank kicks things back into
1509    // action before reaching this point.
1510    if (!nextReqEvent.scheduled())
1511        schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1512
1513    // If there is space available and we have writes waiting then let
1514    // them retry. This is done here to ensure that the retry does not
1515    // cause a nextReqEvent to be scheduled before we do so as part of
1516    // the next request processing
1517    if (retryWrReq && writeQueue.size() < writeBufferSize) {
1518        retryWrReq = false;
1519        port.sendRetryReq();
1520    }
1521}
1522
1523pair<vector<uint32_t>, bool>
1524DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1525                      Tick min_col_at) const
1526{
1527    Tick min_act_at = MaxTick;
1528    vector<uint32_t> bank_mask(ranksPerChannel, 0);
1529
1530    // latest Tick for which ACT can occur without incurring additoinal
1531    // delay on the data bus
1532    const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick());
1533
1534    // Flag condition when burst can issue back-to-back with previous burst
1535    bool found_seamless_bank = false;
1536
1537    // Flag condition when bank can be opened without incurring additional
1538    // delay on the data bus
1539    bool hidden_bank_prep = false;
1540
1541    // determine if we have queued transactions targetting the
1542    // bank in question
1543    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1544    for (const auto& p : queue) {
1545        if (p->rankRef.inRefIdleState())
1546            got_waiting[p->bankId] = true;
1547    }
1548
1549    // Find command with optimal bank timing
1550    // Will prioritize commands that can issue seamlessly.
1551    for (int i = 0; i < ranksPerChannel; i++) {
1552        for (int j = 0; j < banksPerRank; j++) {
1553            uint16_t bank_id = i * banksPerRank + j;
1554
1555            // if we have waiting requests for the bank, and it is
1556            // amongst the first available, update the mask
1557            if (got_waiting[bank_id]) {
1558                // make sure this rank is not currently refreshing.
1559                assert(ranks[i]->inRefIdleState());
1560                // simplistic approximation of when the bank can issue
1561                // an activate, ignoring any rank-to-rank switching
1562                // cost in this calculation
1563                Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1564                    std::max(ranks[i]->banks[j].actAllowedAt, curTick()) :
1565                    std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1566
1567                // When is the earliest the R/W burst can issue?
1568                const Tick col_allowed_at = (busState == READ) ?
1569                                              ranks[i]->banks[j].rdAllowedAt :
1570                                              ranks[i]->banks[j].wrAllowedAt;
1571                Tick col_at = std::max(col_allowed_at, act_at + tRCD);
1572
1573                // bank can issue burst back-to-back (seamlessly) with
1574                // previous burst
1575                bool new_seamless_bank = col_at <= min_col_at;
1576
1577                // if we found a new seamless bank or we have no
1578                // seamless banks, and got a bank with an earlier
1579                // activate time, it should be added to the bit mask
1580                if (new_seamless_bank ||
1581                    (!found_seamless_bank && act_at <= min_act_at)) {
1582                    // if we did not have a seamless bank before, and
1583                    // we do now, reset the bank mask, also reset it
1584                    // if we have not yet found a seamless bank and
1585                    // the activate time is smaller than what we have
1586                    // seen so far
1587                    if (!found_seamless_bank &&
1588                        (new_seamless_bank || act_at < min_act_at)) {
1589                        std::fill(bank_mask.begin(), bank_mask.end(), 0);
1590                    }
1591
1592                    found_seamless_bank |= new_seamless_bank;
1593
1594                    // ACT can occur 'behind the scenes'
1595                    hidden_bank_prep = act_at <= hidden_act_max;
1596
1597                    // set the bit corresponding to the available bank
1598                    replaceBits(bank_mask[i], j, j, 1);
1599                    min_act_at = act_at;
1600                }
1601            }
1602        }
1603    }
1604
1605    return make_pair(bank_mask, hidden_bank_prep);
1606}
1607
1608DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p, int rank)
1609    : EventManager(&_memory), memory(_memory),
1610      pwrStateTrans(PWR_IDLE), pwrStatePostRefresh(PWR_IDLE),
1611      pwrStateTick(0), refreshDueAt(0), pwrState(PWR_IDLE),
1612      refreshState(REF_IDLE), inLowPowerState(false), rank(rank),
1613      readEntries(0), writeEntries(0), outstandingEvents(0),
1614      wakeUpAllowedAt(0), power(_p, false), banks(_p->banks_per_rank),
1615      numBanksActive(0), actTicks(_p->activation_limit, 0),
1616      writeDoneEvent([this]{ processWriteDoneEvent(); }, name()),
1617      activateEvent([this]{ processActivateEvent(); }, name()),
1618      prechargeEvent([this]{ processPrechargeEvent(); }, name()),
1619      refreshEvent([this]{ processRefreshEvent(); }, name()),
1620      powerEvent([this]{ processPowerEvent(); }, name()),
1621      wakeUpEvent([this]{ processWakeUpEvent(); }, name())
1622{
1623    for (int b = 0; b < _p->banks_per_rank; b++) {
1624        banks[b].bank = b;
1625        // GDDR addressing of banks to BG is linear.
1626        // Here we assume that all DRAM generations address bank groups as
1627        // follows:
1628        if (_p->bank_groups_per_rank > 0) {
1629            // Simply assign lower bits to bank group in order to
1630            // rotate across bank groups as banks are incremented
1631            // e.g. with 4 banks per bank group and 16 banks total:
1632            //    banks 0,4,8,12  are in bank group 0
1633            //    banks 1,5,9,13  are in bank group 1
1634            //    banks 2,6,10,14 are in bank group 2
1635            //    banks 3,7,11,15 are in bank group 3
1636            banks[b].bankgr = b % _p->bank_groups_per_rank;
1637        } else {
1638            // No bank groups; simply assign to bank number
1639            banks[b].bankgr = b;
1640        }
1641    }
1642}
1643
1644void
1645DRAMCtrl::Rank::startup(Tick ref_tick)
1646{
1647    assert(ref_tick > curTick());
1648
1649    pwrStateTick = curTick();
1650
1651    // kick off the refresh, and give ourselves enough time to
1652    // precharge
1653    schedule(refreshEvent, ref_tick);
1654}
1655
1656void
1657DRAMCtrl::Rank::suspend()
1658{
1659    deschedule(refreshEvent);
1660
1661    // Update the stats
1662    updatePowerStats();
1663
1664    // don't automatically transition back to LP state after next REF
1665    pwrStatePostRefresh = PWR_IDLE;
1666}
1667
1668bool
1669DRAMCtrl::Rank::isQueueEmpty() const
1670{
1671    // check commmands in Q based on current bus direction
1672    bool no_queued_cmds = ((memory.busStateNext == READ) && (readEntries == 0))
1673                          || ((memory.busStateNext == WRITE) &&
1674                              (writeEntries == 0));
1675    return no_queued_cmds;
1676}
1677
1678void
1679DRAMCtrl::Rank::checkDrainDone()
1680{
1681    // if this rank was waiting to drain it is now able to proceed to
1682    // precharge
1683    if (refreshState == REF_DRAIN) {
1684        DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1685
1686        refreshState = REF_PD_EXIT;
1687
1688        // hand control back to the refresh event loop
1689        schedule(refreshEvent, curTick());
1690    }
1691}
1692
1693void
1694DRAMCtrl::Rank::flushCmdList()
1695{
1696    // at the moment sort the list of commands and update the counters
1697    // for DRAMPower libray when doing a refresh
1698    sort(cmdList.begin(), cmdList.end(), DRAMCtrl::sortTime);
1699
1700    auto next_iter = cmdList.begin();
1701    // push to commands to DRAMPower
1702    for ( ; next_iter != cmdList.end() ; ++next_iter) {
1703         Command cmd = *next_iter;
1704         if (cmd.timeStamp <= curTick()) {
1705             // Move all commands at or before curTick to DRAMPower
1706             power.powerlib.doCommand(cmd.type, cmd.bank,
1707                                      divCeil(cmd.timeStamp, memory.tCK) -
1708                                      memory.timeStampOffset);
1709         } else {
1710             // done - found all commands at or before curTick()
1711             // next_iter references the 1st command after curTick
1712             break;
1713         }
1714    }
1715    // reset cmdList to only contain commands after curTick
1716    // if there are no commands after curTick, updated cmdList will be empty
1717    // in this case, next_iter is cmdList.end()
1718    cmdList.assign(next_iter, cmdList.end());
1719}
1720
1721void
1722DRAMCtrl::Rank::processActivateEvent()
1723{
1724    // we should transition to the active state as soon as any bank is active
1725    if (pwrState != PWR_ACT)
1726        // note that at this point numBanksActive could be back at
1727        // zero again due to a precharge scheduled in the future
1728        schedulePowerEvent(PWR_ACT, curTick());
1729}
1730
1731void
1732DRAMCtrl::Rank::processPrechargeEvent()
1733{
1734    // counter should at least indicate one outstanding request
1735    // for this precharge
1736    assert(outstandingEvents > 0);
1737    // precharge complete, decrement count
1738    --outstandingEvents;
1739
1740    // if we reached zero, then special conditions apply as we track
1741    // if all banks are precharged for the power models
1742    if (numBanksActive == 0) {
1743        // no reads to this rank in the Q and no pending
1744        // RD/WR or refresh commands
1745        if (isQueueEmpty() && outstandingEvents == 0) {
1746            // should still be in ACT state since bank still open
1747            assert(pwrState == PWR_ACT);
1748
1749            // All banks closed - switch to precharge power down state.
1750            DPRINTF(DRAMState, "Rank %d sleep at tick %d\n",
1751                    rank, curTick());
1752            powerDownSleep(PWR_PRE_PDN, curTick());
1753        } else {
1754            // we should transition to the idle state when the last bank
1755            // is precharged
1756            schedulePowerEvent(PWR_IDLE, curTick());
1757        }
1758    }
1759}
1760
1761void
1762DRAMCtrl::Rank::processWriteDoneEvent()
1763{
1764    // counter should at least indicate one outstanding request
1765    // for this write
1766    assert(outstandingEvents > 0);
1767    // Write transfer on bus has completed
1768    // decrement per rank counter
1769    --outstandingEvents;
1770}
1771
1772void
1773DRAMCtrl::Rank::processRefreshEvent()
1774{
1775    // when first preparing the refresh, remember when it was due
1776    if ((refreshState == REF_IDLE) || (refreshState == REF_SREF_EXIT)) {
1777        // remember when the refresh is due
1778        refreshDueAt = curTick();
1779
1780        // proceed to drain
1781        refreshState = REF_DRAIN;
1782
1783        // make nonzero while refresh is pending to ensure
1784        // power down and self-refresh are not entered
1785        ++outstandingEvents;
1786
1787        DPRINTF(DRAM, "Refresh due\n");
1788    }
1789
1790    // let any scheduled read or write to the same rank go ahead,
1791    // after which it will
1792    // hand control back to this event loop
1793    if (refreshState == REF_DRAIN) {
1794        // if a request is at the moment being handled and this request is
1795        // accessing the current rank then wait for it to finish
1796        if ((rank == memory.activeRank)
1797            && (memory.nextReqEvent.scheduled())) {
1798            // hand control over to the request loop until it is
1799            // evaluated next
1800            DPRINTF(DRAM, "Refresh awaiting draining\n");
1801
1802            return;
1803        } else {
1804            refreshState = REF_PD_EXIT;
1805        }
1806    }
1807
1808    // at this point, ensure that rank is not in a power-down state
1809    if (refreshState == REF_PD_EXIT) {
1810        // if rank was sleeping and we have't started exit process,
1811        // wake-up for refresh
1812        if (inLowPowerState) {
1813            DPRINTF(DRAM, "Wake Up for refresh\n");
1814            // save state and return after refresh completes
1815            scheduleWakeUpEvent(memory.tXP);
1816            return;
1817        } else {
1818            refreshState = REF_PRE;
1819        }
1820    }
1821
1822    // at this point, ensure that all banks are precharged
1823    if (refreshState == REF_PRE) {
1824        // precharge any active bank
1825        if (numBanksActive != 0) {
1826            // at the moment, we use a precharge all even if there is
1827            // only a single bank open
1828            DPRINTF(DRAM, "Precharging all\n");
1829
1830            // first determine when we can precharge
1831            Tick pre_at = curTick();
1832
1833            for (auto &b : banks) {
1834                // respect both causality and any existing bank
1835                // constraints, some banks could already have a
1836                // (auto) precharge scheduled
1837                pre_at = std::max(b.preAllowedAt, pre_at);
1838            }
1839
1840            // make sure all banks per rank are precharged, and for those that
1841            // already are, update their availability
1842            Tick act_allowed_at = pre_at + memory.tRP;
1843
1844            for (auto &b : banks) {
1845                if (b.openRow != Bank::NO_ROW) {
1846                    memory.prechargeBank(*this, b, pre_at, false);
1847                } else {
1848                    b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1849                    b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1850                }
1851            }
1852
1853            // precharge all banks in rank
1854            cmdList.push_back(Command(MemCommand::PREA, 0, pre_at));
1855
1856            DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1857                    divCeil(pre_at, memory.tCK) -
1858                            memory.timeStampOffset, rank);
1859        } else if ((pwrState == PWR_IDLE) && (outstandingEvents == 1))  {
1860            // Banks are closed, have transitioned to IDLE state, and
1861            // no outstanding ACT,RD/WR,Auto-PRE sequence scheduled
1862            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1863
1864            // go ahead and kick the power state machine into gear since
1865            // we are already idle
1866            schedulePowerEvent(PWR_REF, curTick());
1867        } else {
1868            // banks state is closed but haven't transitioned pwrState to IDLE
1869            // or have outstanding ACT,RD/WR,Auto-PRE sequence scheduled
1870            // should have outstanding precharge event in this case
1871            assert(prechargeEvent.scheduled());
1872            // will start refresh when pwrState transitions to IDLE
1873        }
1874
1875        assert(numBanksActive == 0);
1876
1877        // wait for all banks to be precharged, at which point the
1878        // power state machine will transition to the idle state, and
1879        // automatically move to a refresh, at that point it will also
1880        // call this method to get the refresh event loop going again
1881        return;
1882    }
1883
1884    // last but not least we perform the actual refresh
1885    if (refreshState == REF_START) {
1886        // should never get here with any banks active
1887        assert(numBanksActive == 0);
1888        assert(pwrState == PWR_REF);
1889
1890        Tick ref_done_at = curTick() + memory.tRFC;
1891
1892        for (auto &b : banks) {
1893            b.actAllowedAt = ref_done_at;
1894        }
1895
1896        // at the moment this affects all ranks
1897        cmdList.push_back(Command(MemCommand::REF, 0, curTick()));
1898
1899        // Update the stats
1900        updatePowerStats();
1901
1902        DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1903                memory.timeStampOffset, rank);
1904
1905        // Update for next refresh
1906        refreshDueAt += memory.tREFI;
1907
1908        // make sure we did not wait so long that we cannot make up
1909        // for it
1910        if (refreshDueAt < ref_done_at) {
1911            fatal("Refresh was delayed so long we cannot catch up\n");
1912        }
1913
1914        // Run the refresh and schedule event to transition power states
1915        // when refresh completes
1916        refreshState = REF_RUN;
1917        schedule(refreshEvent, ref_done_at);
1918        return;
1919    }
1920
1921    if (refreshState == REF_RUN) {
1922        // should never get here with any banks active
1923        assert(numBanksActive == 0);
1924        assert(pwrState == PWR_REF);
1925
1926        assert(!powerEvent.scheduled());
1927
1928        if ((memory.drainState() == DrainState::Draining) ||
1929            (memory.drainState() == DrainState::Drained)) {
1930            // if draining, do not re-enter low-power mode.
1931            // simply go to IDLE and wait
1932            schedulePowerEvent(PWR_IDLE, curTick());
1933        } else {
1934            // At the moment, we sleep when the refresh ends and wait to be
1935            // woken up again if previously in a low-power state.
1936            if (pwrStatePostRefresh != PWR_IDLE) {
1937                // power State should be power Refresh
1938                assert(pwrState == PWR_REF);
1939                DPRINTF(DRAMState, "Rank %d sleeping after refresh and was in "
1940                        "power state %d before refreshing\n", rank,
1941                        pwrStatePostRefresh);
1942                powerDownSleep(pwrState, curTick());
1943
1944            // Force PRE power-down if there are no outstanding commands
1945            // in Q after refresh.
1946            } else if (isQueueEmpty()) {
1947                // still have refresh event outstanding but there should
1948                // be no other events outstanding
1949                assert(outstandingEvents == 1);
1950                DPRINTF(DRAMState, "Rank %d sleeping after refresh but was NOT"
1951                        " in a low power state before refreshing\n", rank);
1952                powerDownSleep(PWR_PRE_PDN, curTick());
1953
1954            } else {
1955                // move to the idle power state once the refresh is done, this
1956                // will also move the refresh state machine to the refresh
1957                // idle state
1958                schedulePowerEvent(PWR_IDLE, curTick());
1959            }
1960        }
1961
1962        // At this point, we have completed the current refresh.
1963        // In the SREF bypass case, we do not get to this state in the
1964        // refresh STM and therefore can always schedule next event.
1965        // Compensate for the delay in actually performing the refresh
1966        // when scheduling the next one
1967        schedule(refreshEvent, refreshDueAt - memory.tRP);
1968
1969        DPRINTF(DRAMState, "Refresh done at %llu and next refresh"
1970                " at %llu\n", curTick(), refreshDueAt);
1971    }
1972}
1973
1974void
1975DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1976{
1977    // respect causality
1978    assert(tick >= curTick());
1979
1980    if (!powerEvent.scheduled()) {
1981        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1982                tick, pwr_state);
1983
1984        // insert the new transition
1985        pwrStateTrans = pwr_state;
1986
1987        schedule(powerEvent, tick);
1988    } else {
1989        panic("Scheduled power event at %llu to state %d, "
1990              "with scheduled event at %llu to %d\n", tick, pwr_state,
1991              powerEvent.when(), pwrStateTrans);
1992    }
1993}
1994
1995void
1996DRAMCtrl::Rank::powerDownSleep(PowerState pwr_state, Tick tick)
1997{
1998    // if low power state is active low, schedule to active low power state.
1999    // in reality tCKE is needed to enter active low power. This is neglected
2000    // here and could be added in the future.
2001    if (pwr_state == PWR_ACT_PDN) {
2002        schedulePowerEvent(pwr_state, tick);
2003        // push command to DRAMPower
2004        cmdList.push_back(Command(MemCommand::PDN_F_ACT, 0, tick));
2005        DPRINTF(DRAMPower, "%llu,PDN_F_ACT,0,%d\n", divCeil(tick,
2006                memory.tCK) - memory.timeStampOffset, rank);
2007    } else if (pwr_state == PWR_PRE_PDN) {
2008        // if low power state is precharge low, schedule to precharge low
2009        // power state. In reality tCKE is needed to enter active low power.
2010        // This is neglected here.
2011        schedulePowerEvent(pwr_state, tick);
2012        //push Command to DRAMPower
2013        cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick));
2014        DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick,
2015                memory.tCK) - memory.timeStampOffset, rank);
2016    } else if (pwr_state == PWR_REF) {
2017        // if a refresh just occurred
2018        // transition to PRE_PDN now that all banks are closed
2019        // precharge power down requires tCKE to enter. For simplicity
2020        // this is not considered.
2021        schedulePowerEvent(PWR_PRE_PDN, tick);
2022        //push Command to DRAMPower
2023        cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick));
2024        DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick,
2025                memory.tCK) - memory.timeStampOffset, rank);
2026    } else if (pwr_state == PWR_SREF) {
2027        // should only enter SREF after PRE-PD wakeup to do a refresh
2028        assert(pwrStatePostRefresh == PWR_PRE_PDN);
2029        // self refresh requires time tCKESR to enter. For simplicity,
2030        // this is not considered.
2031        schedulePowerEvent(PWR_SREF, tick);
2032        // push Command to DRAMPower
2033        cmdList.push_back(Command(MemCommand::SREN, 0, tick));
2034        DPRINTF(DRAMPower, "%llu,SREN,0,%d\n", divCeil(tick,
2035                memory.tCK) - memory.timeStampOffset, rank);
2036    }
2037    // Ensure that we don't power-down and back up in same tick
2038    // Once we commit to PD entry, do it and wait for at least 1tCK
2039    // This could be replaced with tCKE if/when that is added to the model
2040    wakeUpAllowedAt = tick + memory.tCK;
2041
2042    // Transitioning to a low power state, set flag
2043    inLowPowerState = true;
2044}
2045
2046void
2047DRAMCtrl::Rank::scheduleWakeUpEvent(Tick exit_delay)
2048{
2049    Tick wake_up_tick = std::max(curTick(), wakeUpAllowedAt);
2050
2051    DPRINTF(DRAMState, "Scheduling wake-up for rank %d at tick %d\n",
2052            rank, wake_up_tick);
2053
2054    // if waking for refresh, hold previous state
2055    // else reset state back to IDLE
2056    if (refreshState == REF_PD_EXIT) {
2057        pwrStatePostRefresh = pwrState;
2058    } else {
2059        // don't automatically transition back to LP state after next REF
2060        pwrStatePostRefresh = PWR_IDLE;
2061    }
2062
2063    // schedule wake-up with event to ensure entry has completed before
2064    // we try to wake-up
2065    schedule(wakeUpEvent, wake_up_tick);
2066
2067    for (auto &b : banks) {
2068        // respect both causality and any existing bank
2069        // constraints, some banks could already have a
2070        // (auto) precharge scheduled
2071        b.wrAllowedAt = std::max(wake_up_tick + exit_delay, b.wrAllowedAt);
2072        b.rdAllowedAt = std::max(wake_up_tick + exit_delay, b.rdAllowedAt);
2073        b.preAllowedAt = std::max(wake_up_tick + exit_delay, b.preAllowedAt);
2074        b.actAllowedAt = std::max(wake_up_tick + exit_delay, b.actAllowedAt);
2075    }
2076    // Transitioning out of low power state, clear flag
2077    inLowPowerState = false;
2078
2079    // push to DRAMPower
2080    // use pwrStateTrans for cases where we have a power event scheduled
2081    // to enter low power that has not yet been processed
2082    if (pwrStateTrans == PWR_ACT_PDN) {
2083        cmdList.push_back(Command(MemCommand::PUP_ACT, 0, wake_up_tick));
2084        DPRINTF(DRAMPower, "%llu,PUP_ACT,0,%d\n", divCeil(wake_up_tick,
2085                memory.tCK) - memory.timeStampOffset, rank);
2086
2087    } else if (pwrStateTrans == PWR_PRE_PDN) {
2088        cmdList.push_back(Command(MemCommand::PUP_PRE, 0, wake_up_tick));
2089        DPRINTF(DRAMPower, "%llu,PUP_PRE,0,%d\n", divCeil(wake_up_tick,
2090                memory.tCK) - memory.timeStampOffset, rank);
2091    } else if (pwrStateTrans == PWR_SREF) {
2092        cmdList.push_back(Command(MemCommand::SREX, 0, wake_up_tick));
2093        DPRINTF(DRAMPower, "%llu,SREX,0,%d\n", divCeil(wake_up_tick,
2094                memory.tCK) - memory.timeStampOffset, rank);
2095    }
2096}
2097
2098void
2099DRAMCtrl::Rank::processWakeUpEvent()
2100{
2101    // Should be in a power-down or self-refresh state
2102    assert((pwrState == PWR_ACT_PDN) || (pwrState == PWR_PRE_PDN) ||
2103           (pwrState == PWR_SREF));
2104
2105    // Check current state to determine transition state
2106    if (pwrState == PWR_ACT_PDN) {
2107        // banks still open, transition to PWR_ACT
2108        schedulePowerEvent(PWR_ACT, curTick());
2109    } else {
2110        // transitioning from a precharge power-down or self-refresh state
2111        // banks are closed - transition to PWR_IDLE
2112        schedulePowerEvent(PWR_IDLE, curTick());
2113    }
2114}
2115
2116void
2117DRAMCtrl::Rank::processPowerEvent()
2118{
2119    assert(curTick() >= pwrStateTick);
2120    // remember where we were, and for how long
2121    Tick duration = curTick() - pwrStateTick;
2122    PowerState prev_state = pwrState;
2123
2124    // update the accounting
2125    pwrStateTime[prev_state] += duration;
2126
2127    // track to total idle time
2128    if ((prev_state == PWR_PRE_PDN) || (prev_state == PWR_ACT_PDN) ||
2129        (prev_state == PWR_SREF)) {
2130        totalIdleTime += duration;
2131    }
2132
2133    pwrState = pwrStateTrans;
2134    pwrStateTick = curTick();
2135
2136    // if rank was refreshing, make sure to start scheduling requests again
2137    if (prev_state == PWR_REF) {
2138        // bus IDLED prior to REF
2139        // counter should be one for refresh command only
2140        assert(outstandingEvents == 1);
2141        // REF complete, decrement count and go back to IDLE
2142        --outstandingEvents;
2143        refreshState = REF_IDLE;
2144
2145        DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
2146        // if moving back to power-down after refresh
2147        if (pwrState != PWR_IDLE) {
2148            assert(pwrState == PWR_PRE_PDN);
2149            DPRINTF(DRAMState, "Switching to power down state after refreshing"
2150                    " rank %d at %llu tick\n", rank, curTick());
2151        }
2152
2153        // completed refresh event, ensure next request is scheduled
2154        if (!memory.nextReqEvent.scheduled()) {
2155            DPRINTF(DRAM, "Scheduling next request after refreshing"
2156                           " rank %d\n", rank);
2157            schedule(memory.nextReqEvent, curTick());
2158        }
2159    }
2160
2161    if ((pwrState == PWR_ACT) && (refreshState == REF_PD_EXIT)) {
2162        // have exited ACT PD
2163        assert(prev_state == PWR_ACT_PDN);
2164
2165        // go back to REF event and close banks
2166        refreshState = REF_PRE;
2167        schedule(refreshEvent, curTick());
2168    } else if (pwrState == PWR_IDLE) {
2169        DPRINTF(DRAMState, "All banks precharged\n");
2170        if (prev_state == PWR_SREF) {
2171            // set refresh state to REF_SREF_EXIT, ensuring inRefIdleState
2172            // continues to return false during tXS after SREF exit
2173            // Schedule a refresh which kicks things back into action
2174            // when it finishes
2175            refreshState = REF_SREF_EXIT;
2176            schedule(refreshEvent, curTick() + memory.tXS);
2177        } else {
2178            // if we have a pending refresh, and are now moving to
2179            // the idle state, directly transition to, or schedule refresh
2180            if ((refreshState == REF_PRE) || (refreshState == REF_PD_EXIT)) {
2181                // ensure refresh is restarted only after final PRE command.
2182                // do not restart refresh if controller is in an intermediate
2183                // state, after PRE_PDN exit, when banks are IDLE but an
2184                // ACT is scheduled.
2185                if (!activateEvent.scheduled()) {
2186                    // there should be nothing waiting at this point
2187                    assert(!powerEvent.scheduled());
2188                    if (refreshState == REF_PD_EXIT) {
2189                        // exiting PRE PD, will be in IDLE until tXP expires
2190                        // and then should transition to PWR_REF state
2191                        assert(prev_state == PWR_PRE_PDN);
2192                        schedulePowerEvent(PWR_REF, curTick() + memory.tXP);
2193                    } else if (refreshState == REF_PRE) {
2194                        // can directly move to PWR_REF state and proceed below
2195                        pwrState = PWR_REF;
2196                    }
2197                } else {
2198                    // must have PRE scheduled to transition back to IDLE
2199                    // and re-kick off refresh
2200                    assert(prechargeEvent.scheduled());
2201                }
2202            }
2203        }
2204    }
2205
2206    // transition to the refresh state and re-start refresh process
2207    // refresh state machine will schedule the next power state transition
2208    if (pwrState == PWR_REF) {
2209        // completed final PRE for refresh or exiting power-down
2210        assert(refreshState == REF_PRE || refreshState == REF_PD_EXIT);
2211
2212        // exited PRE PD for refresh, with no pending commands
2213        // bypass auto-refresh and go straight to SREF, where memory
2214        // will issue refresh immediately upon entry
2215        if (pwrStatePostRefresh == PWR_PRE_PDN && isQueueEmpty() &&
2216           (memory.drainState() != DrainState::Draining) &&
2217           (memory.drainState() != DrainState::Drained)) {
2218            DPRINTF(DRAMState, "Rank %d bypassing refresh and transitioning "
2219                    "to self refresh at %11u tick\n", rank, curTick());
2220            powerDownSleep(PWR_SREF, curTick());
2221
2222            // Since refresh was bypassed, remove event by decrementing count
2223            assert(outstandingEvents == 1);
2224            --outstandingEvents;
2225
2226            // reset state back to IDLE temporarily until SREF is entered
2227            pwrState = PWR_IDLE;
2228
2229        // Not bypassing refresh for SREF entry
2230        } else {
2231            DPRINTF(DRAMState, "Refreshing\n");
2232
2233            // there should be nothing waiting at this point
2234            assert(!powerEvent.scheduled());
2235
2236            // kick the refresh event loop into action again, and that
2237            // in turn will schedule a transition to the idle power
2238            // state once the refresh is done
2239            schedule(refreshEvent, curTick());
2240
2241            // Banks transitioned to IDLE, start REF
2242            refreshState = REF_START;
2243        }
2244    }
2245
2246}
2247
2248void
2249DRAMCtrl::Rank::updatePowerStats()
2250{
2251    // All commands up to refresh have completed
2252    // flush cmdList to DRAMPower
2253    flushCmdList();
2254
2255    // Call the function that calculates window energy at intermediate update
2256    // events like at refresh, stats dump as well as at simulation exit.
2257    // Window starts at the last time the calcWindowEnergy function was called
2258    // and is upto current time.
2259    power.powerlib.calcWindowEnergy(divCeil(curTick(), memory.tCK) -
2260                                    memory.timeStampOffset);
2261
2262    // Get the energy from DRAMPower
2263    Data::MemoryPowerModel::Energy energy = power.powerlib.getEnergy();
2264
2265    // The energy components inside the power lib are calculated over
2266    // the window so accumulate into the corresponding gem5 stat
2267    actEnergy += energy.act_energy * memory.devicesPerRank;
2268    preEnergy += energy.pre_energy * memory.devicesPerRank;
2269    readEnergy += energy.read_energy * memory.devicesPerRank;
2270    writeEnergy += energy.write_energy * memory.devicesPerRank;
2271    refreshEnergy += energy.ref_energy * memory.devicesPerRank;
2272    actBackEnergy += energy.act_stdby_energy * memory.devicesPerRank;
2273    preBackEnergy += energy.pre_stdby_energy * memory.devicesPerRank;
2274    actPowerDownEnergy += energy.f_act_pd_energy * memory.devicesPerRank;
2275    prePowerDownEnergy += energy.f_pre_pd_energy * memory.devicesPerRank;
2276    selfRefreshEnergy += energy.sref_energy * memory.devicesPerRank;
2277
2278    // Accumulate window energy into the total energy.
2279    totalEnergy += energy.window_energy * memory.devicesPerRank;
2280    // Average power must not be accumulated but calculated over the time
2281    // since last stats reset. SimClock::Frequency is tick period not tick
2282    // frequency.
2283    //              energy (pJ)     1e-9
2284    // power (mW) = ----------- * ----------
2285    //              time (tick)   tick_frequency
2286    averagePower = (totalEnergy.value() /
2287                    (curTick() - memory.lastStatsResetTick)) *
2288                    (SimClock::Frequency / 1000000000.0);
2289}
2290
2291void
2292DRAMCtrl::Rank::computeStats()
2293{
2294    DPRINTF(DRAM,"Computing stats due to a dump callback\n");
2295
2296    // Update the stats
2297    updatePowerStats();
2298
2299    // final update of power state times
2300    pwrStateTime[pwrState] += (curTick() - pwrStateTick);
2301    pwrStateTick = curTick();
2302
2303}
2304
2305void
2306DRAMCtrl::Rank::resetStats() {
2307    // The only way to clear the counters in DRAMPower is to call
2308    // calcWindowEnergy function as that then calls clearCounters. The
2309    // clearCounters method itself is private.
2310    power.powerlib.calcWindowEnergy(divCeil(curTick(), memory.tCK) -
2311                                    memory.timeStampOffset);
2312
2313}
2314
2315void
2316DRAMCtrl::Rank::regStats()
2317{
2318    pwrStateTime
2319        .init(6)
2320        .name(name() + ".memoryStateTime")
2321        .desc("Time in different power states");
2322    pwrStateTime.subname(0, "IDLE");
2323    pwrStateTime.subname(1, "REF");
2324    pwrStateTime.subname(2, "SREF");
2325    pwrStateTime.subname(3, "PRE_PDN");
2326    pwrStateTime.subname(4, "ACT");
2327    pwrStateTime.subname(5, "ACT_PDN");
2328
2329    actEnergy
2330        .name(name() + ".actEnergy")
2331        .desc("Energy for activate commands per rank (pJ)");
2332
2333    preEnergy
2334        .name(name() + ".preEnergy")
2335        .desc("Energy for precharge commands per rank (pJ)");
2336
2337    readEnergy
2338        .name(name() + ".readEnergy")
2339        .desc("Energy for read commands per rank (pJ)");
2340
2341    writeEnergy
2342        .name(name() + ".writeEnergy")
2343        .desc("Energy for write commands per rank (pJ)");
2344
2345    refreshEnergy
2346        .name(name() + ".refreshEnergy")
2347        .desc("Energy for refresh commands per rank (pJ)");
2348
2349    actBackEnergy
2350        .name(name() + ".actBackEnergy")
2351        .desc("Energy for active background per rank (pJ)");
2352
2353    preBackEnergy
2354        .name(name() + ".preBackEnergy")
2355        .desc("Energy for precharge background per rank (pJ)");
2356
2357    actPowerDownEnergy
2358        .name(name() + ".actPowerDownEnergy")
2359        .desc("Energy for active power-down per rank (pJ)");
2360
2361    prePowerDownEnergy
2362        .name(name() + ".prePowerDownEnergy")
2363        .desc("Energy for precharge power-down per rank (pJ)");
2364
2365    selfRefreshEnergy
2366        .name(name() + ".selfRefreshEnergy")
2367        .desc("Energy for self refresh per rank (pJ)");
2368
2369    totalEnergy
2370        .name(name() + ".totalEnergy")
2371        .desc("Total energy per rank (pJ)");
2372
2373    averagePower
2374        .name(name() + ".averagePower")
2375        .desc("Core power per rank (mW)");
2376
2377    totalIdleTime
2378        .name(name() + ".totalIdleTime")
2379        .desc("Total Idle time Per DRAM Rank");
2380
2381    Stats::registerDumpCallback(new RankDumpCallback(this));
2382    Stats::registerResetCallback(new RankResetCallback(this));
2383}
2384void
2385DRAMCtrl::regStats()
2386{
2387    using namespace Stats;
2388
2389    AbstractMemory::regStats();
2390
2391    for (auto r : ranks) {
2392        r->regStats();
2393    }
2394
2395    registerResetCallback(new MemResetCallback(this));
2396
2397    readReqs
2398        .name(name() + ".readReqs")
2399        .desc("Number of read requests accepted");
2400
2401    writeReqs
2402        .name(name() + ".writeReqs")
2403        .desc("Number of write requests accepted");
2404
2405    readBursts
2406        .name(name() + ".readBursts")
2407        .desc("Number of DRAM read bursts, "
2408              "including those serviced by the write queue");
2409
2410    writeBursts
2411        .name(name() + ".writeBursts")
2412        .desc("Number of DRAM write bursts, "
2413              "including those merged in the write queue");
2414
2415    servicedByWrQ
2416        .name(name() + ".servicedByWrQ")
2417        .desc("Number of DRAM read bursts serviced by the write queue");
2418
2419    mergedWrBursts
2420        .name(name() + ".mergedWrBursts")
2421        .desc("Number of DRAM write bursts merged with an existing one");
2422
2423    neitherReadNorWrite
2424        .name(name() + ".neitherReadNorWriteReqs")
2425        .desc("Number of requests that are neither read nor write");
2426
2427    perBankRdBursts
2428        .init(banksPerRank * ranksPerChannel)
2429        .name(name() + ".perBankRdBursts")
2430        .desc("Per bank write bursts");
2431
2432    perBankWrBursts
2433        .init(banksPerRank * ranksPerChannel)
2434        .name(name() + ".perBankWrBursts")
2435        .desc("Per bank write bursts");
2436
2437    avgRdQLen
2438        .name(name() + ".avgRdQLen")
2439        .desc("Average read queue length when enqueuing")
2440        .precision(2);
2441
2442    avgWrQLen
2443        .name(name() + ".avgWrQLen")
2444        .desc("Average write queue length when enqueuing")
2445        .precision(2);
2446
2447    totQLat
2448        .name(name() + ".totQLat")
2449        .desc("Total ticks spent queuing");
2450
2451    totBusLat
2452        .name(name() + ".totBusLat")
2453        .desc("Total ticks spent in databus transfers");
2454
2455    totMemAccLat
2456        .name(name() + ".totMemAccLat")
2457        .desc("Total ticks spent from burst creation until serviced "
2458              "by the DRAM");
2459
2460    avgQLat
2461        .name(name() + ".avgQLat")
2462        .desc("Average queueing delay per DRAM burst")
2463        .precision(2);
2464
2465    avgQLat = totQLat / (readBursts - servicedByWrQ);
2466
2467    avgBusLat
2468        .name(name() + ".avgBusLat")
2469        .desc("Average bus latency per DRAM burst")
2470        .precision(2);
2471
2472    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
2473
2474    avgMemAccLat
2475        .name(name() + ".avgMemAccLat")
2476        .desc("Average memory access latency per DRAM burst")
2477        .precision(2);
2478
2479    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
2480
2481    numRdRetry
2482        .name(name() + ".numRdRetry")
2483        .desc("Number of times read queue was full causing retry");
2484
2485    numWrRetry
2486        .name(name() + ".numWrRetry")
2487        .desc("Number of times write queue was full causing retry");
2488
2489    readRowHits
2490        .name(name() + ".readRowHits")
2491        .desc("Number of row buffer hits during reads");
2492
2493    writeRowHits
2494        .name(name() + ".writeRowHits")
2495        .desc("Number of row buffer hits during writes");
2496
2497    readRowHitRate
2498        .name(name() + ".readRowHitRate")
2499        .desc("Row buffer hit rate for reads")
2500        .precision(2);
2501
2502    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2503
2504    writeRowHitRate
2505        .name(name() + ".writeRowHitRate")
2506        .desc("Row buffer hit rate for writes")
2507        .precision(2);
2508
2509    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2510
2511    readPktSize
2512        .init(ceilLog2(burstSize) + 1)
2513        .name(name() + ".readPktSize")
2514        .desc("Read request sizes (log2)");
2515
2516     writePktSize
2517        .init(ceilLog2(burstSize) + 1)
2518        .name(name() + ".writePktSize")
2519        .desc("Write request sizes (log2)");
2520
2521     rdQLenPdf
2522        .init(readBufferSize)
2523        .name(name() + ".rdQLenPdf")
2524        .desc("What read queue length does an incoming req see");
2525
2526     wrQLenPdf
2527        .init(writeBufferSize)
2528        .name(name() + ".wrQLenPdf")
2529        .desc("What write queue length does an incoming req see");
2530
2531     bytesPerActivate
2532         .init(maxAccessesPerRow)
2533         .name(name() + ".bytesPerActivate")
2534         .desc("Bytes accessed per row activation")
2535         .flags(nozero);
2536
2537     rdPerTurnAround
2538         .init(readBufferSize)
2539         .name(name() + ".rdPerTurnAround")
2540         .desc("Reads before turning the bus around for writes")
2541         .flags(nozero);
2542
2543     wrPerTurnAround
2544         .init(writeBufferSize)
2545         .name(name() + ".wrPerTurnAround")
2546         .desc("Writes before turning the bus around for reads")
2547         .flags(nozero);
2548
2549    bytesReadDRAM
2550        .name(name() + ".bytesReadDRAM")
2551        .desc("Total number of bytes read from DRAM");
2552
2553    bytesReadWrQ
2554        .name(name() + ".bytesReadWrQ")
2555        .desc("Total number of bytes read from write queue");
2556
2557    bytesWritten
2558        .name(name() + ".bytesWritten")
2559        .desc("Total number of bytes written to DRAM");
2560
2561    bytesReadSys
2562        .name(name() + ".bytesReadSys")
2563        .desc("Total read bytes from the system interface side");
2564
2565    bytesWrittenSys
2566        .name(name() + ".bytesWrittenSys")
2567        .desc("Total written bytes from the system interface side");
2568
2569    avgRdBW
2570        .name(name() + ".avgRdBW")
2571        .desc("Average DRAM read bandwidth in MiByte/s")
2572        .precision(2);
2573
2574    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2575
2576    avgWrBW
2577        .name(name() + ".avgWrBW")
2578        .desc("Average achieved write bandwidth in MiByte/s")
2579        .precision(2);
2580
2581    avgWrBW = (bytesWritten / 1000000) / simSeconds;
2582
2583    avgRdBWSys
2584        .name(name() + ".avgRdBWSys")
2585        .desc("Average system read bandwidth in MiByte/s")
2586        .precision(2);
2587
2588    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2589
2590    avgWrBWSys
2591        .name(name() + ".avgWrBWSys")
2592        .desc("Average system write bandwidth in MiByte/s")
2593        .precision(2);
2594
2595    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2596
2597    peakBW
2598        .name(name() + ".peakBW")
2599        .desc("Theoretical peak bandwidth in MiByte/s")
2600        .precision(2);
2601
2602    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2603
2604    busUtil
2605        .name(name() + ".busUtil")
2606        .desc("Data bus utilization in percentage")
2607        .precision(2);
2608    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2609
2610    totGap
2611        .name(name() + ".totGap")
2612        .desc("Total gap between requests");
2613
2614    avgGap
2615        .name(name() + ".avgGap")
2616        .desc("Average gap between requests")
2617        .precision(2);
2618
2619    avgGap = totGap / (readReqs + writeReqs);
2620
2621    // Stats for DRAM Power calculation based on Micron datasheet
2622    busUtilRead
2623        .name(name() + ".busUtilRead")
2624        .desc("Data bus utilization in percentage for reads")
2625        .precision(2);
2626
2627    busUtilRead = avgRdBW / peakBW * 100;
2628
2629    busUtilWrite
2630        .name(name() + ".busUtilWrite")
2631        .desc("Data bus utilization in percentage for writes")
2632        .precision(2);
2633
2634    busUtilWrite = avgWrBW / peakBW * 100;
2635
2636    pageHitRate
2637        .name(name() + ".pageHitRate")
2638        .desc("Row buffer hit rate, read and write combined")
2639        .precision(2);
2640
2641    pageHitRate = (writeRowHits + readRowHits) /
2642        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2643}
2644
2645void
2646DRAMCtrl::recvFunctional(PacketPtr pkt)
2647{
2648    // rely on the abstract memory
2649    functionalAccess(pkt);
2650}
2651
2652BaseSlavePort&
2653DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2654{
2655    if (if_name != "port") {
2656        return MemObject::getSlavePort(if_name, idx);
2657    } else {
2658        return port;
2659    }
2660}
2661
2662DrainState
2663DRAMCtrl::drain()
2664{
2665    // if there is anything in any of our internal queues, keep track
2666    // of that as well
2667    if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty() &&
2668          allRanksDrained())) {
2669
2670        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2671                " resp: %d\n", writeQueue.size(), readQueue.size(),
2672                respQueue.size());
2673
2674        // the only queue that is not drained automatically over time
2675        // is the write queue, thus kick things into action if needed
2676        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2677            schedule(nextReqEvent, curTick());
2678        }
2679
2680        // also need to kick off events to exit self-refresh
2681        for (auto r : ranks) {
2682            // force self-refresh exit, which in turn will issue auto-refresh
2683            if (r->pwrState == PWR_SREF) {
2684                DPRINTF(DRAM,"Rank%d: Forcing self-refresh wakeup in drain\n",
2685                        r->rank);
2686                r->scheduleWakeUpEvent(tXS);
2687            }
2688        }
2689
2690        return DrainState::Draining;
2691    } else {
2692        return DrainState::Drained;
2693    }
2694}
2695
2696bool
2697DRAMCtrl::allRanksDrained() const
2698{
2699    // true until proven false
2700    bool all_ranks_drained = true;
2701    for (auto r : ranks) {
2702        // then verify that the power state is IDLE ensuring all banks are
2703        // closed and rank is not in a low power state. Also verify that rank
2704        // is idle from a refresh point of view.
2705        all_ranks_drained = r->inPwrIdleState() && r->inRefIdleState() &&
2706            all_ranks_drained;
2707    }
2708    return all_ranks_drained;
2709}
2710
2711void
2712DRAMCtrl::drainResume()
2713{
2714    if (!isTimingMode && system()->isTimingMode()) {
2715        // if we switched to timing mode, kick things into action,
2716        // and behave as if we restored from a checkpoint
2717        startup();
2718    } else if (isTimingMode && !system()->isTimingMode()) {
2719        // if we switch from timing mode, stop the refresh events to
2720        // not cause issues with KVM
2721        for (auto r : ranks) {
2722            r->suspend();
2723        }
2724    }
2725
2726    // update the mode
2727    isTimingMode = system()->isTimingMode();
2728}
2729
2730DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2731    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2732      memory(_memory)
2733{ }
2734
2735AddrRangeList
2736DRAMCtrl::MemoryPort::getAddrRanges() const
2737{
2738    AddrRangeList ranges;
2739    ranges.push_back(memory.getAddrRange());
2740    return ranges;
2741}
2742
2743void
2744DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2745{
2746    pkt->pushLabel(memory.name());
2747
2748    if (!queue.checkFunctional(pkt)) {
2749        // Default implementation of SimpleTimingPort::recvFunctional()
2750        // calls recvAtomic() and throws away the latency; we can save a
2751        // little here by just not calculating the latency.
2752        memory.recvFunctional(pkt);
2753    }
2754
2755    pkt->popLabel();
2756}
2757
2758Tick
2759DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2760{
2761    return memory.recvAtomic(pkt);
2762}
2763
2764bool
2765DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2766{
2767    // pass it to the memory controller
2768    return memory.recvTimingReq(pkt);
2769}
2770
2771DRAMCtrl*
2772DRAMCtrlParams::create()
2773{
2774    return new DRAMCtrl(this);
2775}
2776