dram_ctrl.cc revision 12705:9668a82ead4b
1/*
2 * Copyright (c) 2010-2017 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 *          Omar Naji
44 *          Wendy Elsasser
45 *          Radhika Jagtap
46 */
47
48#include "mem/dram_ctrl.hh"
49
50#include "base/bitfield.hh"
51#include "base/trace.hh"
52#include "debug/DRAM.hh"
53#include "debug/DRAMPower.hh"
54#include "debug/DRAMState.hh"
55#include "debug/Drain.hh"
56#include "sim/system.hh"
57
58using namespace std;
59using namespace Data;
60
61DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
62    AbstractMemory(p),
63    port(name() + ".port", *this), isTimingMode(false),
64    retryRdReq(false), retryWrReq(false),
65    busState(READ),
66    busStateNext(READ),
67    nextReqEvent([this]{ processNextReqEvent(); }, name()),
68    respondEvent([this]{ processRespondEvent(); }, name()),
69    deviceSize(p->device_size),
70    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
71    deviceRowBufferSize(p->device_rowbuffer_size),
72    devicesPerRank(p->devices_per_rank),
73    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
74    rowBufferSize(devicesPerRank * deviceRowBufferSize),
75    columnsPerRowBuffer(rowBufferSize / burstSize),
76    columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1),
77    ranksPerChannel(p->ranks_per_channel),
78    bankGroupsPerRank(p->bank_groups_per_rank),
79    bankGroupArch(p->bank_groups_per_rank > 0),
80    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
81    readBufferSize(p->read_buffer_size),
82    writeBufferSize(p->write_buffer_size),
83    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
84    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
85    minWritesPerSwitch(p->min_writes_per_switch),
86    writesThisTime(0), readsThisTime(0),
87    tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
88    tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
89    tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
90    tRRD_L(p->tRRD_L), tXAW(p->tXAW), tXP(p->tXP), tXS(p->tXS),
91    activationLimit(p->activation_limit),
92    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
93    pageMgmt(p->page_policy),
94    maxAccessesPerRow(p->max_accesses_per_row),
95    frontendLatency(p->static_frontend_latency),
96    backendLatency(p->static_backend_latency),
97    busBusyUntil(0), prevArrival(0),
98    nextReqTime(0), activeRank(0), timeStampOffset(0),
99    lastStatsResetTick(0)
100{
101    // sanity check the ranks since we rely on bit slicing for the
102    // address decoding
103    fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
104             "allowed, must be a power of two\n", ranksPerChannel);
105
106    fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, "
107             "must be a power of two\n", burstSize);
108
109    for (int i = 0; i < ranksPerChannel; i++) {
110        Rank* rank = new Rank(*this, p, i);
111        ranks.push_back(rank);
112    }
113
114    // perform a basic check of the write thresholds
115    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
116        fatal("Write buffer low threshold %d must be smaller than the "
117              "high threshold %d\n", p->write_low_thresh_perc,
118              p->write_high_thresh_perc);
119
120    // determine the rows per bank by looking at the total capacity
121    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
122
123    // determine the dram actual capacity from the DRAM config in Mbytes
124    uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
125        ranksPerChannel;
126
127    // if actual DRAM size does not match memory capacity in system warn!
128    if (deviceCapacity != capacity / (1024 * 1024))
129        warn("DRAM device capacity (%d Mbytes) does not match the "
130             "address range assigned (%d Mbytes)\n", deviceCapacity,
131             capacity / (1024 * 1024));
132
133    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
134            AbstractMemory::size());
135
136    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
137            rowBufferSize, columnsPerRowBuffer);
138
139    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
140
141    // some basic sanity checks
142    if (tREFI <= tRP || tREFI <= tRFC) {
143        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
144              tREFI, tRP, tRFC);
145    }
146
147    // basic bank group architecture checks ->
148    if (bankGroupArch) {
149        // must have at least one bank per bank group
150        if (bankGroupsPerRank > banksPerRank) {
151            fatal("banks per rank (%d) must be equal to or larger than "
152                  "banks groups per rank (%d)\n",
153                  banksPerRank, bankGroupsPerRank);
154        }
155        // must have same number of banks in each bank group
156        if ((banksPerRank % bankGroupsPerRank) != 0) {
157            fatal("Banks per rank (%d) must be evenly divisible by bank groups "
158                  "per rank (%d) for equal banks per bank group\n",
159                  banksPerRank, bankGroupsPerRank);
160        }
161        // tCCD_L should be greater than minimal, back-to-back burst delay
162        if (tCCD_L <= tBURST) {
163            fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
164                  "bank groups per rank (%d) is greater than 1\n",
165                  tCCD_L, tBURST, bankGroupsPerRank);
166        }
167        // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
168        // some datasheets might specify it equal to tRRD
169        if (tRRD_L < tRRD) {
170            fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
171                  "bank groups per rank (%d) is greater than 1\n",
172                  tRRD_L, tRRD, bankGroupsPerRank);
173        }
174    }
175
176}
177
178void
179DRAMCtrl::init()
180{
181    AbstractMemory::init();
182
183   if (!port.isConnected()) {
184        fatal("DRAMCtrl %s is unconnected!\n", name());
185    } else {
186        port.sendRangeChange();
187    }
188
189    // a bit of sanity checks on the interleaving, save it for here to
190    // ensure that the system pointer is initialised
191    if (range.interleaved()) {
192        if (channels != range.stripes())
193            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
194                  name(), range.stripes(), channels);
195
196        if (addrMapping == Enums::RoRaBaChCo) {
197            if (rowBufferSize != range.granularity()) {
198                fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
199                      "address map\n", name());
200            }
201        } else if (addrMapping == Enums::RoRaBaCoCh ||
202                   addrMapping == Enums::RoCoRaBaCh) {
203            // for the interleavings with channel bits in the bottom,
204            // if the system uses a channel striping granularity that
205            // is larger than the DRAM burst size, then map the
206            // sequential accesses within a stripe to a number of
207            // columns in the DRAM, effectively placing some of the
208            // lower-order column bits as the least-significant bits
209            // of the address (above the ones denoting the burst size)
210            assert(columnsPerStripe >= 1);
211
212            // channel striping has to be done at a granularity that
213            // is equal or larger to a cache line
214            if (system()->cacheLineSize() > range.granularity()) {
215                fatal("Channel interleaving of %s must be at least as large "
216                      "as the cache line size\n", name());
217            }
218
219            // ...and equal or smaller than the row-buffer size
220            if (rowBufferSize < range.granularity()) {
221                fatal("Channel interleaving of %s must be at most as large "
222                      "as the row-buffer size\n", name());
223            }
224            // this is essentially the check above, so just to be sure
225            assert(columnsPerStripe <= columnsPerRowBuffer);
226        }
227    }
228}
229
230void
231DRAMCtrl::startup()
232{
233    // remember the memory system mode of operation
234    isTimingMode = system()->isTimingMode();
235
236    if (isTimingMode) {
237        // timestamp offset should be in clock cycles for DRAMPower
238        timeStampOffset = divCeil(curTick(), tCK);
239
240        // update the start tick for the precharge accounting to the
241        // current tick
242        for (auto r : ranks) {
243            r->startup(curTick() + tREFI - tRP);
244        }
245
246        // shift the bus busy time sufficiently far ahead that we never
247        // have to worry about negative values when computing the time for
248        // the next request, this will add an insignificant bubble at the
249        // start of simulation
250        busBusyUntil = curTick() + tRP + tRCD + tCL;
251    }
252}
253
254Tick
255DRAMCtrl::recvAtomic(PacketPtr pkt)
256{
257    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
258
259    panic_if(pkt->cacheResponding(), "Should not see packets where cache "
260             "is responding");
261
262    // do the actual memory access and turn the packet into a response
263    access(pkt);
264
265    Tick latency = 0;
266    if (pkt->hasData()) {
267        // this value is not supposed to be accurate, just enough to
268        // keep things going, mimic a closed page
269        latency = tRP + tRCD + tCL;
270    }
271    return latency;
272}
273
274bool
275DRAMCtrl::readQueueFull(unsigned int neededEntries) const
276{
277    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
278            readBufferSize, readQueue.size() + respQueue.size(),
279            neededEntries);
280
281    return
282        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
283}
284
285bool
286DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
287{
288    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
289            writeBufferSize, writeQueue.size(), neededEntries);
290    return (writeQueue.size() + neededEntries) > writeBufferSize;
291}
292
293DRAMCtrl::DRAMPacket*
294DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
295                       bool isRead)
296{
297    // decode the address based on the address mapping scheme, with
298    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
299    // channel, respectively
300    uint8_t rank;
301    uint8_t bank;
302    // use a 64-bit unsigned during the computations as the row is
303    // always the top bits, and check before creating the DRAMPacket
304    uint64_t row;
305
306    // truncate the address to a DRAM burst, which makes it unique to
307    // a specific column, row, bank, rank and channel
308    Addr addr = dramPktAddr / burstSize;
309
310    // we have removed the lowest order address bits that denote the
311    // position within the column
312    if (addrMapping == Enums::RoRaBaChCo) {
313        // the lowest order bits denote the column to ensure that
314        // sequential cache lines occupy the same row
315        addr = addr / columnsPerRowBuffer;
316
317        // take out the channel part of the address
318        addr = addr / channels;
319
320        // after the channel bits, get the bank bits to interleave
321        // over the banks
322        bank = addr % banksPerRank;
323        addr = addr / banksPerRank;
324
325        // after the bank, we get the rank bits which thus interleaves
326        // over the ranks
327        rank = addr % ranksPerChannel;
328        addr = addr / ranksPerChannel;
329
330        // lastly, get the row bits, no need to remove them from addr
331        row = addr % rowsPerBank;
332    } else if (addrMapping == Enums::RoRaBaCoCh) {
333        // take out the lower-order column bits
334        addr = addr / columnsPerStripe;
335
336        // take out the channel part of the address
337        addr = addr / channels;
338
339        // next, the higher-order column bites
340        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
341
342        // after the column bits, we get the bank bits to interleave
343        // over the banks
344        bank = addr % banksPerRank;
345        addr = addr / banksPerRank;
346
347        // after the bank, we get the rank bits which thus interleaves
348        // over the ranks
349        rank = addr % ranksPerChannel;
350        addr = addr / ranksPerChannel;
351
352        // lastly, get the row bits, no need to remove them from addr
353        row = addr % rowsPerBank;
354    } else if (addrMapping == Enums::RoCoRaBaCh) {
355        // optimise for closed page mode and utilise maximum
356        // parallelism of the DRAM (at the cost of power)
357
358        // take out the lower-order column bits
359        addr = addr / columnsPerStripe;
360
361        // take out the channel part of the address, not that this has
362        // to match with how accesses are interleaved between the
363        // controllers in the address mapping
364        addr = addr / channels;
365
366        // start with the bank bits, as this provides the maximum
367        // opportunity for parallelism between requests
368        bank = addr % banksPerRank;
369        addr = addr / banksPerRank;
370
371        // next get the rank bits
372        rank = addr % ranksPerChannel;
373        addr = addr / ranksPerChannel;
374
375        // next, the higher-order column bites
376        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
377
378        // lastly, get the row bits, no need to remove them from addr
379        row = addr % rowsPerBank;
380    } else
381        panic("Unknown address mapping policy chosen!");
382
383    assert(rank < ranksPerChannel);
384    assert(bank < banksPerRank);
385    assert(row < rowsPerBank);
386    assert(row < Bank::NO_ROW);
387
388    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
389            dramPktAddr, rank, bank, row);
390
391    // create the corresponding DRAM packet with the entry time and
392    // ready time set to the current tick, the latter will be updated
393    // later
394    uint16_t bank_id = banksPerRank * rank + bank;
395    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
396                          size, ranks[rank]->banks[bank], *ranks[rank]);
397}
398
399void
400DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
401{
402    // only add to the read queue here. whenever the request is
403    // eventually done, set the readyTime, and call schedule()
404    assert(!pkt->isWrite());
405
406    assert(pktCount != 0);
407
408    // if the request size is larger than burst size, the pkt is split into
409    // multiple DRAM packets
410    // Note if the pkt starting address is not aligened to burst size, the
411    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
412    // are aligned to burst size boundaries. This is to ensure we accurately
413    // check read packets against packets in write queue.
414    Addr addr = pkt->getAddr();
415    unsigned pktsServicedByWrQ = 0;
416    BurstHelper* burst_helper = NULL;
417    for (int cnt = 0; cnt < pktCount; ++cnt) {
418        unsigned size = std::min((addr | (burstSize - 1)) + 1,
419                        pkt->getAddr() + pkt->getSize()) - addr;
420        readPktSize[ceilLog2(size)]++;
421        readBursts++;
422
423        // First check write buffer to see if the data is already at
424        // the controller
425        bool foundInWrQ = false;
426        Addr burst_addr = burstAlign(addr);
427        // if the burst address is not present then there is no need
428        // looking any further
429        if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) {
430            for (const auto& p : writeQueue) {
431                // check if the read is subsumed in the write queue
432                // packet we are looking at
433                if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) {
434                    foundInWrQ = true;
435                    servicedByWrQ++;
436                    pktsServicedByWrQ++;
437                    DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
438                            "write queue\n", addr, size);
439                    bytesReadWrQ += burstSize;
440                    break;
441                }
442            }
443        }
444
445        // If not found in the write q, make a DRAM packet and
446        // push it onto the read queue
447        if (!foundInWrQ) {
448
449            // Make the burst helper for split packets
450            if (pktCount > 1 && burst_helper == NULL) {
451                DPRINTF(DRAM, "Read to addr %lld translates to %d "
452                        "dram requests\n", pkt->getAddr(), pktCount);
453                burst_helper = new BurstHelper(pktCount);
454            }
455
456            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
457            dram_pkt->burstHelper = burst_helper;
458
459            assert(!readQueueFull(1));
460            rdQLenPdf[readQueue.size() + respQueue.size()]++;
461
462            DPRINTF(DRAM, "Adding to read queue\n");
463
464            readQueue.push_back(dram_pkt);
465
466            // increment read entries of the rank
467            ++dram_pkt->rankRef.readEntries;
468
469            // Update stats
470            avgRdQLen = readQueue.size() + respQueue.size();
471        }
472
473        // Starting address of next dram pkt (aligend to burstSize boundary)
474        addr = (addr | (burstSize - 1)) + 1;
475    }
476
477    // If all packets are serviced by write queue, we send the repsonse back
478    if (pktsServicedByWrQ == pktCount) {
479        accessAndRespond(pkt, frontendLatency);
480        return;
481    }
482
483    // Update how many split packets are serviced by write queue
484    if (burst_helper != NULL)
485        burst_helper->burstsServiced = pktsServicedByWrQ;
486
487    // If we are not already scheduled to get a request out of the
488    // queue, do so now
489    if (!nextReqEvent.scheduled()) {
490        DPRINTF(DRAM, "Request scheduled immediately\n");
491        schedule(nextReqEvent, curTick());
492    }
493}
494
495void
496DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
497{
498    // only add to the write queue here. whenever the request is
499    // eventually done, set the readyTime, and call schedule()
500    assert(pkt->isWrite());
501
502    // if the request size is larger than burst size, the pkt is split into
503    // multiple DRAM packets
504    Addr addr = pkt->getAddr();
505    for (int cnt = 0; cnt < pktCount; ++cnt) {
506        unsigned size = std::min((addr | (burstSize - 1)) + 1,
507                        pkt->getAddr() + pkt->getSize()) - addr;
508        writePktSize[ceilLog2(size)]++;
509        writeBursts++;
510
511        // see if we can merge with an existing item in the write
512        // queue and keep track of whether we have merged or not
513        bool merged = isInWriteQueue.find(burstAlign(addr)) !=
514            isInWriteQueue.end();
515
516        // if the item was not merged we need to create a new write
517        // and enqueue it
518        if (!merged) {
519            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
520
521            assert(writeQueue.size() < writeBufferSize);
522            wrQLenPdf[writeQueue.size()]++;
523
524            DPRINTF(DRAM, "Adding to write queue\n");
525
526            writeQueue.push_back(dram_pkt);
527            isInWriteQueue.insert(burstAlign(addr));
528            assert(writeQueue.size() == isInWriteQueue.size());
529
530            // Update stats
531            avgWrQLen = writeQueue.size();
532
533            // increment write entries of the rank
534            ++dram_pkt->rankRef.writeEntries;
535        } else {
536            DPRINTF(DRAM, "Merging write burst with existing queue entry\n");
537
538            // keep track of the fact that this burst effectively
539            // disappeared as it was merged with an existing one
540            mergedWrBursts++;
541        }
542
543        // Starting address of next dram pkt (aligend to burstSize boundary)
544        addr = (addr | (burstSize - 1)) + 1;
545    }
546
547    // we do not wait for the writes to be send to the actual memory,
548    // but instead take responsibility for the consistency here and
549    // snoop the write queue for any upcoming reads
550    // @todo, if a pkt size is larger than burst size, we might need a
551    // different front end latency
552    accessAndRespond(pkt, frontendLatency);
553
554    // If we are not already scheduled to get a request out of the
555    // queue, do so now
556    if (!nextReqEvent.scheduled()) {
557        DPRINTF(DRAM, "Request scheduled immediately\n");
558        schedule(nextReqEvent, curTick());
559    }
560}
561
562void
563DRAMCtrl::printQs() const {
564    DPRINTF(DRAM, "===READ QUEUE===\n\n");
565    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
566        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
567    }
568    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
569    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
570        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
571    }
572    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
573    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
574        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
575    }
576}
577
578bool
579DRAMCtrl::recvTimingReq(PacketPtr pkt)
580{
581    // This is where we enter from the outside world
582    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
583            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
584
585    panic_if(pkt->cacheResponding(), "Should not see packets where cache "
586             "is responding");
587
588    panic_if(!(pkt->isRead() || pkt->isWrite()),
589             "Should only see read and writes at memory controller\n");
590
591    // Calc avg gap between requests
592    if (prevArrival != 0) {
593        totGap += curTick() - prevArrival;
594    }
595    prevArrival = curTick();
596
597
598    // Find out how many dram packets a pkt translates to
599    // If the burst size is equal or larger than the pkt size, then a pkt
600    // translates to only one dram packet. Otherwise, a pkt translates to
601    // multiple dram packets
602    unsigned size = pkt->getSize();
603    unsigned offset = pkt->getAddr() & (burstSize - 1);
604    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
605
606    // check local buffers and do not accept if full
607    if (pkt->isRead()) {
608        assert(size != 0);
609        if (readQueueFull(dram_pkt_count)) {
610            DPRINTF(DRAM, "Read queue full, not accepting\n");
611            // remember that we have to retry this port
612            retryRdReq = true;
613            numRdRetry++;
614            return false;
615        } else {
616            addToReadQueue(pkt, dram_pkt_count);
617            readReqs++;
618            bytesReadSys += size;
619        }
620    } else {
621        assert(pkt->isWrite());
622        assert(size != 0);
623        if (writeQueueFull(dram_pkt_count)) {
624            DPRINTF(DRAM, "Write queue full, not accepting\n");
625            // remember that we have to retry this port
626            retryWrReq = true;
627            numWrRetry++;
628            return false;
629        } else {
630            addToWriteQueue(pkt, dram_pkt_count);
631            writeReqs++;
632            bytesWrittenSys += size;
633        }
634    }
635
636    return true;
637}
638
639void
640DRAMCtrl::processRespondEvent()
641{
642    DPRINTF(DRAM,
643            "processRespondEvent(): Some req has reached its readyTime\n");
644
645    DRAMPacket* dram_pkt = respQueue.front();
646
647    // if a read has reached its ready-time, decrement the number of reads
648    // At this point the packet has been handled and there is a possibility
649    // to switch to low-power mode if no other packet is available
650    --dram_pkt->rankRef.readEntries;
651    DPRINTF(DRAM, "number of read entries for rank %d is %d\n",
652            dram_pkt->rank, dram_pkt->rankRef.readEntries);
653
654    // counter should at least indicate one outstanding request
655    // for this read
656    assert(dram_pkt->rankRef.outstandingEvents > 0);
657    // read response received, decrement count
658    --dram_pkt->rankRef.outstandingEvents;
659
660    // at this moment should not have transitioned to a low-power state
661    assert((dram_pkt->rankRef.pwrState != PWR_SREF) &&
662           (dram_pkt->rankRef.pwrState != PWR_PRE_PDN) &&
663           (dram_pkt->rankRef.pwrState != PWR_ACT_PDN));
664
665    // track if this is the last packet before idling
666    // and that there are no outstanding commands to this rank
667    if (dram_pkt->rankRef.isQueueEmpty() &&
668        dram_pkt->rankRef.outstandingEvents == 0) {
669        // verify that there are no events scheduled
670        assert(!dram_pkt->rankRef.activateEvent.scheduled());
671        assert(!dram_pkt->rankRef.prechargeEvent.scheduled());
672
673        // if coming from active state, schedule power event to
674        // active power-down else go to precharge power-down
675        DPRINTF(DRAMState, "Rank %d sleep at tick %d; current power state is "
676                "%d\n", dram_pkt->rank, curTick(), dram_pkt->rankRef.pwrState);
677
678        // default to ACT power-down unless already in IDLE state
679        // could be in IDLE if PRE issued before data returned
680        PowerState next_pwr_state = PWR_ACT_PDN;
681        if (dram_pkt->rankRef.pwrState == PWR_IDLE) {
682            next_pwr_state = PWR_PRE_PDN;
683        }
684
685        dram_pkt->rankRef.powerDownSleep(next_pwr_state, curTick());
686    }
687
688    if (dram_pkt->burstHelper) {
689        // it is a split packet
690        dram_pkt->burstHelper->burstsServiced++;
691        if (dram_pkt->burstHelper->burstsServiced ==
692            dram_pkt->burstHelper->burstCount) {
693            // we have now serviced all children packets of a system packet
694            // so we can now respond to the requester
695            // @todo we probably want to have a different front end and back
696            // end latency for split packets
697            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
698            delete dram_pkt->burstHelper;
699            dram_pkt->burstHelper = NULL;
700        }
701    } else {
702        // it is not a split packet
703        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
704    }
705
706    delete respQueue.front();
707    respQueue.pop_front();
708
709    if (!respQueue.empty()) {
710        assert(respQueue.front()->readyTime >= curTick());
711        assert(!respondEvent.scheduled());
712        schedule(respondEvent, respQueue.front()->readyTime);
713    } else {
714        // if there is nothing left in any queue, signal a drain
715        if (drainState() == DrainState::Draining &&
716            writeQueue.empty() && readQueue.empty() && allRanksDrained()) {
717
718            DPRINTF(Drain, "DRAM controller done draining\n");
719            signalDrainDone();
720        }
721    }
722
723    // We have made a location in the queue available at this point,
724    // so if there is a read that was forced to wait, retry now
725    if (retryRdReq) {
726        retryRdReq = false;
727        port.sendRetryReq();
728    }
729}
730
731bool
732DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
733{
734    // This method does the arbitration between requests. The chosen
735    // packet is simply moved to the head of the queue. The other
736    // methods know that this is the place to look. For example, with
737    // FCFS, this method does nothing
738    assert(!queue.empty());
739
740    // bool to indicate if a packet to an available rank is found
741    bool found_packet = false;
742    if (queue.size() == 1) {
743        DRAMPacket* dram_pkt = queue.front();
744        // available rank corresponds to state refresh idle
745        if (ranks[dram_pkt->rank]->inRefIdleState()) {
746            found_packet = true;
747            DPRINTF(DRAM, "Single request, going to a free rank\n");
748        } else {
749            DPRINTF(DRAM, "Single request, going to a busy rank\n");
750        }
751        return found_packet;
752    }
753
754    if (memSchedPolicy == Enums::fcfs) {
755        // check if there is a packet going to a free rank
756        for (auto i = queue.begin(); i != queue.end() ; ++i) {
757            DRAMPacket* dram_pkt = *i;
758            if (ranks[dram_pkt->rank]->inRefIdleState()) {
759                queue.erase(i);
760                queue.push_front(dram_pkt);
761                found_packet = true;
762                break;
763            }
764        }
765    } else if (memSchedPolicy == Enums::frfcfs) {
766        found_packet = reorderQueue(queue, extra_col_delay);
767    } else
768        panic("No scheduling policy chosen\n");
769    return found_packet;
770}
771
772bool
773DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
774{
775    // Only determine this if needed
776    uint64_t earliest_banks = 0;
777    bool hidden_bank_prep = false;
778
779    // search for seamless row hits first, if no seamless row hit is
780    // found then determine if there are other packets that can be issued
781    // without incurring additional bus delay due to bank timing
782    // Will select closed rows first to enable more open row possibilies
783    // in future selections
784    bool found_hidden_bank = false;
785
786    // remember if we found a row hit, not seamless, but bank prepped
787    // and ready
788    bool found_prepped_pkt = false;
789
790    // if we have no row hit, prepped or not, and no seamless packet,
791    // just go for the earliest possible
792    bool found_earliest_pkt = false;
793
794    auto selected_pkt_it = queue.end();
795
796    // time we need to issue a column command to be seamless
797    const Tick min_col_at = std::max(busBusyUntil - tCL + extra_col_delay,
798                                     curTick());
799
800    for (auto i = queue.begin(); i != queue.end() ; ++i) {
801        DRAMPacket* dram_pkt = *i;
802        const Bank& bank = dram_pkt->bankRef;
803
804        // check if rank is not doing a refresh and thus is available, if not,
805        // jump to the next packet
806        if (dram_pkt->rankRef.inRefIdleState()) {
807            // check if it is a row hit
808            if (bank.openRow == dram_pkt->row) {
809                // no additional rank-to-rank or same bank-group
810                // delays, or we switched read/write and might as well
811                // go for the row hit
812                if (bank.colAllowedAt <= min_col_at) {
813                    // FCFS within the hits, giving priority to
814                    // commands that can issue seamlessly, without
815                    // additional delay, such as same rank accesses
816                    // and/or different bank-group accesses
817                    DPRINTF(DRAM, "Seamless row buffer hit\n");
818                    selected_pkt_it = i;
819                    // no need to look through the remaining queue entries
820                    break;
821                } else if (!found_hidden_bank && !found_prepped_pkt) {
822                    // if we did not find a packet to a closed row that can
823                    // issue the bank commands without incurring delay, and
824                    // did not yet find a packet to a prepped row, remember
825                    // the current one
826                    selected_pkt_it = i;
827                    found_prepped_pkt = true;
828                    DPRINTF(DRAM, "Prepped row buffer hit\n");
829                }
830            } else if (!found_earliest_pkt) {
831                // if we have not initialised the bank status, do it
832                // now, and only once per scheduling decisions
833                if (earliest_banks == 0) {
834                    // determine entries with earliest bank delay
835                    pair<uint64_t, bool> bankStatus =
836                        minBankPrep(queue, min_col_at);
837                    earliest_banks = bankStatus.first;
838                    hidden_bank_prep = bankStatus.second;
839                }
840
841                // bank is amongst first available banks
842                // minBankPrep will give priority to packets that can
843                // issue seamlessly
844                if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
845                    found_earliest_pkt = true;
846                    found_hidden_bank = hidden_bank_prep;
847
848                    // give priority to packets that can issue
849                    // bank commands 'behind the scenes'
850                    // any additional delay if any will be due to
851                    // col-to-col command requirements
852                    if (hidden_bank_prep || !found_prepped_pkt)
853                        selected_pkt_it = i;
854                }
855            }
856        }
857    }
858
859    if (selected_pkt_it != queue.end()) {
860        DRAMPacket* selected_pkt = *selected_pkt_it;
861        queue.erase(selected_pkt_it);
862        queue.push_front(selected_pkt);
863        return true;
864    }
865
866    return false;
867}
868
869void
870DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
871{
872    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
873
874    bool needsResponse = pkt->needsResponse();
875    // do the actual memory access which also turns the packet into a
876    // response
877    access(pkt);
878
879    // turn packet around to go back to requester if response expected
880    if (needsResponse) {
881        // access already turned the packet into a response
882        assert(pkt->isResponse());
883        // response_time consumes the static latency and is charged also
884        // with headerDelay that takes into account the delay provided by
885        // the xbar and also the payloadDelay that takes into account the
886        // number of data beats.
887        Tick response_time = curTick() + static_latency + pkt->headerDelay +
888                             pkt->payloadDelay;
889        // Here we reset the timing of the packet before sending it out.
890        pkt->headerDelay = pkt->payloadDelay = 0;
891
892        // queue the packet in the response queue to be sent out after
893        // the static latency has passed
894        port.schedTimingResp(pkt, response_time, true);
895    } else {
896        // @todo the packet is going to be deleted, and the DRAMPacket
897        // is still having a pointer to it
898        pendingDelete.reset(pkt);
899    }
900
901    DPRINTF(DRAM, "Done\n");
902
903    return;
904}
905
906void
907DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
908                       Tick act_tick, uint32_t row)
909{
910    assert(rank_ref.actTicks.size() == activationLimit);
911
912    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
913
914    // update the open row
915    assert(bank_ref.openRow == Bank::NO_ROW);
916    bank_ref.openRow = row;
917
918    // start counting anew, this covers both the case when we
919    // auto-precharged, and when this access is forced to
920    // precharge
921    bank_ref.bytesAccessed = 0;
922    bank_ref.rowAccesses = 0;
923
924    ++rank_ref.numBanksActive;
925    assert(rank_ref.numBanksActive <= banksPerRank);
926
927    DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
928            bank_ref.bank, rank_ref.rank, act_tick,
929            ranks[rank_ref.rank]->numBanksActive);
930
931    rank_ref.cmdList.push_back(Command(MemCommand::ACT, bank_ref.bank,
932                               act_tick));
933
934    DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
935            timeStampOffset, bank_ref.bank, rank_ref.rank);
936
937    // The next access has to respect tRAS for this bank
938    bank_ref.preAllowedAt = act_tick + tRAS;
939
940    // Respect the row-to-column command delay
941    bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt);
942
943    // start by enforcing tRRD
944    for (int i = 0; i < banksPerRank; i++) {
945        // next activate to any bank in this rank must not happen
946        // before tRRD
947        if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
948            // bank group architecture requires longer delays between
949            // ACT commands within the same bank group.  Use tRRD_L
950            // in this case
951            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
952                                             rank_ref.banks[i].actAllowedAt);
953        } else {
954            // use shorter tRRD value when either
955            // 1) bank group architecture is not supportted
956            // 2) bank is in a different bank group
957            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
958                                             rank_ref.banks[i].actAllowedAt);
959        }
960    }
961
962    // next, we deal with tXAW, if the activation limit is disabled
963    // then we directly schedule an activate power event
964    if (!rank_ref.actTicks.empty()) {
965        // sanity check
966        if (rank_ref.actTicks.back() &&
967           (act_tick - rank_ref.actTicks.back()) < tXAW) {
968            panic("Got %d activates in window %d (%llu - %llu) which "
969                  "is smaller than %llu\n", activationLimit, act_tick -
970                  rank_ref.actTicks.back(), act_tick,
971                  rank_ref.actTicks.back(), tXAW);
972        }
973
974        // shift the times used for the book keeping, the last element
975        // (highest index) is the oldest one and hence the lowest value
976        rank_ref.actTicks.pop_back();
977
978        // record an new activation (in the future)
979        rank_ref.actTicks.push_front(act_tick);
980
981        // cannot activate more than X times in time window tXAW, push the
982        // next one (the X + 1'st activate) to be tXAW away from the
983        // oldest in our window of X
984        if (rank_ref.actTicks.back() &&
985           (act_tick - rank_ref.actTicks.back()) < tXAW) {
986            DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
987                    "no earlier than %llu\n", activationLimit,
988                    rank_ref.actTicks.back() + tXAW);
989            for (int j = 0; j < banksPerRank; j++)
990                // next activate must not happen before end of window
991                rank_ref.banks[j].actAllowedAt =
992                    std::max(rank_ref.actTicks.back() + tXAW,
993                             rank_ref.banks[j].actAllowedAt);
994        }
995    }
996
997    // at the point when this activate takes place, make sure we
998    // transition to the active power state
999    if (!rank_ref.activateEvent.scheduled())
1000        schedule(rank_ref.activateEvent, act_tick);
1001    else if (rank_ref.activateEvent.when() > act_tick)
1002        // move it sooner in time
1003        reschedule(rank_ref.activateEvent, act_tick);
1004}
1005
1006void
1007DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
1008{
1009    // make sure the bank has an open row
1010    assert(bank.openRow != Bank::NO_ROW);
1011
1012    // sample the bytes per activate here since we are closing
1013    // the page
1014    bytesPerActivate.sample(bank.bytesAccessed);
1015
1016    bank.openRow = Bank::NO_ROW;
1017
1018    // no precharge allowed before this one
1019    bank.preAllowedAt = pre_at;
1020
1021    Tick pre_done_at = pre_at + tRP;
1022
1023    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
1024
1025    assert(rank_ref.numBanksActive != 0);
1026    --rank_ref.numBanksActive;
1027
1028    DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
1029            "%d active\n", bank.bank, rank_ref.rank, pre_at,
1030            rank_ref.numBanksActive);
1031
1032    if (trace) {
1033
1034        rank_ref.cmdList.push_back(Command(MemCommand::PRE, bank.bank,
1035                                   pre_at));
1036        DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1037                timeStampOffset, bank.bank, rank_ref.rank);
1038    }
1039    // if we look at the current number of active banks we might be
1040    // tempted to think the DRAM is now idle, however this can be
1041    // undone by an activate that is scheduled to happen before we
1042    // would have reached the idle state, so schedule an event and
1043    // rather check once we actually make it to the point in time when
1044    // the (last) precharge takes place
1045    if (!rank_ref.prechargeEvent.scheduled()) {
1046        schedule(rank_ref.prechargeEvent, pre_done_at);
1047        // New event, increment count
1048        ++rank_ref.outstandingEvents;
1049    } else if (rank_ref.prechargeEvent.when() < pre_done_at) {
1050        reschedule(rank_ref.prechargeEvent, pre_done_at);
1051    }
1052}
1053
1054void
1055DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1056{
1057    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1058            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1059
1060    // get the rank
1061    Rank& rank = dram_pkt->rankRef;
1062
1063    // are we in or transitioning to a low-power state and have not scheduled
1064    // a power-up event?
1065    // if so, wake up from power down to issue RD/WR burst
1066    if (rank.inLowPowerState) {
1067        assert(rank.pwrState != PWR_SREF);
1068        rank.scheduleWakeUpEvent(tXP);
1069    }
1070
1071    // get the bank
1072    Bank& bank = dram_pkt->bankRef;
1073
1074    // for the state we need to track if it is a row hit or not
1075    bool row_hit = true;
1076
1077    // respect any constraints on the command (e.g. tRCD or tCCD)
1078    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1079
1080    // Determine the access latency and update the bank state
1081    if (bank.openRow == dram_pkt->row) {
1082        // nothing to do
1083    } else {
1084        row_hit = false;
1085
1086        // If there is a page open, precharge it.
1087        if (bank.openRow != Bank::NO_ROW) {
1088            prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1089        }
1090
1091        // next we need to account for the delay in activating the
1092        // page
1093        Tick act_tick = std::max(bank.actAllowedAt, curTick());
1094
1095        // Record the activation and deal with all the global timing
1096        // constraints caused be a new activation (tRRD and tXAW)
1097        activateBank(rank, bank, act_tick, dram_pkt->row);
1098
1099        // issue the command as early as possible
1100        cmd_at = bank.colAllowedAt;
1101    }
1102
1103    // we need to wait until the bus is available before we can issue
1104    // the command
1105    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1106
1107    // update the packet ready time
1108    dram_pkt->readyTime = cmd_at + tCL + tBURST;
1109
1110    // only one burst can use the bus at any one point in time
1111    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1112
1113    // update the time for the next read/write burst for each
1114    // bank (add a max with tCCD/tCCD_L here)
1115    Tick cmd_dly;
1116    for (int j = 0; j < ranksPerChannel; j++) {
1117        for (int i = 0; i < banksPerRank; i++) {
1118            // next burst to same bank group in this rank must not happen
1119            // before tCCD_L.  Different bank group timing requirement is
1120            // tBURST; Add tCS for different ranks
1121            if (dram_pkt->rank == j) {
1122                if (bankGroupArch &&
1123                   (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1124                    // bank group architecture requires longer delays between
1125                    // RD/WR burst commands to the same bank group.
1126                    // Use tCCD_L in this case
1127                    cmd_dly = tCCD_L;
1128                } else {
1129                    // use tBURST (equivalent to tCCD_S), the shorter
1130                    // cas-to-cas delay value, when either:
1131                    // 1) bank group architecture is not supportted
1132                    // 2) bank is in a different bank group
1133                    cmd_dly = tBURST;
1134                }
1135            } else {
1136                // different rank is by default in a different bank group
1137                // use tBURST (equivalent to tCCD_S), which is the shorter
1138                // cas-to-cas delay in this case
1139                // Add tCS to account for rank-to-rank bus delay requirements
1140                cmd_dly = tBURST + tCS;
1141            }
1142            ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly,
1143                                             ranks[j]->banks[i].colAllowedAt);
1144        }
1145    }
1146
1147    // Save rank of current access
1148    activeRank = dram_pkt->rank;
1149
1150    // If this is a write, we also need to respect the write recovery
1151    // time before a precharge, in the case of a read, respect the
1152    // read to precharge constraint
1153    bank.preAllowedAt = std::max(bank.preAllowedAt,
1154                                 dram_pkt->isRead ? cmd_at + tRTP :
1155                                 dram_pkt->readyTime + tWR);
1156
1157    // increment the bytes accessed and the accesses per row
1158    bank.bytesAccessed += burstSize;
1159    ++bank.rowAccesses;
1160
1161    // if we reached the max, then issue with an auto-precharge
1162    bool auto_precharge = pageMgmt == Enums::close ||
1163        bank.rowAccesses == maxAccessesPerRow;
1164
1165    // if we did not hit the limit, we might still want to
1166    // auto-precharge
1167    if (!auto_precharge &&
1168        (pageMgmt == Enums::open_adaptive ||
1169         pageMgmt == Enums::close_adaptive)) {
1170        // a twist on the open and close page policies:
1171        // 1) open_adaptive page policy does not blindly keep the
1172        // page open, but close it if there are no row hits, and there
1173        // are bank conflicts in the queue
1174        // 2) close_adaptive page policy does not blindly close the
1175        // page, but closes it only if there are no row hits in the queue.
1176        // In this case, only force an auto precharge when there
1177        // are no same page hits in the queue
1178        bool got_more_hits = false;
1179        bool got_bank_conflict = false;
1180
1181        // either look at the read queue or write queue
1182        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1183            writeQueue;
1184        auto p = queue.begin();
1185        // make sure we are not considering the packet that we are
1186        // currently dealing with (which is the head of the queue)
1187        ++p;
1188
1189        // keep on looking until we find a hit or reach the end of the queue
1190        // 1) if a hit is found, then both open and close adaptive policies keep
1191        // the page open
1192        // 2) if no hit is found, got_bank_conflict is set to true if a bank
1193        // conflict request is waiting in the queue
1194        while (!got_more_hits && p != queue.end()) {
1195            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1196                (dram_pkt->bank == (*p)->bank);
1197            bool same_row = dram_pkt->row == (*p)->row;
1198            got_more_hits |= same_rank_bank && same_row;
1199            got_bank_conflict |= same_rank_bank && !same_row;
1200            ++p;
1201        }
1202
1203        // auto pre-charge when either
1204        // 1) open_adaptive policy, we have not got any more hits, and
1205        //    have a bank conflict
1206        // 2) close_adaptive policy and we have not got any more hits
1207        auto_precharge = !got_more_hits &&
1208            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1209    }
1210
1211    // DRAMPower trace command to be written
1212    std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1213
1214    // MemCommand required for DRAMPower library
1215    MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1216                                                   MemCommand::WR;
1217
1218    // Update bus state
1219    busBusyUntil = dram_pkt->readyTime;
1220
1221    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1222            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1223
1224    dram_pkt->rankRef.cmdList.push_back(Command(command, dram_pkt->bank,
1225                                        cmd_at));
1226
1227    DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1228            timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1229
1230    // if this access should use auto-precharge, then we are
1231    // closing the row after the read/write burst
1232    if (auto_precharge) {
1233        // if auto-precharge push a PRE command at the correct tick to the
1234        // list used by DRAMPower library to calculate power
1235        prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
1236
1237        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1238    }
1239
1240    // Update the minimum timing between the requests, this is a
1241    // conservative estimate of when we have to schedule the next
1242    // request to not introduce any unecessary bubbles. In most cases
1243    // we will wake up sooner than we have to.
1244    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1245
1246    // Update the stats and schedule the next request
1247    if (dram_pkt->isRead) {
1248        ++readsThisTime;
1249        if (row_hit)
1250            readRowHits++;
1251        bytesReadDRAM += burstSize;
1252        perBankRdBursts[dram_pkt->bankId]++;
1253
1254        // Update latency stats
1255        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1256        totBusLat += tBURST;
1257        totQLat += cmd_at - dram_pkt->entryTime;
1258    } else {
1259        ++writesThisTime;
1260        if (row_hit)
1261            writeRowHits++;
1262        bytesWritten += burstSize;
1263        perBankWrBursts[dram_pkt->bankId]++;
1264    }
1265}
1266
1267void
1268DRAMCtrl::processNextReqEvent()
1269{
1270    int busyRanks = 0;
1271    for (auto r : ranks) {
1272        if (!r->inRefIdleState()) {
1273            if (r->pwrState != PWR_SREF) {
1274                // rank is busy refreshing
1275                DPRINTF(DRAMState, "Rank %d is not available\n", r->rank);
1276                busyRanks++;
1277
1278                // let the rank know that if it was waiting to drain, it
1279                // is now done and ready to proceed
1280                r->checkDrainDone();
1281            }
1282
1283            // check if we were in self-refresh and haven't started
1284            // to transition out
1285            if ((r->pwrState == PWR_SREF) && r->inLowPowerState) {
1286                DPRINTF(DRAMState, "Rank %d is in self-refresh\n", r->rank);
1287                // if we have commands queued to this rank and we don't have
1288                // a minimum number of active commands enqueued,
1289                // exit self-refresh
1290                if (r->forceSelfRefreshExit()) {
1291                    DPRINTF(DRAMState, "rank %d was in self refresh and"
1292                           " should wake up\n", r->rank);
1293                    //wake up from self-refresh
1294                    r->scheduleWakeUpEvent(tXS);
1295                    // things are brought back into action once a refresh is
1296                    // performed after self-refresh
1297                    // continue with selection for other ranks
1298                }
1299            }
1300        }
1301    }
1302
1303    if (busyRanks == ranksPerChannel) {
1304        // if all ranks are refreshing wait for them to finish
1305        // and stall this state machine without taking any further
1306        // action, and do not schedule a new nextReqEvent
1307        return;
1308    }
1309
1310    // pre-emptively set to false.  Overwrite if in transitioning to
1311    // a new state
1312    bool switched_cmd_type = false;
1313    if (busState != busStateNext) {
1314        if (busState == READ) {
1315            DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1316                    "waiting\n", readsThisTime, readQueue.size());
1317
1318            // sample and reset the read-related stats as we are now
1319            // transitioning to writes, and all reads are done
1320            rdPerTurnAround.sample(readsThisTime);
1321            readsThisTime = 0;
1322
1323            // now proceed to do the actual writes
1324            switched_cmd_type = true;
1325        } else {
1326            DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1327                    "waiting\n", writesThisTime, writeQueue.size());
1328
1329            wrPerTurnAround.sample(writesThisTime);
1330            writesThisTime = 0;
1331
1332            switched_cmd_type = true;
1333        }
1334        // update busState to match next state until next transition
1335        busState = busStateNext;
1336    }
1337
1338    // when we get here it is either a read or a write
1339    if (busState == READ) {
1340
1341        // track if we should switch or not
1342        bool switch_to_writes = false;
1343
1344        if (readQueue.empty()) {
1345            // In the case there is no read request to go next,
1346            // trigger writes if we have passed the low threshold (or
1347            // if we are draining)
1348            if (!writeQueue.empty() &&
1349                (drainState() == DrainState::Draining ||
1350                 writeQueue.size() > writeLowThreshold)) {
1351
1352                switch_to_writes = true;
1353            } else {
1354                // check if we are drained
1355                // not done draining until in PWR_IDLE state
1356                // ensuring all banks are closed and
1357                // have exited low power states
1358                if (drainState() == DrainState::Draining &&
1359                    respQueue.empty() && allRanksDrained()) {
1360
1361                    DPRINTF(Drain, "DRAM controller done draining\n");
1362                    signalDrainDone();
1363                }
1364
1365                // nothing to do, not even any point in scheduling an
1366                // event for the next request
1367                return;
1368            }
1369        } else {
1370            // bool to check if there is a read to a free rank
1371            bool found_read = false;
1372
1373            // Figure out which read request goes next, and move it to the
1374            // front of the read queue
1375            // If we are changing command type, incorporate the minimum
1376            // bus turnaround delay which will be tCS (different rank) case
1377            found_read = chooseNext(readQueue,
1378                             switched_cmd_type ? tCS : 0);
1379
1380            // if no read to an available rank is found then return
1381            // at this point. There could be writes to the available ranks
1382            // which are above the required threshold. However, to
1383            // avoid adding more complexity to the code, return and wait
1384            // for a refresh event to kick things into action again.
1385            if (!found_read)
1386                return;
1387
1388            DRAMPacket* dram_pkt = readQueue.front();
1389            assert(dram_pkt->rankRef.inRefIdleState());
1390
1391            // here we get a bit creative and shift the bus busy time not
1392            // just the tWTR, but also a CAS latency to capture the fact
1393            // that we are allowed to prepare a new bank, but not issue a
1394            // read command until after tWTR, in essence we capture a
1395            // bubble on the data bus that is tWTR + tCL
1396            if (switched_cmd_type && dram_pkt->rank == activeRank) {
1397                busBusyUntil += tWTR + tCL;
1398            }
1399
1400            doDRAMAccess(dram_pkt);
1401
1402            // At this point we're done dealing with the request
1403            readQueue.pop_front();
1404
1405            // Every respQueue which will generate an event, increment count
1406            ++dram_pkt->rankRef.outstandingEvents;
1407
1408            // sanity check
1409            assert(dram_pkt->size <= burstSize);
1410            assert(dram_pkt->readyTime >= curTick());
1411
1412            // Insert into response queue. It will be sent back to the
1413            // requestor at its readyTime
1414            if (respQueue.empty()) {
1415                assert(!respondEvent.scheduled());
1416                schedule(respondEvent, dram_pkt->readyTime);
1417            } else {
1418                assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1419                assert(respondEvent.scheduled());
1420            }
1421
1422            respQueue.push_back(dram_pkt);
1423
1424            // we have so many writes that we have to transition
1425            if (writeQueue.size() > writeHighThreshold) {
1426                switch_to_writes = true;
1427            }
1428        }
1429
1430        // switching to writes, either because the read queue is empty
1431        // and the writes have passed the low threshold (or we are
1432        // draining), or because the writes hit the hight threshold
1433        if (switch_to_writes) {
1434            // transition to writing
1435            busStateNext = WRITE;
1436        }
1437    } else {
1438        // bool to check if write to free rank is found
1439        bool found_write = false;
1440
1441        // If we are changing command type, incorporate the minimum
1442        // bus turnaround delay
1443        found_write = chooseNext(writeQueue,
1444                                 switched_cmd_type ? std::min(tRTW, tCS) : 0);
1445
1446        // if there are no writes to a rank that is available to service
1447        // requests (i.e. rank is in refresh idle state) are found then
1448        // return. There could be reads to the available ranks. However, to
1449        // avoid adding more complexity to the code, return at this point and
1450        // wait for a refresh event to kick things into action again.
1451        if (!found_write)
1452            return;
1453
1454        DRAMPacket* dram_pkt = writeQueue.front();
1455        assert(dram_pkt->rankRef.inRefIdleState());
1456        // sanity check
1457        assert(dram_pkt->size <= burstSize);
1458
1459        // add a bubble to the data bus, as defined by the
1460        // tRTW when access is to the same rank as previous burst
1461        // Different rank timing is handled with tCS, which is
1462        // applied to colAllowedAt
1463        if (switched_cmd_type && dram_pkt->rank == activeRank) {
1464            busBusyUntil += tRTW;
1465        }
1466
1467        doDRAMAccess(dram_pkt);
1468
1469        writeQueue.pop_front();
1470
1471        // removed write from queue, decrement count
1472        --dram_pkt->rankRef.writeEntries;
1473
1474        // Schedule write done event to decrement event count
1475        // after the readyTime has been reached
1476        // Only schedule latest write event to minimize events
1477        // required; only need to ensure that final event scheduled covers
1478        // the time that writes are outstanding and bus is active
1479        // to holdoff power-down entry events
1480        if (!dram_pkt->rankRef.writeDoneEvent.scheduled()) {
1481            schedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime);
1482            // New event, increment count
1483            ++dram_pkt->rankRef.outstandingEvents;
1484
1485        } else if (dram_pkt->rankRef.writeDoneEvent.when() <
1486                   dram_pkt-> readyTime) {
1487            reschedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime);
1488        }
1489
1490        isInWriteQueue.erase(burstAlign(dram_pkt->addr));
1491        delete dram_pkt;
1492
1493        // If we emptied the write queue, or got sufficiently below the
1494        // threshold (using the minWritesPerSwitch as the hysteresis) and
1495        // are not draining, or we have reads waiting and have done enough
1496        // writes, then switch to reads.
1497        if (writeQueue.empty() ||
1498            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1499             drainState() != DrainState::Draining) ||
1500            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1501            // turn the bus back around for reads again
1502            busStateNext = READ;
1503
1504            // note that the we switch back to reads also in the idle
1505            // case, which eventually will check for any draining and
1506            // also pause any further scheduling if there is really
1507            // nothing to do
1508        }
1509    }
1510    // It is possible that a refresh to another rank kicks things back into
1511    // action before reaching this point.
1512    if (!nextReqEvent.scheduled())
1513        schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1514
1515    // If there is space available and we have writes waiting then let
1516    // them retry. This is done here to ensure that the retry does not
1517    // cause a nextReqEvent to be scheduled before we do so as part of
1518    // the next request processing
1519    if (retryWrReq && writeQueue.size() < writeBufferSize) {
1520        retryWrReq = false;
1521        port.sendRetryReq();
1522    }
1523}
1524
1525pair<uint64_t, bool>
1526DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1527                      Tick min_col_at) const
1528{
1529    uint64_t bank_mask = 0;
1530    Tick min_act_at = MaxTick;
1531
1532    // latest Tick for which ACT can occur without incurring additoinal
1533    // delay on the data bus
1534    const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick());
1535
1536    // Flag condition when burst can issue back-to-back with previous burst
1537    bool found_seamless_bank = false;
1538
1539    // Flag condition when bank can be opened without incurring additional
1540    // delay on the data bus
1541    bool hidden_bank_prep = false;
1542
1543    // determine if we have queued transactions targetting the
1544    // bank in question
1545    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1546    for (const auto& p : queue) {
1547        if (p->rankRef.inRefIdleState())
1548            got_waiting[p->bankId] = true;
1549    }
1550
1551    // Find command with optimal bank timing
1552    // Will prioritize commands that can issue seamlessly.
1553    for (int i = 0; i < ranksPerChannel; i++) {
1554        for (int j = 0; j < banksPerRank; j++) {
1555            uint16_t bank_id = i * banksPerRank + j;
1556
1557            // if we have waiting requests for the bank, and it is
1558            // amongst the first available, update the mask
1559            if (got_waiting[bank_id]) {
1560                // make sure this rank is not currently refreshing.
1561                assert(ranks[i]->inRefIdleState());
1562                // simplistic approximation of when the bank can issue
1563                // an activate, ignoring any rank-to-rank switching
1564                // cost in this calculation
1565                Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1566                    std::max(ranks[i]->banks[j].actAllowedAt, curTick()) :
1567                    std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1568
1569                // When is the earliest the R/W burst can issue?
1570                Tick col_at = std::max(ranks[i]->banks[j].colAllowedAt,
1571                                       act_at + tRCD);
1572
1573                // bank can issue burst back-to-back (seamlessly) with
1574                // previous burst
1575                bool new_seamless_bank = col_at <= min_col_at;
1576
1577                // if we found a new seamless bank or we have no
1578                // seamless banks, and got a bank with an earlier
1579                // activate time, it should be added to the bit mask
1580                if (new_seamless_bank ||
1581                    (!found_seamless_bank && act_at <= min_act_at)) {
1582                    // if we did not have a seamless bank before, and
1583                    // we do now, reset the bank mask, also reset it
1584                    // if we have not yet found a seamless bank and
1585                    // the activate time is smaller than what we have
1586                    // seen so far
1587                    if (!found_seamless_bank &&
1588                        (new_seamless_bank || act_at < min_act_at)) {
1589                        bank_mask = 0;
1590                    }
1591
1592                    found_seamless_bank |= new_seamless_bank;
1593
1594                    // ACT can occur 'behind the scenes'
1595                    hidden_bank_prep = act_at <= hidden_act_max;
1596
1597                    // set the bit corresponding to the available bank
1598                    replaceBits(bank_mask, bank_id, bank_id, 1);
1599                    min_act_at = act_at;
1600                }
1601            }
1602        }
1603    }
1604
1605    return make_pair(bank_mask, hidden_bank_prep);
1606}
1607
1608DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p, int rank)
1609    : EventManager(&_memory), memory(_memory),
1610      pwrStateTrans(PWR_IDLE), pwrStatePostRefresh(PWR_IDLE),
1611      pwrStateTick(0), refreshDueAt(0), pwrState(PWR_IDLE),
1612      refreshState(REF_IDLE), inLowPowerState(false), rank(rank),
1613      readEntries(0), writeEntries(0), outstandingEvents(0),
1614      wakeUpAllowedAt(0), power(_p, false), banks(_p->banks_per_rank),
1615      numBanksActive(0), actTicks(_p->activation_limit, 0),
1616      writeDoneEvent([this]{ processWriteDoneEvent(); }, name()),
1617      activateEvent([this]{ processActivateEvent(); }, name()),
1618      prechargeEvent([this]{ processPrechargeEvent(); }, name()),
1619      refreshEvent([this]{ processRefreshEvent(); }, name()),
1620      powerEvent([this]{ processPowerEvent(); }, name()),
1621      wakeUpEvent([this]{ processWakeUpEvent(); }, name())
1622{
1623    for (int b = 0; b < _p->banks_per_rank; b++) {
1624        banks[b].bank = b;
1625        // GDDR addressing of banks to BG is linear.
1626        // Here we assume that all DRAM generations address bank groups as
1627        // follows:
1628        if (_p->bank_groups_per_rank > 0) {
1629            // Simply assign lower bits to bank group in order to
1630            // rotate across bank groups as banks are incremented
1631            // e.g. with 4 banks per bank group and 16 banks total:
1632            //    banks 0,4,8,12  are in bank group 0
1633            //    banks 1,5,9,13  are in bank group 1
1634            //    banks 2,6,10,14 are in bank group 2
1635            //    banks 3,7,11,15 are in bank group 3
1636            banks[b].bankgr = b % _p->bank_groups_per_rank;
1637        } else {
1638            // No bank groups; simply assign to bank number
1639            banks[b].bankgr = b;
1640        }
1641    }
1642}
1643
1644void
1645DRAMCtrl::Rank::startup(Tick ref_tick)
1646{
1647    assert(ref_tick > curTick());
1648
1649    pwrStateTick = curTick();
1650
1651    // kick off the refresh, and give ourselves enough time to
1652    // precharge
1653    schedule(refreshEvent, ref_tick);
1654}
1655
1656void
1657DRAMCtrl::Rank::suspend()
1658{
1659    deschedule(refreshEvent);
1660
1661    // Update the stats
1662    updatePowerStats();
1663
1664    // don't automatically transition back to LP state after next REF
1665    pwrStatePostRefresh = PWR_IDLE;
1666}
1667
1668bool
1669DRAMCtrl::Rank::isQueueEmpty() const
1670{
1671    // check commmands in Q based on current bus direction
1672    bool no_queued_cmds = ((memory.busStateNext == READ) && (readEntries == 0))
1673                          || ((memory.busStateNext == WRITE) &&
1674                              (writeEntries == 0));
1675    return no_queued_cmds;
1676}
1677
1678void
1679DRAMCtrl::Rank::checkDrainDone()
1680{
1681    // if this rank was waiting to drain it is now able to proceed to
1682    // precharge
1683    if (refreshState == REF_DRAIN) {
1684        DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1685
1686        refreshState = REF_PD_EXIT;
1687
1688        // hand control back to the refresh event loop
1689        schedule(refreshEvent, curTick());
1690    }
1691}
1692
1693void
1694DRAMCtrl::Rank::flushCmdList()
1695{
1696    // at the moment sort the list of commands and update the counters
1697    // for DRAMPower libray when doing a refresh
1698    sort(cmdList.begin(), cmdList.end(), DRAMCtrl::sortTime);
1699
1700    auto next_iter = cmdList.begin();
1701    // push to commands to DRAMPower
1702    for ( ; next_iter != cmdList.end() ; ++next_iter) {
1703         Command cmd = *next_iter;
1704         if (cmd.timeStamp <= curTick()) {
1705             // Move all commands at or before curTick to DRAMPower
1706             power.powerlib.doCommand(cmd.type, cmd.bank,
1707                                      divCeil(cmd.timeStamp, memory.tCK) -
1708                                      memory.timeStampOffset);
1709         } else {
1710             // done - found all commands at or before curTick()
1711             // next_iter references the 1st command after curTick
1712             break;
1713         }
1714    }
1715    // reset cmdList to only contain commands after curTick
1716    // if there are no commands after curTick, updated cmdList will be empty
1717    // in this case, next_iter is cmdList.end()
1718    cmdList.assign(next_iter, cmdList.end());
1719}
1720
1721void
1722DRAMCtrl::Rank::processActivateEvent()
1723{
1724    // we should transition to the active state as soon as any bank is active
1725    if (pwrState != PWR_ACT)
1726        // note that at this point numBanksActive could be back at
1727        // zero again due to a precharge scheduled in the future
1728        schedulePowerEvent(PWR_ACT, curTick());
1729}
1730
1731void
1732DRAMCtrl::Rank::processPrechargeEvent()
1733{
1734    // counter should at least indicate one outstanding request
1735    // for this precharge
1736    assert(outstandingEvents > 0);
1737    // precharge complete, decrement count
1738    --outstandingEvents;
1739
1740    // if we reached zero, then special conditions apply as we track
1741    // if all banks are precharged for the power models
1742    if (numBanksActive == 0) {
1743        // no reads to this rank in the Q and no pending
1744        // RD/WR or refresh commands
1745        if (isQueueEmpty() && outstandingEvents == 0) {
1746            // should still be in ACT state since bank still open
1747            assert(pwrState == PWR_ACT);
1748
1749            // All banks closed - switch to precharge power down state.
1750            DPRINTF(DRAMState, "Rank %d sleep at tick %d\n",
1751                    rank, curTick());
1752            powerDownSleep(PWR_PRE_PDN, curTick());
1753        } else {
1754            // we should transition to the idle state when the last bank
1755            // is precharged
1756            schedulePowerEvent(PWR_IDLE, curTick());
1757        }
1758    }
1759}
1760
1761void
1762DRAMCtrl::Rank::processWriteDoneEvent()
1763{
1764    // counter should at least indicate one outstanding request
1765    // for this write
1766    assert(outstandingEvents > 0);
1767    // Write transfer on bus has completed
1768    // decrement per rank counter
1769    --outstandingEvents;
1770}
1771
1772void
1773DRAMCtrl::Rank::processRefreshEvent()
1774{
1775    // when first preparing the refresh, remember when it was due
1776    if ((refreshState == REF_IDLE) || (refreshState == REF_SREF_EXIT)) {
1777        // remember when the refresh is due
1778        refreshDueAt = curTick();
1779
1780        // proceed to drain
1781        refreshState = REF_DRAIN;
1782
1783        // make nonzero while refresh is pending to ensure
1784        // power down and self-refresh are not entered
1785        ++outstandingEvents;
1786
1787        DPRINTF(DRAM, "Refresh due\n");
1788    }
1789
1790    // let any scheduled read or write to the same rank go ahead,
1791    // after which it will
1792    // hand control back to this event loop
1793    if (refreshState == REF_DRAIN) {
1794        // if a request is at the moment being handled and this request is
1795        // accessing the current rank then wait for it to finish
1796        if ((rank == memory.activeRank)
1797            && (memory.nextReqEvent.scheduled())) {
1798            // hand control over to the request loop until it is
1799            // evaluated next
1800            DPRINTF(DRAM, "Refresh awaiting draining\n");
1801
1802            return;
1803        } else {
1804            refreshState = REF_PD_EXIT;
1805        }
1806    }
1807
1808    // at this point, ensure that rank is not in a power-down state
1809    if (refreshState == REF_PD_EXIT) {
1810        // if rank was sleeping and we have't started exit process,
1811        // wake-up for refresh
1812        if (inLowPowerState) {
1813            DPRINTF(DRAM, "Wake Up for refresh\n");
1814            // save state and return after refresh completes
1815            scheduleWakeUpEvent(memory.tXP);
1816            return;
1817        } else {
1818            refreshState = REF_PRE;
1819        }
1820    }
1821
1822    // at this point, ensure that all banks are precharged
1823    if (refreshState == REF_PRE) {
1824        // precharge any active bank
1825        if (numBanksActive != 0) {
1826            // at the moment, we use a precharge all even if there is
1827            // only a single bank open
1828            DPRINTF(DRAM, "Precharging all\n");
1829
1830            // first determine when we can precharge
1831            Tick pre_at = curTick();
1832
1833            for (auto &b : banks) {
1834                // respect both causality and any existing bank
1835                // constraints, some banks could already have a
1836                // (auto) precharge scheduled
1837                pre_at = std::max(b.preAllowedAt, pre_at);
1838            }
1839
1840            // make sure all banks per rank are precharged, and for those that
1841            // already are, update their availability
1842            Tick act_allowed_at = pre_at + memory.tRP;
1843
1844            for (auto &b : banks) {
1845                if (b.openRow != Bank::NO_ROW) {
1846                    memory.prechargeBank(*this, b, pre_at, false);
1847                } else {
1848                    b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1849                    b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1850                }
1851            }
1852
1853            // precharge all banks in rank
1854            cmdList.push_back(Command(MemCommand::PREA, 0, pre_at));
1855
1856            DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1857                    divCeil(pre_at, memory.tCK) -
1858                            memory.timeStampOffset, rank);
1859        } else if ((pwrState == PWR_IDLE) && (outstandingEvents == 1))  {
1860            // Banks are closed, have transitioned to IDLE state, and
1861            // no outstanding ACT,RD/WR,Auto-PRE sequence scheduled
1862            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1863
1864            // go ahead and kick the power state machine into gear since
1865            // we are already idle
1866            schedulePowerEvent(PWR_REF, curTick());
1867        } else {
1868            // banks state is closed but haven't transitioned pwrState to IDLE
1869            // or have outstanding ACT,RD/WR,Auto-PRE sequence scheduled
1870            // should have outstanding precharge event in this case
1871            assert(prechargeEvent.scheduled());
1872            // will start refresh when pwrState transitions to IDLE
1873        }
1874
1875        assert(numBanksActive == 0);
1876
1877        // wait for all banks to be precharged, at which point the
1878        // power state machine will transition to the idle state, and
1879        // automatically move to a refresh, at that point it will also
1880        // call this method to get the refresh event loop going again
1881        return;
1882    }
1883
1884    // last but not least we perform the actual refresh
1885    if (refreshState == REF_START) {
1886        // should never get here with any banks active
1887        assert(numBanksActive == 0);
1888        assert(pwrState == PWR_REF);
1889
1890        Tick ref_done_at = curTick() + memory.tRFC;
1891
1892        for (auto &b : banks) {
1893            b.actAllowedAt = ref_done_at;
1894        }
1895
1896        // at the moment this affects all ranks
1897        cmdList.push_back(Command(MemCommand::REF, 0, curTick()));
1898
1899        // Update the stats
1900        updatePowerStats();
1901
1902        DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1903                memory.timeStampOffset, rank);
1904
1905        // Update for next refresh
1906        refreshDueAt += memory.tREFI;
1907
1908        // make sure we did not wait so long that we cannot make up
1909        // for it
1910        if (refreshDueAt < ref_done_at) {
1911            fatal("Refresh was delayed so long we cannot catch up\n");
1912        }
1913
1914        // Run the refresh and schedule event to transition power states
1915        // when refresh completes
1916        refreshState = REF_RUN;
1917        schedule(refreshEvent, ref_done_at);
1918        return;
1919    }
1920
1921    if (refreshState == REF_RUN) {
1922        // should never get here with any banks active
1923        assert(numBanksActive == 0);
1924        assert(pwrState == PWR_REF);
1925
1926        assert(!powerEvent.scheduled());
1927
1928        if ((memory.drainState() == DrainState::Draining) ||
1929            (memory.drainState() == DrainState::Drained)) {
1930            // if draining, do not re-enter low-power mode.
1931            // simply go to IDLE and wait
1932            schedulePowerEvent(PWR_IDLE, curTick());
1933        } else {
1934            // At the moment, we sleep when the refresh ends and wait to be
1935            // woken up again if previously in a low-power state.
1936            if (pwrStatePostRefresh != PWR_IDLE) {
1937                // power State should be power Refresh
1938                assert(pwrState == PWR_REF);
1939                DPRINTF(DRAMState, "Rank %d sleeping after refresh and was in "
1940                        "power state %d before refreshing\n", rank,
1941                        pwrStatePostRefresh);
1942                powerDownSleep(pwrState, curTick());
1943
1944            // Force PRE power-down if there are no outstanding commands
1945            // in Q after refresh.
1946            } else if (isQueueEmpty()) {
1947                // still have refresh event outstanding but there should
1948                // be no other events outstanding
1949                assert(outstandingEvents == 1);
1950                DPRINTF(DRAMState, "Rank %d sleeping after refresh but was NOT"
1951                        " in a low power state before refreshing\n", rank);
1952                powerDownSleep(PWR_PRE_PDN, curTick());
1953
1954            } else {
1955                // move to the idle power state once the refresh is done, this
1956                // will also move the refresh state machine to the refresh
1957                // idle state
1958                schedulePowerEvent(PWR_IDLE, curTick());
1959            }
1960        }
1961
1962        // At this point, we have completed the current refresh.
1963        // In the SREF bypass case, we do not get to this state in the
1964        // refresh STM and therefore can always schedule next event.
1965        // Compensate for the delay in actually performing the refresh
1966        // when scheduling the next one
1967        schedule(refreshEvent, refreshDueAt - memory.tRP);
1968
1969        DPRINTF(DRAMState, "Refresh done at %llu and next refresh"
1970                " at %llu\n", curTick(), refreshDueAt);
1971    }
1972}
1973
1974void
1975DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1976{
1977    // respect causality
1978    assert(tick >= curTick());
1979
1980    if (!powerEvent.scheduled()) {
1981        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1982                tick, pwr_state);
1983
1984        // insert the new transition
1985        pwrStateTrans = pwr_state;
1986
1987        schedule(powerEvent, tick);
1988    } else {
1989        panic("Scheduled power event at %llu to state %d, "
1990              "with scheduled event at %llu to %d\n", tick, pwr_state,
1991              powerEvent.when(), pwrStateTrans);
1992    }
1993}
1994
1995void
1996DRAMCtrl::Rank::powerDownSleep(PowerState pwr_state, Tick tick)
1997{
1998    // if low power state is active low, schedule to active low power state.
1999    // in reality tCKE is needed to enter active low power. This is neglected
2000    // here and could be added in the future.
2001    if (pwr_state == PWR_ACT_PDN) {
2002        schedulePowerEvent(pwr_state, tick);
2003        // push command to DRAMPower
2004        cmdList.push_back(Command(MemCommand::PDN_F_ACT, 0, tick));
2005        DPRINTF(DRAMPower, "%llu,PDN_F_ACT,0,%d\n", divCeil(tick,
2006                memory.tCK) - memory.timeStampOffset, rank);
2007    } else if (pwr_state == PWR_PRE_PDN) {
2008        // if low power state is precharge low, schedule to precharge low
2009        // power state. In reality tCKE is needed to enter active low power.
2010        // This is neglected here.
2011        schedulePowerEvent(pwr_state, tick);
2012        //push Command to DRAMPower
2013        cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick));
2014        DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick,
2015                memory.tCK) - memory.timeStampOffset, rank);
2016    } else if (pwr_state == PWR_REF) {
2017        // if a refresh just occurred
2018        // transition to PRE_PDN now that all banks are closed
2019        // precharge power down requires tCKE to enter. For simplicity
2020        // this is not considered.
2021        schedulePowerEvent(PWR_PRE_PDN, tick);
2022        //push Command to DRAMPower
2023        cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick));
2024        DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick,
2025                memory.tCK) - memory.timeStampOffset, rank);
2026    } else if (pwr_state == PWR_SREF) {
2027        // should only enter SREF after PRE-PD wakeup to do a refresh
2028        assert(pwrStatePostRefresh == PWR_PRE_PDN);
2029        // self refresh requires time tCKESR to enter. For simplicity,
2030        // this is not considered.
2031        schedulePowerEvent(PWR_SREF, tick);
2032        // push Command to DRAMPower
2033        cmdList.push_back(Command(MemCommand::SREN, 0, tick));
2034        DPRINTF(DRAMPower, "%llu,SREN,0,%d\n", divCeil(tick,
2035                memory.tCK) - memory.timeStampOffset, rank);
2036    }
2037    // Ensure that we don't power-down and back up in same tick
2038    // Once we commit to PD entry, do it and wait for at least 1tCK
2039    // This could be replaced with tCKE if/when that is added to the model
2040    wakeUpAllowedAt = tick + memory.tCK;
2041
2042    // Transitioning to a low power state, set flag
2043    inLowPowerState = true;
2044}
2045
2046void
2047DRAMCtrl::Rank::scheduleWakeUpEvent(Tick exit_delay)
2048{
2049    Tick wake_up_tick = std::max(curTick(), wakeUpAllowedAt);
2050
2051    DPRINTF(DRAMState, "Scheduling wake-up for rank %d at tick %d\n",
2052            rank, wake_up_tick);
2053
2054    // if waking for refresh, hold previous state
2055    // else reset state back to IDLE
2056    if (refreshState == REF_PD_EXIT) {
2057        pwrStatePostRefresh = pwrState;
2058    } else {
2059        // don't automatically transition back to LP state after next REF
2060        pwrStatePostRefresh = PWR_IDLE;
2061    }
2062
2063    // schedule wake-up with event to ensure entry has completed before
2064    // we try to wake-up
2065    schedule(wakeUpEvent, wake_up_tick);
2066
2067    for (auto &b : banks) {
2068        // respect both causality and any existing bank
2069        // constraints, some banks could already have a
2070        // (auto) precharge scheduled
2071        b.colAllowedAt = std::max(wake_up_tick + exit_delay, b.colAllowedAt);
2072        b.preAllowedAt = std::max(wake_up_tick + exit_delay, b.preAllowedAt);
2073        b.actAllowedAt = std::max(wake_up_tick + exit_delay, b.actAllowedAt);
2074    }
2075    // Transitioning out of low power state, clear flag
2076    inLowPowerState = false;
2077
2078    // push to DRAMPower
2079    // use pwrStateTrans for cases where we have a power event scheduled
2080    // to enter low power that has not yet been processed
2081    if (pwrStateTrans == PWR_ACT_PDN) {
2082        cmdList.push_back(Command(MemCommand::PUP_ACT, 0, wake_up_tick));
2083        DPRINTF(DRAMPower, "%llu,PUP_ACT,0,%d\n", divCeil(wake_up_tick,
2084                memory.tCK) - memory.timeStampOffset, rank);
2085
2086    } else if (pwrStateTrans == PWR_PRE_PDN) {
2087        cmdList.push_back(Command(MemCommand::PUP_PRE, 0, wake_up_tick));
2088        DPRINTF(DRAMPower, "%llu,PUP_PRE,0,%d\n", divCeil(wake_up_tick,
2089                memory.tCK) - memory.timeStampOffset, rank);
2090    } else if (pwrStateTrans == PWR_SREF) {
2091        cmdList.push_back(Command(MemCommand::SREX, 0, wake_up_tick));
2092        DPRINTF(DRAMPower, "%llu,SREX,0,%d\n", divCeil(wake_up_tick,
2093                memory.tCK) - memory.timeStampOffset, rank);
2094    }
2095}
2096
2097void
2098DRAMCtrl::Rank::processWakeUpEvent()
2099{
2100    // Should be in a power-down or self-refresh state
2101    assert((pwrState == PWR_ACT_PDN) || (pwrState == PWR_PRE_PDN) ||
2102           (pwrState == PWR_SREF));
2103
2104    // Check current state to determine transition state
2105    if (pwrState == PWR_ACT_PDN) {
2106        // banks still open, transition to PWR_ACT
2107        schedulePowerEvent(PWR_ACT, curTick());
2108    } else {
2109        // transitioning from a precharge power-down or self-refresh state
2110        // banks are closed - transition to PWR_IDLE
2111        schedulePowerEvent(PWR_IDLE, curTick());
2112    }
2113}
2114
2115void
2116DRAMCtrl::Rank::processPowerEvent()
2117{
2118    assert(curTick() >= pwrStateTick);
2119    // remember where we were, and for how long
2120    Tick duration = curTick() - pwrStateTick;
2121    PowerState prev_state = pwrState;
2122
2123    // update the accounting
2124    pwrStateTime[prev_state] += duration;
2125
2126    // track to total idle time
2127    if ((prev_state == PWR_PRE_PDN) || (prev_state == PWR_ACT_PDN) ||
2128        (prev_state == PWR_SREF)) {
2129        totalIdleTime += duration;
2130    }
2131
2132    pwrState = pwrStateTrans;
2133    pwrStateTick = curTick();
2134
2135    // if rank was refreshing, make sure to start scheduling requests again
2136    if (prev_state == PWR_REF) {
2137        // bus IDLED prior to REF
2138        // counter should be one for refresh command only
2139        assert(outstandingEvents == 1);
2140        // REF complete, decrement count and go back to IDLE
2141        --outstandingEvents;
2142        refreshState = REF_IDLE;
2143
2144        DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
2145        // if moving back to power-down after refresh
2146        if (pwrState != PWR_IDLE) {
2147            assert(pwrState == PWR_PRE_PDN);
2148            DPRINTF(DRAMState, "Switching to power down state after refreshing"
2149                    " rank %d at %llu tick\n", rank, curTick());
2150        }
2151
2152        // completed refresh event, ensure next request is scheduled
2153        if (!memory.nextReqEvent.scheduled()) {
2154            DPRINTF(DRAM, "Scheduling next request after refreshing"
2155                           " rank %d\n", rank);
2156            schedule(memory.nextReqEvent, curTick());
2157        }
2158    }
2159
2160    if ((pwrState == PWR_ACT) && (refreshState == REF_PD_EXIT)) {
2161        // have exited ACT PD
2162        assert(prev_state == PWR_ACT_PDN);
2163
2164        // go back to REF event and close banks
2165        refreshState = REF_PRE;
2166        schedule(refreshEvent, curTick());
2167    } else if (pwrState == PWR_IDLE) {
2168        DPRINTF(DRAMState, "All banks precharged\n");
2169        if (prev_state == PWR_SREF) {
2170            // set refresh state to REF_SREF_EXIT, ensuring inRefIdleState
2171            // continues to return false during tXS after SREF exit
2172            // Schedule a refresh which kicks things back into action
2173            // when it finishes
2174            refreshState = REF_SREF_EXIT;
2175            schedule(refreshEvent, curTick() + memory.tXS);
2176        } else {
2177            // if we have a pending refresh, and are now moving to
2178            // the idle state, directly transition to, or schedule refresh
2179            if ((refreshState == REF_PRE) || (refreshState == REF_PD_EXIT)) {
2180                // ensure refresh is restarted only after final PRE command.
2181                // do not restart refresh if controller is in an intermediate
2182                // state, after PRE_PDN exit, when banks are IDLE but an
2183                // ACT is scheduled.
2184                if (!activateEvent.scheduled()) {
2185                    // there should be nothing waiting at this point
2186                    assert(!powerEvent.scheduled());
2187                    if (refreshState == REF_PD_EXIT) {
2188                        // exiting PRE PD, will be in IDLE until tXP expires
2189                        // and then should transition to PWR_REF state
2190                        assert(prev_state == PWR_PRE_PDN);
2191                        schedulePowerEvent(PWR_REF, curTick() + memory.tXP);
2192                    } else if (refreshState == REF_PRE) {
2193                        // can directly move to PWR_REF state and proceed below
2194                        pwrState = PWR_REF;
2195                    }
2196                } else {
2197                    // must have PRE scheduled to transition back to IDLE
2198                    // and re-kick off refresh
2199                    assert(prechargeEvent.scheduled());
2200                }
2201            }
2202        }
2203    }
2204
2205    // transition to the refresh state and re-start refresh process
2206    // refresh state machine will schedule the next power state transition
2207    if (pwrState == PWR_REF) {
2208        // completed final PRE for refresh or exiting power-down
2209        assert(refreshState == REF_PRE || refreshState == REF_PD_EXIT);
2210
2211        // exited PRE PD for refresh, with no pending commands
2212        // bypass auto-refresh and go straight to SREF, where memory
2213        // will issue refresh immediately upon entry
2214        if (pwrStatePostRefresh == PWR_PRE_PDN && isQueueEmpty() &&
2215           (memory.drainState() != DrainState::Draining) &&
2216           (memory.drainState() != DrainState::Drained)) {
2217            DPRINTF(DRAMState, "Rank %d bypassing refresh and transitioning "
2218                    "to self refresh at %11u tick\n", rank, curTick());
2219            powerDownSleep(PWR_SREF, curTick());
2220
2221            // Since refresh was bypassed, remove event by decrementing count
2222            assert(outstandingEvents == 1);
2223            --outstandingEvents;
2224
2225            // reset state back to IDLE temporarily until SREF is entered
2226            pwrState = PWR_IDLE;
2227
2228        // Not bypassing refresh for SREF entry
2229        } else {
2230            DPRINTF(DRAMState, "Refreshing\n");
2231
2232            // there should be nothing waiting at this point
2233            assert(!powerEvent.scheduled());
2234
2235            // kick the refresh event loop into action again, and that
2236            // in turn will schedule a transition to the idle power
2237            // state once the refresh is done
2238            schedule(refreshEvent, curTick());
2239
2240            // Banks transitioned to IDLE, start REF
2241            refreshState = REF_START;
2242        }
2243    }
2244
2245}
2246
2247void
2248DRAMCtrl::Rank::updatePowerStats()
2249{
2250    // All commands up to refresh have completed
2251    // flush cmdList to DRAMPower
2252    flushCmdList();
2253
2254    // Call the function that calculates window energy at intermediate update
2255    // events like at refresh, stats dump as well as at simulation exit.
2256    // Window starts at the last time the calcWindowEnergy function was called
2257    // and is upto current time.
2258    power.powerlib.calcWindowEnergy(divCeil(curTick(), memory.tCK) -
2259                                    memory.timeStampOffset);
2260
2261    // Get the energy from DRAMPower
2262    Data::MemoryPowerModel::Energy energy = power.powerlib.getEnergy();
2263
2264    // The energy components inside the power lib are calculated over
2265    // the window so accumulate into the corresponding gem5 stat
2266    actEnergy += energy.act_energy * memory.devicesPerRank;
2267    preEnergy += energy.pre_energy * memory.devicesPerRank;
2268    readEnergy += energy.read_energy * memory.devicesPerRank;
2269    writeEnergy += energy.write_energy * memory.devicesPerRank;
2270    refreshEnergy += energy.ref_energy * memory.devicesPerRank;
2271    actBackEnergy += energy.act_stdby_energy * memory.devicesPerRank;
2272    preBackEnergy += energy.pre_stdby_energy * memory.devicesPerRank;
2273    actPowerDownEnergy += energy.f_act_pd_energy * memory.devicesPerRank;
2274    prePowerDownEnergy += energy.f_pre_pd_energy * memory.devicesPerRank;
2275    selfRefreshEnergy += energy.sref_energy * memory.devicesPerRank;
2276
2277    // Accumulate window energy into the total energy.
2278    totalEnergy += energy.window_energy * memory.devicesPerRank;
2279    // Average power must not be accumulated but calculated over the time
2280    // since last stats reset. SimClock::Frequency is tick period not tick
2281    // frequency.
2282    //              energy (pJ)     1e-9
2283    // power (mW) = ----------- * ----------
2284    //              time (tick)   tick_frequency
2285    averagePower = (totalEnergy.value() /
2286                    (curTick() - memory.lastStatsResetTick)) *
2287                    (SimClock::Frequency / 1000000000.0);
2288}
2289
2290void
2291DRAMCtrl::Rank::computeStats()
2292{
2293    DPRINTF(DRAM,"Computing stats due to a dump callback\n");
2294
2295    // Update the stats
2296    updatePowerStats();
2297
2298    // final update of power state times
2299    pwrStateTime[pwrState] += (curTick() - pwrStateTick);
2300    pwrStateTick = curTick();
2301
2302}
2303
2304void
2305DRAMCtrl::Rank::resetStats() {
2306    // The only way to clear the counters in DRAMPower is to call
2307    // calcWindowEnergy function as that then calls clearCounters. The
2308    // clearCounters method itself is private.
2309    power.powerlib.calcWindowEnergy(divCeil(curTick(), memory.tCK) -
2310                                    memory.timeStampOffset);
2311
2312}
2313
2314void
2315DRAMCtrl::Rank::regStats()
2316{
2317    pwrStateTime
2318        .init(6)
2319        .name(name() + ".memoryStateTime")
2320        .desc("Time in different power states");
2321    pwrStateTime.subname(0, "IDLE");
2322    pwrStateTime.subname(1, "REF");
2323    pwrStateTime.subname(2, "SREF");
2324    pwrStateTime.subname(3, "PRE_PDN");
2325    pwrStateTime.subname(4, "ACT");
2326    pwrStateTime.subname(5, "ACT_PDN");
2327
2328    actEnergy
2329        .name(name() + ".actEnergy")
2330        .desc("Energy for activate commands per rank (pJ)");
2331
2332    preEnergy
2333        .name(name() + ".preEnergy")
2334        .desc("Energy for precharge commands per rank (pJ)");
2335
2336    readEnergy
2337        .name(name() + ".readEnergy")
2338        .desc("Energy for read commands per rank (pJ)");
2339
2340    writeEnergy
2341        .name(name() + ".writeEnergy")
2342        .desc("Energy for write commands per rank (pJ)");
2343
2344    refreshEnergy
2345        .name(name() + ".refreshEnergy")
2346        .desc("Energy for refresh commands per rank (pJ)");
2347
2348    actBackEnergy
2349        .name(name() + ".actBackEnergy")
2350        .desc("Energy for active background per rank (pJ)");
2351
2352    preBackEnergy
2353        .name(name() + ".preBackEnergy")
2354        .desc("Energy for precharge background per rank (pJ)");
2355
2356    actPowerDownEnergy
2357        .name(name() + ".actPowerDownEnergy")
2358        .desc("Energy for active power-down per rank (pJ)");
2359
2360    prePowerDownEnergy
2361        .name(name() + ".prePowerDownEnergy")
2362        .desc("Energy for precharge power-down per rank (pJ)");
2363
2364    selfRefreshEnergy
2365        .name(name() + ".selfRefreshEnergy")
2366        .desc("Energy for self refresh per rank (pJ)");
2367
2368    totalEnergy
2369        .name(name() + ".totalEnergy")
2370        .desc("Total energy per rank (pJ)");
2371
2372    averagePower
2373        .name(name() + ".averagePower")
2374        .desc("Core power per rank (mW)");
2375
2376    totalIdleTime
2377        .name(name() + ".totalIdleTime")
2378        .desc("Total Idle time Per DRAM Rank");
2379
2380    Stats::registerDumpCallback(new RankDumpCallback(this));
2381    Stats::registerResetCallback(new RankResetCallback(this));
2382}
2383void
2384DRAMCtrl::regStats()
2385{
2386    using namespace Stats;
2387
2388    AbstractMemory::regStats();
2389
2390    for (auto r : ranks) {
2391        r->regStats();
2392    }
2393
2394    registerResetCallback(new MemResetCallback(this));
2395
2396    readReqs
2397        .name(name() + ".readReqs")
2398        .desc("Number of read requests accepted");
2399
2400    writeReqs
2401        .name(name() + ".writeReqs")
2402        .desc("Number of write requests accepted");
2403
2404    readBursts
2405        .name(name() + ".readBursts")
2406        .desc("Number of DRAM read bursts, "
2407              "including those serviced by the write queue");
2408
2409    writeBursts
2410        .name(name() + ".writeBursts")
2411        .desc("Number of DRAM write bursts, "
2412              "including those merged in the write queue");
2413
2414    servicedByWrQ
2415        .name(name() + ".servicedByWrQ")
2416        .desc("Number of DRAM read bursts serviced by the write queue");
2417
2418    mergedWrBursts
2419        .name(name() + ".mergedWrBursts")
2420        .desc("Number of DRAM write bursts merged with an existing one");
2421
2422    neitherReadNorWrite
2423        .name(name() + ".neitherReadNorWriteReqs")
2424        .desc("Number of requests that are neither read nor write");
2425
2426    perBankRdBursts
2427        .init(banksPerRank * ranksPerChannel)
2428        .name(name() + ".perBankRdBursts")
2429        .desc("Per bank write bursts");
2430
2431    perBankWrBursts
2432        .init(banksPerRank * ranksPerChannel)
2433        .name(name() + ".perBankWrBursts")
2434        .desc("Per bank write bursts");
2435
2436    avgRdQLen
2437        .name(name() + ".avgRdQLen")
2438        .desc("Average read queue length when enqueuing")
2439        .precision(2);
2440
2441    avgWrQLen
2442        .name(name() + ".avgWrQLen")
2443        .desc("Average write queue length when enqueuing")
2444        .precision(2);
2445
2446    totQLat
2447        .name(name() + ".totQLat")
2448        .desc("Total ticks spent queuing");
2449
2450    totBusLat
2451        .name(name() + ".totBusLat")
2452        .desc("Total ticks spent in databus transfers");
2453
2454    totMemAccLat
2455        .name(name() + ".totMemAccLat")
2456        .desc("Total ticks spent from burst creation until serviced "
2457              "by the DRAM");
2458
2459    avgQLat
2460        .name(name() + ".avgQLat")
2461        .desc("Average queueing delay per DRAM burst")
2462        .precision(2);
2463
2464    avgQLat = totQLat / (readBursts - servicedByWrQ);
2465
2466    avgBusLat
2467        .name(name() + ".avgBusLat")
2468        .desc("Average bus latency per DRAM burst")
2469        .precision(2);
2470
2471    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
2472
2473    avgMemAccLat
2474        .name(name() + ".avgMemAccLat")
2475        .desc("Average memory access latency per DRAM burst")
2476        .precision(2);
2477
2478    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
2479
2480    numRdRetry
2481        .name(name() + ".numRdRetry")
2482        .desc("Number of times read queue was full causing retry");
2483
2484    numWrRetry
2485        .name(name() + ".numWrRetry")
2486        .desc("Number of times write queue was full causing retry");
2487
2488    readRowHits
2489        .name(name() + ".readRowHits")
2490        .desc("Number of row buffer hits during reads");
2491
2492    writeRowHits
2493        .name(name() + ".writeRowHits")
2494        .desc("Number of row buffer hits during writes");
2495
2496    readRowHitRate
2497        .name(name() + ".readRowHitRate")
2498        .desc("Row buffer hit rate for reads")
2499        .precision(2);
2500
2501    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2502
2503    writeRowHitRate
2504        .name(name() + ".writeRowHitRate")
2505        .desc("Row buffer hit rate for writes")
2506        .precision(2);
2507
2508    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2509
2510    readPktSize
2511        .init(ceilLog2(burstSize) + 1)
2512        .name(name() + ".readPktSize")
2513        .desc("Read request sizes (log2)");
2514
2515     writePktSize
2516        .init(ceilLog2(burstSize) + 1)
2517        .name(name() + ".writePktSize")
2518        .desc("Write request sizes (log2)");
2519
2520     rdQLenPdf
2521        .init(readBufferSize)
2522        .name(name() + ".rdQLenPdf")
2523        .desc("What read queue length does an incoming req see");
2524
2525     wrQLenPdf
2526        .init(writeBufferSize)
2527        .name(name() + ".wrQLenPdf")
2528        .desc("What write queue length does an incoming req see");
2529
2530     bytesPerActivate
2531         .init(maxAccessesPerRow)
2532         .name(name() + ".bytesPerActivate")
2533         .desc("Bytes accessed per row activation")
2534         .flags(nozero);
2535
2536     rdPerTurnAround
2537         .init(readBufferSize)
2538         .name(name() + ".rdPerTurnAround")
2539         .desc("Reads before turning the bus around for writes")
2540         .flags(nozero);
2541
2542     wrPerTurnAround
2543         .init(writeBufferSize)
2544         .name(name() + ".wrPerTurnAround")
2545         .desc("Writes before turning the bus around for reads")
2546         .flags(nozero);
2547
2548    bytesReadDRAM
2549        .name(name() + ".bytesReadDRAM")
2550        .desc("Total number of bytes read from DRAM");
2551
2552    bytesReadWrQ
2553        .name(name() + ".bytesReadWrQ")
2554        .desc("Total number of bytes read from write queue");
2555
2556    bytesWritten
2557        .name(name() + ".bytesWritten")
2558        .desc("Total number of bytes written to DRAM");
2559
2560    bytesReadSys
2561        .name(name() + ".bytesReadSys")
2562        .desc("Total read bytes from the system interface side");
2563
2564    bytesWrittenSys
2565        .name(name() + ".bytesWrittenSys")
2566        .desc("Total written bytes from the system interface side");
2567
2568    avgRdBW
2569        .name(name() + ".avgRdBW")
2570        .desc("Average DRAM read bandwidth in MiByte/s")
2571        .precision(2);
2572
2573    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2574
2575    avgWrBW
2576        .name(name() + ".avgWrBW")
2577        .desc("Average achieved write bandwidth in MiByte/s")
2578        .precision(2);
2579
2580    avgWrBW = (bytesWritten / 1000000) / simSeconds;
2581
2582    avgRdBWSys
2583        .name(name() + ".avgRdBWSys")
2584        .desc("Average system read bandwidth in MiByte/s")
2585        .precision(2);
2586
2587    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2588
2589    avgWrBWSys
2590        .name(name() + ".avgWrBWSys")
2591        .desc("Average system write bandwidth in MiByte/s")
2592        .precision(2);
2593
2594    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2595
2596    peakBW
2597        .name(name() + ".peakBW")
2598        .desc("Theoretical peak bandwidth in MiByte/s")
2599        .precision(2);
2600
2601    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2602
2603    busUtil
2604        .name(name() + ".busUtil")
2605        .desc("Data bus utilization in percentage")
2606        .precision(2);
2607    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2608
2609    totGap
2610        .name(name() + ".totGap")
2611        .desc("Total gap between requests");
2612
2613    avgGap
2614        .name(name() + ".avgGap")
2615        .desc("Average gap between requests")
2616        .precision(2);
2617
2618    avgGap = totGap / (readReqs + writeReqs);
2619
2620    // Stats for DRAM Power calculation based on Micron datasheet
2621    busUtilRead
2622        .name(name() + ".busUtilRead")
2623        .desc("Data bus utilization in percentage for reads")
2624        .precision(2);
2625
2626    busUtilRead = avgRdBW / peakBW * 100;
2627
2628    busUtilWrite
2629        .name(name() + ".busUtilWrite")
2630        .desc("Data bus utilization in percentage for writes")
2631        .precision(2);
2632
2633    busUtilWrite = avgWrBW / peakBW * 100;
2634
2635    pageHitRate
2636        .name(name() + ".pageHitRate")
2637        .desc("Row buffer hit rate, read and write combined")
2638        .precision(2);
2639
2640    pageHitRate = (writeRowHits + readRowHits) /
2641        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2642}
2643
2644void
2645DRAMCtrl::recvFunctional(PacketPtr pkt)
2646{
2647    // rely on the abstract memory
2648    functionalAccess(pkt);
2649}
2650
2651BaseSlavePort&
2652DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2653{
2654    if (if_name != "port") {
2655        return MemObject::getSlavePort(if_name, idx);
2656    } else {
2657        return port;
2658    }
2659}
2660
2661DrainState
2662DRAMCtrl::drain()
2663{
2664    // if there is anything in any of our internal queues, keep track
2665    // of that as well
2666    if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty() &&
2667          allRanksDrained())) {
2668
2669        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2670                " resp: %d\n", writeQueue.size(), readQueue.size(),
2671                respQueue.size());
2672
2673        // the only queue that is not drained automatically over time
2674        // is the write queue, thus kick things into action if needed
2675        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2676            schedule(nextReqEvent, curTick());
2677        }
2678
2679        // also need to kick off events to exit self-refresh
2680        for (auto r : ranks) {
2681            // force self-refresh exit, which in turn will issue auto-refresh
2682            if (r->pwrState == PWR_SREF) {
2683                DPRINTF(DRAM,"Rank%d: Forcing self-refresh wakeup in drain\n",
2684                        r->rank);
2685                r->scheduleWakeUpEvent(tXS);
2686            }
2687        }
2688
2689        return DrainState::Draining;
2690    } else {
2691        return DrainState::Drained;
2692    }
2693}
2694
2695bool
2696DRAMCtrl::allRanksDrained() const
2697{
2698    // true until proven false
2699    bool all_ranks_drained = true;
2700    for (auto r : ranks) {
2701        // then verify that the power state is IDLE ensuring all banks are
2702        // closed and rank is not in a low power state. Also verify that rank
2703        // is idle from a refresh point of view.
2704        all_ranks_drained = r->inPwrIdleState() && r->inRefIdleState() &&
2705            all_ranks_drained;
2706    }
2707    return all_ranks_drained;
2708}
2709
2710void
2711DRAMCtrl::drainResume()
2712{
2713    if (!isTimingMode && system()->isTimingMode()) {
2714        // if we switched to timing mode, kick things into action,
2715        // and behave as if we restored from a checkpoint
2716        startup();
2717    } else if (isTimingMode && !system()->isTimingMode()) {
2718        // if we switch from timing mode, stop the refresh events to
2719        // not cause issues with KVM
2720        for (auto r : ranks) {
2721            r->suspend();
2722        }
2723    }
2724
2725    // update the mode
2726    isTimingMode = system()->isTimingMode();
2727}
2728
2729DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2730    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2731      memory(_memory)
2732{ }
2733
2734AddrRangeList
2735DRAMCtrl::MemoryPort::getAddrRanges() const
2736{
2737    AddrRangeList ranges;
2738    ranges.push_back(memory.getAddrRange());
2739    return ranges;
2740}
2741
2742void
2743DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2744{
2745    pkt->pushLabel(memory.name());
2746
2747    if (!queue.checkFunctional(pkt)) {
2748        // Default implementation of SimpleTimingPort::recvFunctional()
2749        // calls recvAtomic() and throws away the latency; we can save a
2750        // little here by just not calculating the latency.
2751        memory.recvFunctional(pkt);
2752    }
2753
2754    pkt->popLabel();
2755}
2756
2757Tick
2758DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2759{
2760    return memory.recvAtomic(pkt);
2761}
2762
2763bool
2764DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2765{
2766    // pass it to the memory controller
2767    return memory.recvTimingReq(pkt);
2768}
2769
2770DRAMCtrl*
2771DRAMCtrlParams::create()
2772{
2773    return new DRAMCtrl(this);
2774}
2775