dram_ctrl.cc revision 11678:8c6991a00515
1/*
2 * Copyright (c) 2010-2016 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 *          Omar Naji
44 *          Wendy Elsasser
45 */
46
47#include "base/bitfield.hh"
48#include "base/trace.hh"
49#include "debug/DRAM.hh"
50#include "debug/DRAMPower.hh"
51#include "debug/DRAMState.hh"
52#include "debug/Drain.hh"
53#include "mem/dram_ctrl.hh"
54#include "sim/system.hh"
55
56using namespace std;
57using namespace Data;
58
59DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
60    AbstractMemory(p),
61    port(name() + ".port", *this), isTimingMode(false),
62    retryRdReq(false), retryWrReq(false),
63    busState(READ),
64    busStateNext(READ),
65    nextReqEvent(this), respondEvent(this),
66    deviceSize(p->device_size),
67    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
68    deviceRowBufferSize(p->device_rowbuffer_size),
69    devicesPerRank(p->devices_per_rank),
70    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
71    rowBufferSize(devicesPerRank * deviceRowBufferSize),
72    columnsPerRowBuffer(rowBufferSize / burstSize),
73    columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1),
74    ranksPerChannel(p->ranks_per_channel),
75    bankGroupsPerRank(p->bank_groups_per_rank),
76    bankGroupArch(p->bank_groups_per_rank > 0),
77    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
78    readBufferSize(p->read_buffer_size),
79    writeBufferSize(p->write_buffer_size),
80    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
81    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
82    minWritesPerSwitch(p->min_writes_per_switch),
83    writesThisTime(0), readsThisTime(0),
84    tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
85    tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
86    tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
87    tRRD_L(p->tRRD_L), tXAW(p->tXAW), tXP(p->tXP), tXS(p->tXS),
88    activationLimit(p->activation_limit),
89    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
90    pageMgmt(p->page_policy),
91    maxAccessesPerRow(p->max_accesses_per_row),
92    frontendLatency(p->static_frontend_latency),
93    backendLatency(p->static_backend_latency),
94    busBusyUntil(0), prevArrival(0),
95    nextReqTime(0), activeRank(0), timeStampOffset(0)
96{
97    // sanity check the ranks since we rely on bit slicing for the
98    // address decoding
99    fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
100             "allowed, must be a power of two\n", ranksPerChannel);
101
102    fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, "
103             "must be a power of two\n", burstSize);
104
105    for (int i = 0; i < ranksPerChannel; i++) {
106        Rank* rank = new Rank(*this, p);
107        ranks.push_back(rank);
108
109        rank->actTicks.resize(activationLimit, 0);
110        rank->banks.resize(banksPerRank);
111        rank->rank = i;
112
113        for (int b = 0; b < banksPerRank; b++) {
114            rank->banks[b].bank = b;
115            // GDDR addressing of banks to BG is linear.
116            // Here we assume that all DRAM generations address bank groups as
117            // follows:
118            if (bankGroupArch) {
119                // Simply assign lower bits to bank group in order to
120                // rotate across bank groups as banks are incremented
121                // e.g. with 4 banks per bank group and 16 banks total:
122                //    banks 0,4,8,12  are in bank group 0
123                //    banks 1,5,9,13  are in bank group 1
124                //    banks 2,6,10,14 are in bank group 2
125                //    banks 3,7,11,15 are in bank group 3
126                rank->banks[b].bankgr = b % bankGroupsPerRank;
127            } else {
128                // No bank groups; simply assign to bank number
129                rank->banks[b].bankgr = b;
130            }
131        }
132    }
133
134    // perform a basic check of the write thresholds
135    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
136        fatal("Write buffer low threshold %d must be smaller than the "
137              "high threshold %d\n", p->write_low_thresh_perc,
138              p->write_high_thresh_perc);
139
140    // determine the rows per bank by looking at the total capacity
141    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
142
143    // determine the dram actual capacity from the DRAM config in Mbytes
144    uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
145        ranksPerChannel;
146
147    // if actual DRAM size does not match memory capacity in system warn!
148    if (deviceCapacity != capacity / (1024 * 1024))
149        warn("DRAM device capacity (%d Mbytes) does not match the "
150             "address range assigned (%d Mbytes)\n", deviceCapacity,
151             capacity / (1024 * 1024));
152
153    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
154            AbstractMemory::size());
155
156    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
157            rowBufferSize, columnsPerRowBuffer);
158
159    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
160
161    // some basic sanity checks
162    if (tREFI <= tRP || tREFI <= tRFC) {
163        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
164              tREFI, tRP, tRFC);
165    }
166
167    // basic bank group architecture checks ->
168    if (bankGroupArch) {
169        // must have at least one bank per bank group
170        if (bankGroupsPerRank > banksPerRank) {
171            fatal("banks per rank (%d) must be equal to or larger than "
172                  "banks groups per rank (%d)\n",
173                  banksPerRank, bankGroupsPerRank);
174        }
175        // must have same number of banks in each bank group
176        if ((banksPerRank % bankGroupsPerRank) != 0) {
177            fatal("Banks per rank (%d) must be evenly divisible by bank groups "
178                  "per rank (%d) for equal banks per bank group\n",
179                  banksPerRank, bankGroupsPerRank);
180        }
181        // tCCD_L should be greater than minimal, back-to-back burst delay
182        if (tCCD_L <= tBURST) {
183            fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
184                  "bank groups per rank (%d) is greater than 1\n",
185                  tCCD_L, tBURST, bankGroupsPerRank);
186        }
187        // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
188        // some datasheets might specify it equal to tRRD
189        if (tRRD_L < tRRD) {
190            fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
191                  "bank groups per rank (%d) is greater than 1\n",
192                  tRRD_L, tRRD, bankGroupsPerRank);
193        }
194    }
195
196}
197
198void
199DRAMCtrl::init()
200{
201    AbstractMemory::init();
202
203   if (!port.isConnected()) {
204        fatal("DRAMCtrl %s is unconnected!\n", name());
205    } else {
206        port.sendRangeChange();
207    }
208
209    // a bit of sanity checks on the interleaving, save it for here to
210    // ensure that the system pointer is initialised
211    if (range.interleaved()) {
212        if (channels != range.stripes())
213            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
214                  name(), range.stripes(), channels);
215
216        if (addrMapping == Enums::RoRaBaChCo) {
217            if (rowBufferSize != range.granularity()) {
218                fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
219                      "address map\n", name());
220            }
221        } else if (addrMapping == Enums::RoRaBaCoCh ||
222                   addrMapping == Enums::RoCoRaBaCh) {
223            // for the interleavings with channel bits in the bottom,
224            // if the system uses a channel striping granularity that
225            // is larger than the DRAM burst size, then map the
226            // sequential accesses within a stripe to a number of
227            // columns in the DRAM, effectively placing some of the
228            // lower-order column bits as the least-significant bits
229            // of the address (above the ones denoting the burst size)
230            assert(columnsPerStripe >= 1);
231
232            // channel striping has to be done at a granularity that
233            // is equal or larger to a cache line
234            if (system()->cacheLineSize() > range.granularity()) {
235                fatal("Channel interleaving of %s must be at least as large "
236                      "as the cache line size\n", name());
237            }
238
239            // ...and equal or smaller than the row-buffer size
240            if (rowBufferSize < range.granularity()) {
241                fatal("Channel interleaving of %s must be at most as large "
242                      "as the row-buffer size\n", name());
243            }
244            // this is essentially the check above, so just to be sure
245            assert(columnsPerStripe <= columnsPerRowBuffer);
246        }
247    }
248}
249
250void
251DRAMCtrl::startup()
252{
253    // remember the memory system mode of operation
254    isTimingMode = system()->isTimingMode();
255
256    if (isTimingMode) {
257        // timestamp offset should be in clock cycles for DRAMPower
258        timeStampOffset = divCeil(curTick(), tCK);
259
260        // update the start tick for the precharge accounting to the
261        // current tick
262        for (auto r : ranks) {
263            r->startup(curTick() + tREFI - tRP);
264        }
265
266        // shift the bus busy time sufficiently far ahead that we never
267        // have to worry about negative values when computing the time for
268        // the next request, this will add an insignificant bubble at the
269        // start of simulation
270        busBusyUntil = curTick() + tRP + tRCD + tCL;
271    }
272}
273
274Tick
275DRAMCtrl::recvAtomic(PacketPtr pkt)
276{
277    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
278
279    panic_if(pkt->cacheResponding(), "Should not see packets where cache "
280             "is responding");
281
282    // do the actual memory access and turn the packet into a response
283    access(pkt);
284
285    Tick latency = 0;
286    if (pkt->hasData()) {
287        // this value is not supposed to be accurate, just enough to
288        // keep things going, mimic a closed page
289        latency = tRP + tRCD + tCL;
290    }
291    return latency;
292}
293
294bool
295DRAMCtrl::readQueueFull(unsigned int neededEntries) const
296{
297    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
298            readBufferSize, readQueue.size() + respQueue.size(),
299            neededEntries);
300
301    return
302        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
303}
304
305bool
306DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
307{
308    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
309            writeBufferSize, writeQueue.size(), neededEntries);
310    return (writeQueue.size() + neededEntries) > writeBufferSize;
311}
312
313DRAMCtrl::DRAMPacket*
314DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
315                       bool isRead)
316{
317    // decode the address based on the address mapping scheme, with
318    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
319    // channel, respectively
320    uint8_t rank;
321    uint8_t bank;
322    // use a 64-bit unsigned during the computations as the row is
323    // always the top bits, and check before creating the DRAMPacket
324    uint64_t row;
325
326    // truncate the address to a DRAM burst, which makes it unique to
327    // a specific column, row, bank, rank and channel
328    Addr addr = dramPktAddr / burstSize;
329
330    // we have removed the lowest order address bits that denote the
331    // position within the column
332    if (addrMapping == Enums::RoRaBaChCo) {
333        // the lowest order bits denote the column to ensure that
334        // sequential cache lines occupy the same row
335        addr = addr / columnsPerRowBuffer;
336
337        // take out the channel part of the address
338        addr = addr / channels;
339
340        // after the channel bits, get the bank bits to interleave
341        // over the banks
342        bank = addr % banksPerRank;
343        addr = addr / banksPerRank;
344
345        // after the bank, we get the rank bits which thus interleaves
346        // over the ranks
347        rank = addr % ranksPerChannel;
348        addr = addr / ranksPerChannel;
349
350        // lastly, get the row bits, no need to remove them from addr
351        row = addr % rowsPerBank;
352    } else if (addrMapping == Enums::RoRaBaCoCh) {
353        // take out the lower-order column bits
354        addr = addr / columnsPerStripe;
355
356        // take out the channel part of the address
357        addr = addr / channels;
358
359        // next, the higher-order column bites
360        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
361
362        // after the column bits, we get the bank bits to interleave
363        // over the banks
364        bank = addr % banksPerRank;
365        addr = addr / banksPerRank;
366
367        // after the bank, we get the rank bits which thus interleaves
368        // over the ranks
369        rank = addr % ranksPerChannel;
370        addr = addr / ranksPerChannel;
371
372        // lastly, get the row bits, no need to remove them from addr
373        row = addr % rowsPerBank;
374    } else if (addrMapping == Enums::RoCoRaBaCh) {
375        // optimise for closed page mode and utilise maximum
376        // parallelism of the DRAM (at the cost of power)
377
378        // take out the lower-order column bits
379        addr = addr / columnsPerStripe;
380
381        // take out the channel part of the address, not that this has
382        // to match with how accesses are interleaved between the
383        // controllers in the address mapping
384        addr = addr / channels;
385
386        // start with the bank bits, as this provides the maximum
387        // opportunity for parallelism between requests
388        bank = addr % banksPerRank;
389        addr = addr / banksPerRank;
390
391        // next get the rank bits
392        rank = addr % ranksPerChannel;
393        addr = addr / ranksPerChannel;
394
395        // next, the higher-order column bites
396        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
397
398        // lastly, get the row bits, no need to remove them from addr
399        row = addr % rowsPerBank;
400    } else
401        panic("Unknown address mapping policy chosen!");
402
403    assert(rank < ranksPerChannel);
404    assert(bank < banksPerRank);
405    assert(row < rowsPerBank);
406    assert(row < Bank::NO_ROW);
407
408    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
409            dramPktAddr, rank, bank, row);
410
411    // create the corresponding DRAM packet with the entry time and
412    // ready time set to the current tick, the latter will be updated
413    // later
414    uint16_t bank_id = banksPerRank * rank + bank;
415    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
416                          size, ranks[rank]->banks[bank], *ranks[rank]);
417}
418
419void
420DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
421{
422    // only add to the read queue here. whenever the request is
423    // eventually done, set the readyTime, and call schedule()
424    assert(!pkt->isWrite());
425
426    assert(pktCount != 0);
427
428    // if the request size is larger than burst size, the pkt is split into
429    // multiple DRAM packets
430    // Note if the pkt starting address is not aligened to burst size, the
431    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
432    // are aligned to burst size boundaries. This is to ensure we accurately
433    // check read packets against packets in write queue.
434    Addr addr = pkt->getAddr();
435    unsigned pktsServicedByWrQ = 0;
436    BurstHelper* burst_helper = NULL;
437    for (int cnt = 0; cnt < pktCount; ++cnt) {
438        unsigned size = std::min((addr | (burstSize - 1)) + 1,
439                        pkt->getAddr() + pkt->getSize()) - addr;
440        readPktSize[ceilLog2(size)]++;
441        readBursts++;
442
443        // First check write buffer to see if the data is already at
444        // the controller
445        bool foundInWrQ = false;
446        Addr burst_addr = burstAlign(addr);
447        // if the burst address is not present then there is no need
448        // looking any further
449        if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) {
450            for (const auto& p : writeQueue) {
451                // check if the read is subsumed in the write queue
452                // packet we are looking at
453                if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) {
454                    foundInWrQ = true;
455                    servicedByWrQ++;
456                    pktsServicedByWrQ++;
457                    DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
458                            "write queue\n", addr, size);
459                    bytesReadWrQ += burstSize;
460                    break;
461                }
462            }
463        }
464
465        // If not found in the write q, make a DRAM packet and
466        // push it onto the read queue
467        if (!foundInWrQ) {
468
469            // Make the burst helper for split packets
470            if (pktCount > 1 && burst_helper == NULL) {
471                DPRINTF(DRAM, "Read to addr %lld translates to %d "
472                        "dram requests\n", pkt->getAddr(), pktCount);
473                burst_helper = new BurstHelper(pktCount);
474            }
475
476            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
477            dram_pkt->burstHelper = burst_helper;
478
479            assert(!readQueueFull(1));
480            rdQLenPdf[readQueue.size() + respQueue.size()]++;
481
482            DPRINTF(DRAM, "Adding to read queue\n");
483
484            readQueue.push_back(dram_pkt);
485
486            // increment read entries of the rank
487            ++dram_pkt->rankRef.readEntries;
488
489            // Update stats
490            avgRdQLen = readQueue.size() + respQueue.size();
491        }
492
493        // Starting address of next dram pkt (aligend to burstSize boundary)
494        addr = (addr | (burstSize - 1)) + 1;
495    }
496
497    // If all packets are serviced by write queue, we send the repsonse back
498    if (pktsServicedByWrQ == pktCount) {
499        accessAndRespond(pkt, frontendLatency);
500        return;
501    }
502
503    // Update how many split packets are serviced by write queue
504    if (burst_helper != NULL)
505        burst_helper->burstsServiced = pktsServicedByWrQ;
506
507    // If we are not already scheduled to get a request out of the
508    // queue, do so now
509    if (!nextReqEvent.scheduled()) {
510        DPRINTF(DRAM, "Request scheduled immediately\n");
511        schedule(nextReqEvent, curTick());
512    }
513}
514
515void
516DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
517{
518    // only add to the write queue here. whenever the request is
519    // eventually done, set the readyTime, and call schedule()
520    assert(pkt->isWrite());
521
522    // if the request size is larger than burst size, the pkt is split into
523    // multiple DRAM packets
524    Addr addr = pkt->getAddr();
525    for (int cnt = 0; cnt < pktCount; ++cnt) {
526        unsigned size = std::min((addr | (burstSize - 1)) + 1,
527                        pkt->getAddr() + pkt->getSize()) - addr;
528        writePktSize[ceilLog2(size)]++;
529        writeBursts++;
530
531        // see if we can merge with an existing item in the write
532        // queue and keep track of whether we have merged or not
533        bool merged = isInWriteQueue.find(burstAlign(addr)) !=
534            isInWriteQueue.end();
535
536        // if the item was not merged we need to create a new write
537        // and enqueue it
538        if (!merged) {
539            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
540
541            assert(writeQueue.size() < writeBufferSize);
542            wrQLenPdf[writeQueue.size()]++;
543
544            DPRINTF(DRAM, "Adding to write queue\n");
545
546            writeQueue.push_back(dram_pkt);
547            isInWriteQueue.insert(burstAlign(addr));
548            assert(writeQueue.size() == isInWriteQueue.size());
549
550            // Update stats
551            avgWrQLen = writeQueue.size();
552
553            // increment write entries of the rank
554            ++dram_pkt->rankRef.writeEntries;
555        } else {
556            DPRINTF(DRAM, "Merging write burst with existing queue entry\n");
557
558            // keep track of the fact that this burst effectively
559            // disappeared as it was merged with an existing one
560            mergedWrBursts++;
561        }
562
563        // Starting address of next dram pkt (aligend to burstSize boundary)
564        addr = (addr | (burstSize - 1)) + 1;
565    }
566
567    // we do not wait for the writes to be send to the actual memory,
568    // but instead take responsibility for the consistency here and
569    // snoop the write queue for any upcoming reads
570    // @todo, if a pkt size is larger than burst size, we might need a
571    // different front end latency
572    accessAndRespond(pkt, frontendLatency);
573
574    // If we are not already scheduled to get a request out of the
575    // queue, do so now
576    if (!nextReqEvent.scheduled()) {
577        DPRINTF(DRAM, "Request scheduled immediately\n");
578        schedule(nextReqEvent, curTick());
579    }
580}
581
582void
583DRAMCtrl::printQs() const {
584    DPRINTF(DRAM, "===READ QUEUE===\n\n");
585    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
586        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
587    }
588    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
589    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
590        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
591    }
592    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
593    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
594        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
595    }
596}
597
598bool
599DRAMCtrl::recvTimingReq(PacketPtr pkt)
600{
601    // This is where we enter from the outside world
602    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
603            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
604
605    panic_if(pkt->cacheResponding(), "Should not see packets where cache "
606             "is responding");
607
608    panic_if(!(pkt->isRead() || pkt->isWrite()),
609             "Should only see read and writes at memory controller\n");
610
611    // Calc avg gap between requests
612    if (prevArrival != 0) {
613        totGap += curTick() - prevArrival;
614    }
615    prevArrival = curTick();
616
617
618    // Find out how many dram packets a pkt translates to
619    // If the burst size is equal or larger than the pkt size, then a pkt
620    // translates to only one dram packet. Otherwise, a pkt translates to
621    // multiple dram packets
622    unsigned size = pkt->getSize();
623    unsigned offset = pkt->getAddr() & (burstSize - 1);
624    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
625
626    // check local buffers and do not accept if full
627    if (pkt->isRead()) {
628        assert(size != 0);
629        if (readQueueFull(dram_pkt_count)) {
630            DPRINTF(DRAM, "Read queue full, not accepting\n");
631            // remember that we have to retry this port
632            retryRdReq = true;
633            numRdRetry++;
634            return false;
635        } else {
636            addToReadQueue(pkt, dram_pkt_count);
637            readReqs++;
638            bytesReadSys += size;
639        }
640    } else {
641        assert(pkt->isWrite());
642        assert(size != 0);
643        if (writeQueueFull(dram_pkt_count)) {
644            DPRINTF(DRAM, "Write queue full, not accepting\n");
645            // remember that we have to retry this port
646            retryWrReq = true;
647            numWrRetry++;
648            return false;
649        } else {
650            addToWriteQueue(pkt, dram_pkt_count);
651            writeReqs++;
652            bytesWrittenSys += size;
653        }
654    }
655
656    return true;
657}
658
659void
660DRAMCtrl::processRespondEvent()
661{
662    DPRINTF(DRAM,
663            "processRespondEvent(): Some req has reached its readyTime\n");
664
665    DRAMPacket* dram_pkt = respQueue.front();
666
667    // if a read has reached its ready-time, decrement the number of reads
668    // At this point the packet has been handled and there is a possibility
669    // to switch to low-power mode if no other packet is available
670    --dram_pkt->rankRef.readEntries;
671    DPRINTF(DRAM, "number of read entries for rank %d is %d\n",
672            dram_pkt->rank, dram_pkt->rankRef.readEntries);
673
674    // counter should at least indicate one outstanding request
675    // for this read
676    assert(dram_pkt->rankRef.outstandingEvents > 0);
677    // read response received, decrement count
678    --dram_pkt->rankRef.outstandingEvents;
679
680    // at this moment should be either ACT or IDLE depending on
681    // if PRE has occurred to close all banks
682    assert((dram_pkt->rankRef.pwrState == PWR_ACT) ||
683           (dram_pkt->rankRef.pwrState == PWR_IDLE));
684
685    // track if this is the last packet before idling
686    // and that there are no outstanding commands to this rank
687    if (dram_pkt->rankRef.lowPowerEntryReady()) {
688        // verify that there are no events scheduled
689        assert(!dram_pkt->rankRef.activateEvent.scheduled());
690        assert(!dram_pkt->rankRef.prechargeEvent.scheduled());
691        assert(dram_pkt->rankRef.refreshState == REF_IDLE);
692
693        // if coming from active state, schedule power event to
694        // active power-down else go to precharge power-down
695        DPRINTF(DRAMState, "Rank %d sleep at tick %d; current power state is "
696                "%d\n", dram_pkt->rank, curTick(), dram_pkt->rankRef.pwrState);
697
698        // default to ACT power-down unless already in IDLE state
699        // could be in IDLE if PRE issued before data returned
700        PowerState next_pwr_state = PWR_ACT_PDN;
701        if (dram_pkt->rankRef.pwrState == PWR_IDLE) {
702            next_pwr_state = PWR_PRE_PDN;
703        }
704
705        dram_pkt->rankRef.powerDownSleep(next_pwr_state, curTick());
706    }
707
708    if (dram_pkt->burstHelper) {
709        // it is a split packet
710        dram_pkt->burstHelper->burstsServiced++;
711        if (dram_pkt->burstHelper->burstsServiced ==
712            dram_pkt->burstHelper->burstCount) {
713            // we have now serviced all children packets of a system packet
714            // so we can now respond to the requester
715            // @todo we probably want to have a different front end and back
716            // end latency for split packets
717            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
718            delete dram_pkt->burstHelper;
719            dram_pkt->burstHelper = NULL;
720        }
721    } else {
722        // it is not a split packet
723        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
724    }
725
726    delete respQueue.front();
727    respQueue.pop_front();
728
729    if (!respQueue.empty()) {
730        assert(respQueue.front()->readyTime >= curTick());
731        assert(!respondEvent.scheduled());
732        schedule(respondEvent, respQueue.front()->readyTime);
733    } else {
734        // if there is nothing left in any queue, signal a drain
735        if (drainState() == DrainState::Draining &&
736            writeQueue.empty() && readQueue.empty() && allRanksDrained()) {
737
738            DPRINTF(Drain, "DRAM controller done draining\n");
739            signalDrainDone();
740        }
741    }
742
743    // We have made a location in the queue available at this point,
744    // so if there is a read that was forced to wait, retry now
745    if (retryRdReq) {
746        retryRdReq = false;
747        port.sendRetryReq();
748    }
749}
750
751bool
752DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
753{
754    // This method does the arbitration between requests. The chosen
755    // packet is simply moved to the head of the queue. The other
756    // methods know that this is the place to look. For example, with
757    // FCFS, this method does nothing
758    assert(!queue.empty());
759
760    // bool to indicate if a packet to an available rank is found
761    bool found_packet = false;
762    if (queue.size() == 1) {
763        DRAMPacket* dram_pkt = queue.front();
764        // available rank corresponds to state refresh idle
765        if (ranks[dram_pkt->rank]->isAvailable()) {
766            found_packet = true;
767            DPRINTF(DRAM, "Single request, going to a free rank\n");
768        } else {
769            DPRINTF(DRAM, "Single request, going to a busy rank\n");
770        }
771        return found_packet;
772    }
773
774    if (memSchedPolicy == Enums::fcfs) {
775        // check if there is a packet going to a free rank
776        for (auto i = queue.begin(); i != queue.end() ; ++i) {
777            DRAMPacket* dram_pkt = *i;
778            if (ranks[dram_pkt->rank]->isAvailable()) {
779                queue.erase(i);
780                queue.push_front(dram_pkt);
781                found_packet = true;
782                break;
783            }
784        }
785    } else if (memSchedPolicy == Enums::frfcfs) {
786        found_packet = reorderQueue(queue, extra_col_delay);
787    } else
788        panic("No scheduling policy chosen\n");
789    return found_packet;
790}
791
792bool
793DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
794{
795    // Only determine this if needed
796    uint64_t earliest_banks = 0;
797    bool hidden_bank_prep = false;
798
799    // search for seamless row hits first, if no seamless row hit is
800    // found then determine if there are other packets that can be issued
801    // without incurring additional bus delay due to bank timing
802    // Will select closed rows first to enable more open row possibilies
803    // in future selections
804    bool found_hidden_bank = false;
805
806    // remember if we found a row hit, not seamless, but bank prepped
807    // and ready
808    bool found_prepped_pkt = false;
809
810    // if we have no row hit, prepped or not, and no seamless packet,
811    // just go for the earliest possible
812    bool found_earliest_pkt = false;
813
814    auto selected_pkt_it = queue.end();
815
816    // time we need to issue a column command to be seamless
817    const Tick min_col_at = std::max(busBusyUntil - tCL + extra_col_delay,
818                                     curTick());
819
820    for (auto i = queue.begin(); i != queue.end() ; ++i) {
821        DRAMPacket* dram_pkt = *i;
822        const Bank& bank = dram_pkt->bankRef;
823
824        // check if rank is available, if not, jump to the next packet
825        if (dram_pkt->rankRef.isAvailable()) {
826            // check if it is a row hit
827            if (bank.openRow == dram_pkt->row) {
828                // no additional rank-to-rank or same bank-group
829                // delays, or we switched read/write and might as well
830                // go for the row hit
831                if (bank.colAllowedAt <= min_col_at) {
832                    // FCFS within the hits, giving priority to
833                    // commands that can issue seamlessly, without
834                    // additional delay, such as same rank accesses
835                    // and/or different bank-group accesses
836                    DPRINTF(DRAM, "Seamless row buffer hit\n");
837                    selected_pkt_it = i;
838                    // no need to look through the remaining queue entries
839                    break;
840                } else if (!found_hidden_bank && !found_prepped_pkt) {
841                    // if we did not find a packet to a closed row that can
842                    // issue the bank commands without incurring delay, and
843                    // did not yet find a packet to a prepped row, remember
844                    // the current one
845                    selected_pkt_it = i;
846                    found_prepped_pkt = true;
847                    DPRINTF(DRAM, "Prepped row buffer hit\n");
848                }
849            } else if (!found_earliest_pkt) {
850                // if we have not initialised the bank status, do it
851                // now, and only once per scheduling decisions
852                if (earliest_banks == 0) {
853                    // determine entries with earliest bank delay
854                    pair<uint64_t, bool> bankStatus =
855                        minBankPrep(queue, min_col_at);
856                    earliest_banks = bankStatus.first;
857                    hidden_bank_prep = bankStatus.second;
858                }
859
860                // bank is amongst first available banks
861                // minBankPrep will give priority to packets that can
862                // issue seamlessly
863                if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
864                    found_earliest_pkt = true;
865                    found_hidden_bank = hidden_bank_prep;
866
867                    // give priority to packets that can issue
868                    // bank commands 'behind the scenes'
869                    // any additional delay if any will be due to
870                    // col-to-col command requirements
871                    if (hidden_bank_prep || !found_prepped_pkt)
872                        selected_pkt_it = i;
873                }
874            }
875        }
876    }
877
878    if (selected_pkt_it != queue.end()) {
879        DRAMPacket* selected_pkt = *selected_pkt_it;
880        queue.erase(selected_pkt_it);
881        queue.push_front(selected_pkt);
882        return true;
883    }
884
885    return false;
886}
887
888void
889DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
890{
891    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
892
893    bool needsResponse = pkt->needsResponse();
894    // do the actual memory access which also turns the packet into a
895    // response
896    access(pkt);
897
898    // turn packet around to go back to requester if response expected
899    if (needsResponse) {
900        // access already turned the packet into a response
901        assert(pkt->isResponse());
902        // response_time consumes the static latency and is charged also
903        // with headerDelay that takes into account the delay provided by
904        // the xbar and also the payloadDelay that takes into account the
905        // number of data beats.
906        Tick response_time = curTick() + static_latency + pkt->headerDelay +
907                             pkt->payloadDelay;
908        // Here we reset the timing of the packet before sending it out.
909        pkt->headerDelay = pkt->payloadDelay = 0;
910
911        // queue the packet in the response queue to be sent out after
912        // the static latency has passed
913        port.schedTimingResp(pkt, response_time, true);
914    } else {
915        // @todo the packet is going to be deleted, and the DRAMPacket
916        // is still having a pointer to it
917        pendingDelete.reset(pkt);
918    }
919
920    DPRINTF(DRAM, "Done\n");
921
922    return;
923}
924
925void
926DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
927                       Tick act_tick, uint32_t row)
928{
929    assert(rank_ref.actTicks.size() == activationLimit);
930
931    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
932
933    // update the open row
934    assert(bank_ref.openRow == Bank::NO_ROW);
935    bank_ref.openRow = row;
936
937    // start counting anew, this covers both the case when we
938    // auto-precharged, and when this access is forced to
939    // precharge
940    bank_ref.bytesAccessed = 0;
941    bank_ref.rowAccesses = 0;
942
943    ++rank_ref.numBanksActive;
944    assert(rank_ref.numBanksActive <= banksPerRank);
945
946    DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
947            bank_ref.bank, rank_ref.rank, act_tick,
948            ranks[rank_ref.rank]->numBanksActive);
949
950    rank_ref.cmdList.push_back(Command(MemCommand::ACT, bank_ref.bank,
951                               act_tick));
952
953    DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
954            timeStampOffset, bank_ref.bank, rank_ref.rank);
955
956    // The next access has to respect tRAS for this bank
957    bank_ref.preAllowedAt = act_tick + tRAS;
958
959    // Respect the row-to-column command delay
960    bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt);
961
962    // start by enforcing tRRD
963    for (int i = 0; i < banksPerRank; i++) {
964        // next activate to any bank in this rank must not happen
965        // before tRRD
966        if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
967            // bank group architecture requires longer delays between
968            // ACT commands within the same bank group.  Use tRRD_L
969            // in this case
970            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
971                                             rank_ref.banks[i].actAllowedAt);
972        } else {
973            // use shorter tRRD value when either
974            // 1) bank group architecture is not supportted
975            // 2) bank is in a different bank group
976            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
977                                             rank_ref.banks[i].actAllowedAt);
978        }
979    }
980
981    // next, we deal with tXAW, if the activation limit is disabled
982    // then we directly schedule an activate power event
983    if (!rank_ref.actTicks.empty()) {
984        // sanity check
985        if (rank_ref.actTicks.back() &&
986           (act_tick - rank_ref.actTicks.back()) < tXAW) {
987            panic("Got %d activates in window %d (%llu - %llu) which "
988                  "is smaller than %llu\n", activationLimit, act_tick -
989                  rank_ref.actTicks.back(), act_tick,
990                  rank_ref.actTicks.back(), tXAW);
991        }
992
993        // shift the times used for the book keeping, the last element
994        // (highest index) is the oldest one and hence the lowest value
995        rank_ref.actTicks.pop_back();
996
997        // record an new activation (in the future)
998        rank_ref.actTicks.push_front(act_tick);
999
1000        // cannot activate more than X times in time window tXAW, push the
1001        // next one (the X + 1'st activate) to be tXAW away from the
1002        // oldest in our window of X
1003        if (rank_ref.actTicks.back() &&
1004           (act_tick - rank_ref.actTicks.back()) < tXAW) {
1005            DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
1006                    "no earlier than %llu\n", activationLimit,
1007                    rank_ref.actTicks.back() + tXAW);
1008            for (int j = 0; j < banksPerRank; j++)
1009                // next activate must not happen before end of window
1010                rank_ref.banks[j].actAllowedAt =
1011                    std::max(rank_ref.actTicks.back() + tXAW,
1012                             rank_ref.banks[j].actAllowedAt);
1013        }
1014    }
1015
1016    // at the point when this activate takes place, make sure we
1017    // transition to the active power state
1018    if (!rank_ref.activateEvent.scheduled())
1019        schedule(rank_ref.activateEvent, act_tick);
1020    else if (rank_ref.activateEvent.when() > act_tick)
1021        // move it sooner in time
1022        reschedule(rank_ref.activateEvent, act_tick);
1023}
1024
1025void
1026DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
1027{
1028    // make sure the bank has an open row
1029    assert(bank.openRow != Bank::NO_ROW);
1030
1031    // sample the bytes per activate here since we are closing
1032    // the page
1033    bytesPerActivate.sample(bank.bytesAccessed);
1034
1035    bank.openRow = Bank::NO_ROW;
1036
1037    // no precharge allowed before this one
1038    bank.preAllowedAt = pre_at;
1039
1040    Tick pre_done_at = pre_at + tRP;
1041
1042    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
1043
1044    assert(rank_ref.numBanksActive != 0);
1045    --rank_ref.numBanksActive;
1046
1047    DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
1048            "%d active\n", bank.bank, rank_ref.rank, pre_at,
1049            rank_ref.numBanksActive);
1050
1051    if (trace) {
1052
1053        rank_ref.cmdList.push_back(Command(MemCommand::PRE, bank.bank,
1054                                   pre_at));
1055        DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1056                timeStampOffset, bank.bank, rank_ref.rank);
1057    }
1058    // if we look at the current number of active banks we might be
1059    // tempted to think the DRAM is now idle, however this can be
1060    // undone by an activate that is scheduled to happen before we
1061    // would have reached the idle state, so schedule an event and
1062    // rather check once we actually make it to the point in time when
1063    // the (last) precharge takes place
1064    if (!rank_ref.prechargeEvent.scheduled()) {
1065        schedule(rank_ref.prechargeEvent, pre_done_at);
1066        // New event, increment count
1067        ++rank_ref.outstandingEvents;
1068    } else if (rank_ref.prechargeEvent.when() < pre_done_at) {
1069        reschedule(rank_ref.prechargeEvent, pre_done_at);
1070    }
1071}
1072
1073void
1074DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1075{
1076    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1077            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1078
1079    // get the rank
1080    Rank& rank = dram_pkt->rankRef;
1081
1082    // are we in or transitioning to a low-power state and have not scheduled
1083    // a power-up event?
1084    // if so, wake up from power down to issue RD/WR burst
1085    if (rank.inLowPowerState) {
1086        assert(rank.pwrState != PWR_SREF);
1087        rank.scheduleWakeUpEvent(tXP);
1088    }
1089
1090    // get the bank
1091    Bank& bank = dram_pkt->bankRef;
1092
1093    // for the state we need to track if it is a row hit or not
1094    bool row_hit = true;
1095
1096    // respect any constraints on the command (e.g. tRCD or tCCD)
1097    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1098
1099    // Determine the access latency and update the bank state
1100    if (bank.openRow == dram_pkt->row) {
1101        // nothing to do
1102    } else {
1103        row_hit = false;
1104
1105        // If there is a page open, precharge it.
1106        if (bank.openRow != Bank::NO_ROW) {
1107            prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1108        }
1109
1110        // next we need to account for the delay in activating the
1111        // page
1112        Tick act_tick = std::max(bank.actAllowedAt, curTick());
1113
1114        // Record the activation and deal with all the global timing
1115        // constraints caused be a new activation (tRRD and tXAW)
1116        activateBank(rank, bank, act_tick, dram_pkt->row);
1117
1118        // issue the command as early as possible
1119        cmd_at = bank.colAllowedAt;
1120    }
1121
1122    // we need to wait until the bus is available before we can issue
1123    // the command
1124    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1125
1126    // update the packet ready time
1127    dram_pkt->readyTime = cmd_at + tCL + tBURST;
1128
1129    // only one burst can use the bus at any one point in time
1130    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1131
1132    // update the time for the next read/write burst for each
1133    // bank (add a max with tCCD/tCCD_L here)
1134    Tick cmd_dly;
1135    for (int j = 0; j < ranksPerChannel; j++) {
1136        for (int i = 0; i < banksPerRank; i++) {
1137            // next burst to same bank group in this rank must not happen
1138            // before tCCD_L.  Different bank group timing requirement is
1139            // tBURST; Add tCS for different ranks
1140            if (dram_pkt->rank == j) {
1141                if (bankGroupArch &&
1142                   (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1143                    // bank group architecture requires longer delays between
1144                    // RD/WR burst commands to the same bank group.
1145                    // Use tCCD_L in this case
1146                    cmd_dly = tCCD_L;
1147                } else {
1148                    // use tBURST (equivalent to tCCD_S), the shorter
1149                    // cas-to-cas delay value, when either:
1150                    // 1) bank group architecture is not supportted
1151                    // 2) bank is in a different bank group
1152                    cmd_dly = tBURST;
1153                }
1154            } else {
1155                // different rank is by default in a different bank group
1156                // use tBURST (equivalent to tCCD_S), which is the shorter
1157                // cas-to-cas delay in this case
1158                // Add tCS to account for rank-to-rank bus delay requirements
1159                cmd_dly = tBURST + tCS;
1160            }
1161            ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly,
1162                                             ranks[j]->banks[i].colAllowedAt);
1163        }
1164    }
1165
1166    // Save rank of current access
1167    activeRank = dram_pkt->rank;
1168
1169    // If this is a write, we also need to respect the write recovery
1170    // time before a precharge, in the case of a read, respect the
1171    // read to precharge constraint
1172    bank.preAllowedAt = std::max(bank.preAllowedAt,
1173                                 dram_pkt->isRead ? cmd_at + tRTP :
1174                                 dram_pkt->readyTime + tWR);
1175
1176    // increment the bytes accessed and the accesses per row
1177    bank.bytesAccessed += burstSize;
1178    ++bank.rowAccesses;
1179
1180    // if we reached the max, then issue with an auto-precharge
1181    bool auto_precharge = pageMgmt == Enums::close ||
1182        bank.rowAccesses == maxAccessesPerRow;
1183
1184    // if we did not hit the limit, we might still want to
1185    // auto-precharge
1186    if (!auto_precharge &&
1187        (pageMgmt == Enums::open_adaptive ||
1188         pageMgmt == Enums::close_adaptive)) {
1189        // a twist on the open and close page policies:
1190        // 1) open_adaptive page policy does not blindly keep the
1191        // page open, but close it if there are no row hits, and there
1192        // are bank conflicts in the queue
1193        // 2) close_adaptive page policy does not blindly close the
1194        // page, but closes it only if there are no row hits in the queue.
1195        // In this case, only force an auto precharge when there
1196        // are no same page hits in the queue
1197        bool got_more_hits = false;
1198        bool got_bank_conflict = false;
1199
1200        // either look at the read queue or write queue
1201        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1202            writeQueue;
1203        auto p = queue.begin();
1204        // make sure we are not considering the packet that we are
1205        // currently dealing with (which is the head of the queue)
1206        ++p;
1207
1208        // keep on looking until we find a hit or reach the end of the queue
1209        // 1) if a hit is found, then both open and close adaptive policies keep
1210        // the page open
1211        // 2) if no hit is found, got_bank_conflict is set to true if a bank
1212        // conflict request is waiting in the queue
1213        while (!got_more_hits && p != queue.end()) {
1214            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1215                (dram_pkt->bank == (*p)->bank);
1216            bool same_row = dram_pkt->row == (*p)->row;
1217            got_more_hits |= same_rank_bank && same_row;
1218            got_bank_conflict |= same_rank_bank && !same_row;
1219            ++p;
1220        }
1221
1222        // auto pre-charge when either
1223        // 1) open_adaptive policy, we have not got any more hits, and
1224        //    have a bank conflict
1225        // 2) close_adaptive policy and we have not got any more hits
1226        auto_precharge = !got_more_hits &&
1227            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1228    }
1229
1230    // DRAMPower trace command to be written
1231    std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1232
1233    // MemCommand required for DRAMPower library
1234    MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1235                                                   MemCommand::WR;
1236
1237    // Update bus state
1238    busBusyUntil = dram_pkt->readyTime;
1239
1240    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1241            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1242
1243    dram_pkt->rankRef.cmdList.push_back(Command(command, dram_pkt->bank,
1244                                        cmd_at));
1245
1246    DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1247            timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1248
1249    // if this access should use auto-precharge, then we are
1250    // closing the row after the read/write burst
1251    if (auto_precharge) {
1252        // if auto-precharge push a PRE command at the correct tick to the
1253        // list used by DRAMPower library to calculate power
1254        prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
1255
1256        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1257    }
1258
1259    // Update the minimum timing between the requests, this is a
1260    // conservative estimate of when we have to schedule the next
1261    // request to not introduce any unecessary bubbles. In most cases
1262    // we will wake up sooner than we have to.
1263    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1264
1265    // Update the stats and schedule the next request
1266    if (dram_pkt->isRead) {
1267        ++readsThisTime;
1268        if (row_hit)
1269            readRowHits++;
1270        bytesReadDRAM += burstSize;
1271        perBankRdBursts[dram_pkt->bankId]++;
1272
1273        // Update latency stats
1274        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1275        totBusLat += tBURST;
1276        totQLat += cmd_at - dram_pkt->entryTime;
1277    } else {
1278        ++writesThisTime;
1279        if (row_hit)
1280            writeRowHits++;
1281        bytesWritten += burstSize;
1282        perBankWrBursts[dram_pkt->bankId]++;
1283    }
1284}
1285
1286void
1287DRAMCtrl::processNextReqEvent()
1288{
1289    int busyRanks = 0;
1290    for (auto r : ranks) {
1291        if (!r->isAvailable()) {
1292            if (r->pwrState != PWR_SREF) {
1293                // rank is busy refreshing
1294                DPRINTF(DRAMState, "Rank %d is not available\n", r->rank);
1295                busyRanks++;
1296
1297                // let the rank know that if it was waiting to drain, it
1298                // is now done and ready to proceed
1299                r->checkDrainDone();
1300            }
1301
1302            // check if we were in self-refresh and haven't started
1303            // to transition out
1304            if ((r->pwrState == PWR_SREF) && r->inLowPowerState) {
1305                DPRINTF(DRAMState, "Rank %d is in self-refresh\n", r->rank);
1306                // if we have commands queued to this rank and we don't have
1307                // a minimum number of active commands enqueued,
1308                // exit self-refresh
1309                if (r->forceSelfRefreshExit()) {
1310                    DPRINTF(DRAMState, "rank %d was in self refresh and"
1311                           " should wake up\n", r->rank);
1312                    //wake up from self-refresh
1313                    r->scheduleWakeUpEvent(tXS);
1314                    // things are brought back into action once a refresh is
1315                    // performed after self-refresh
1316                    // continue with selection for other ranks
1317                }
1318            }
1319        }
1320    }
1321
1322    if (busyRanks == ranksPerChannel) {
1323        // if all ranks are refreshing wait for them to finish
1324        // and stall this state machine without taking any further
1325        // action, and do not schedule a new nextReqEvent
1326        return;
1327    }
1328
1329    // pre-emptively set to false.  Overwrite if in transitioning to
1330    // a new state
1331    bool switched_cmd_type = false;
1332    if (busState != busStateNext) {
1333        if (busState == READ) {
1334            DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1335                    "waiting\n", readsThisTime, readQueue.size());
1336
1337            // sample and reset the read-related stats as we are now
1338            // transitioning to writes, and all reads are done
1339            rdPerTurnAround.sample(readsThisTime);
1340            readsThisTime = 0;
1341
1342            // now proceed to do the actual writes
1343            switched_cmd_type = true;
1344        } else {
1345            DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1346                    "waiting\n", writesThisTime, writeQueue.size());
1347
1348            wrPerTurnAround.sample(writesThisTime);
1349            writesThisTime = 0;
1350
1351            switched_cmd_type = true;
1352        }
1353        // update busState to match next state until next transition
1354        busState = busStateNext;
1355    }
1356
1357    // when we get here it is either a read or a write
1358    if (busState == READ) {
1359
1360        // track if we should switch or not
1361        bool switch_to_writes = false;
1362
1363        if (readQueue.empty()) {
1364            // In the case there is no read request to go next,
1365            // trigger writes if we have passed the low threshold (or
1366            // if we are draining)
1367            if (!writeQueue.empty() &&
1368                (drainState() == DrainState::Draining ||
1369                 writeQueue.size() > writeLowThreshold)) {
1370
1371                switch_to_writes = true;
1372            } else {
1373                // check if we are drained
1374                // not done draining until in PWR_IDLE state
1375                // ensuring all banks are closed and
1376                // have exited low power states
1377                if (drainState() == DrainState::Draining &&
1378                    respQueue.empty() && allRanksDrained()) {
1379
1380                    DPRINTF(Drain, "DRAM controller done draining\n");
1381                    signalDrainDone();
1382                }
1383
1384                // nothing to do, not even any point in scheduling an
1385                // event for the next request
1386                return;
1387            }
1388        } else {
1389            // bool to check if there is a read to a free rank
1390            bool found_read = false;
1391
1392            // Figure out which read request goes next, and move it to the
1393            // front of the read queue
1394            // If we are changing command type, incorporate the minimum
1395            // bus turnaround delay which will be tCS (different rank) case
1396            found_read = chooseNext(readQueue,
1397                             switched_cmd_type ? tCS : 0);
1398
1399            // if no read to an available rank is found then return
1400            // at this point. There could be writes to the available ranks
1401            // which are above the required threshold. However, to
1402            // avoid adding more complexity to the code, return and wait
1403            // for a refresh event to kick things into action again.
1404            if (!found_read)
1405                return;
1406
1407            DRAMPacket* dram_pkt = readQueue.front();
1408            assert(dram_pkt->rankRef.isAvailable());
1409
1410            // here we get a bit creative and shift the bus busy time not
1411            // just the tWTR, but also a CAS latency to capture the fact
1412            // that we are allowed to prepare a new bank, but not issue a
1413            // read command until after tWTR, in essence we capture a
1414            // bubble on the data bus that is tWTR + tCL
1415            if (switched_cmd_type && dram_pkt->rank == activeRank) {
1416                busBusyUntil += tWTR + tCL;
1417            }
1418
1419            doDRAMAccess(dram_pkt);
1420
1421            // At this point we're done dealing with the request
1422            readQueue.pop_front();
1423
1424            // Every respQueue which will generate an event, increment count
1425            ++dram_pkt->rankRef.outstandingEvents;
1426
1427            // sanity check
1428            assert(dram_pkt->size <= burstSize);
1429            assert(dram_pkt->readyTime >= curTick());
1430
1431            // Insert into response queue. It will be sent back to the
1432            // requestor at its readyTime
1433            if (respQueue.empty()) {
1434                assert(!respondEvent.scheduled());
1435                schedule(respondEvent, dram_pkt->readyTime);
1436            } else {
1437                assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1438                assert(respondEvent.scheduled());
1439            }
1440
1441            respQueue.push_back(dram_pkt);
1442
1443            // we have so many writes that we have to transition
1444            if (writeQueue.size() > writeHighThreshold) {
1445                switch_to_writes = true;
1446            }
1447        }
1448
1449        // switching to writes, either because the read queue is empty
1450        // and the writes have passed the low threshold (or we are
1451        // draining), or because the writes hit the hight threshold
1452        if (switch_to_writes) {
1453            // transition to writing
1454            busStateNext = WRITE;
1455        }
1456    } else {
1457        // bool to check if write to free rank is found
1458        bool found_write = false;
1459
1460        // If we are changing command type, incorporate the minimum
1461        // bus turnaround delay
1462        found_write = chooseNext(writeQueue,
1463                                 switched_cmd_type ? std::min(tRTW, tCS) : 0);
1464
1465        // if no writes to an available rank are found then return.
1466        // There could be reads to the available ranks. However, to avoid
1467        // adding more complexity to the code, return at this point and wait
1468        // for a refresh event to kick things into action again.
1469        if (!found_write)
1470            return;
1471
1472        DRAMPacket* dram_pkt = writeQueue.front();
1473        assert(dram_pkt->rankRef.isAvailable());
1474        // sanity check
1475        assert(dram_pkt->size <= burstSize);
1476
1477        // add a bubble to the data bus, as defined by the
1478        // tRTW when access is to the same rank as previous burst
1479        // Different rank timing is handled with tCS, which is
1480        // applied to colAllowedAt
1481        if (switched_cmd_type && dram_pkt->rank == activeRank) {
1482            busBusyUntil += tRTW;
1483        }
1484
1485        doDRAMAccess(dram_pkt);
1486
1487        writeQueue.pop_front();
1488
1489        // removed write from queue, decrement count
1490        --dram_pkt->rankRef.writeEntries;
1491
1492        // Schedule write done event to decrement event count
1493        // after the readyTime has been reached
1494        // Only schedule latest write event to minimize events
1495        // required; only need to ensure that final event scheduled covers
1496        // the time that writes are outstanding and bus is active
1497        // to holdoff power-down entry events
1498        if (!dram_pkt->rankRef.writeDoneEvent.scheduled()) {
1499            schedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime);
1500            // New event, increment count
1501            ++dram_pkt->rankRef.outstandingEvents;
1502
1503        } else if (dram_pkt->rankRef.writeDoneEvent.when() <
1504                   dram_pkt-> readyTime) {
1505            reschedule(dram_pkt->rankRef.writeDoneEvent, dram_pkt->readyTime);
1506        }
1507
1508        isInWriteQueue.erase(burstAlign(dram_pkt->addr));
1509        delete dram_pkt;
1510
1511        // If we emptied the write queue, or got sufficiently below the
1512        // threshold (using the minWritesPerSwitch as the hysteresis) and
1513        // are not draining, or we have reads waiting and have done enough
1514        // writes, then switch to reads.
1515        if (writeQueue.empty() ||
1516            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1517             drainState() != DrainState::Draining) ||
1518            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1519            // turn the bus back around for reads again
1520            busStateNext = READ;
1521
1522            // note that the we switch back to reads also in the idle
1523            // case, which eventually will check for any draining and
1524            // also pause any further scheduling if there is really
1525            // nothing to do
1526        }
1527    }
1528    // It is possible that a refresh to another rank kicks things back into
1529    // action before reaching this point.
1530    if (!nextReqEvent.scheduled())
1531        schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1532
1533    // If there is space available and we have writes waiting then let
1534    // them retry. This is done here to ensure that the retry does not
1535    // cause a nextReqEvent to be scheduled before we do so as part of
1536    // the next request processing
1537    if (retryWrReq && writeQueue.size() < writeBufferSize) {
1538        retryWrReq = false;
1539        port.sendRetryReq();
1540    }
1541}
1542
1543pair<uint64_t, bool>
1544DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1545                      Tick min_col_at) const
1546{
1547    uint64_t bank_mask = 0;
1548    Tick min_act_at = MaxTick;
1549
1550    // latest Tick for which ACT can occur without incurring additoinal
1551    // delay on the data bus
1552    const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick());
1553
1554    // Flag condition when burst can issue back-to-back with previous burst
1555    bool found_seamless_bank = false;
1556
1557    // Flag condition when bank can be opened without incurring additional
1558    // delay on the data bus
1559    bool hidden_bank_prep = false;
1560
1561    // determine if we have queued transactions targetting the
1562    // bank in question
1563    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1564    for (const auto& p : queue) {
1565        if (p->rankRef.isAvailable())
1566            got_waiting[p->bankId] = true;
1567    }
1568
1569    // Find command with optimal bank timing
1570    // Will prioritize commands that can issue seamlessly.
1571    for (int i = 0; i < ranksPerChannel; i++) {
1572        for (int j = 0; j < banksPerRank; j++) {
1573            uint16_t bank_id = i * banksPerRank + j;
1574
1575            // if we have waiting requests for the bank, and it is
1576            // amongst the first available, update the mask
1577            if (got_waiting[bank_id]) {
1578                // make sure this rank is not currently refreshing.
1579                assert(ranks[i]->isAvailable());
1580                // simplistic approximation of when the bank can issue
1581                // an activate, ignoring any rank-to-rank switching
1582                // cost in this calculation
1583                Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1584                    std::max(ranks[i]->banks[j].actAllowedAt, curTick()) :
1585                    std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1586
1587                // When is the earliest the R/W burst can issue?
1588                Tick col_at = std::max(ranks[i]->banks[j].colAllowedAt,
1589                                       act_at + tRCD);
1590
1591                // bank can issue burst back-to-back (seamlessly) with
1592                // previous burst
1593                bool new_seamless_bank = col_at <= min_col_at;
1594
1595                // if we found a new seamless bank or we have no
1596                // seamless banks, and got a bank with an earlier
1597                // activate time, it should be added to the bit mask
1598                if (new_seamless_bank ||
1599                    (!found_seamless_bank && act_at <= min_act_at)) {
1600                    // if we did not have a seamless bank before, and
1601                    // we do now, reset the bank mask, also reset it
1602                    // if we have not yet found a seamless bank and
1603                    // the activate time is smaller than what we have
1604                    // seen so far
1605                    if (!found_seamless_bank &&
1606                        (new_seamless_bank || act_at < min_act_at)) {
1607                        bank_mask = 0;
1608                    }
1609
1610                    found_seamless_bank |= new_seamless_bank;
1611
1612                    // ACT can occur 'behind the scenes'
1613                    hidden_bank_prep = act_at <= hidden_act_max;
1614
1615                    // set the bit corresponding to the available bank
1616                    replaceBits(bank_mask, bank_id, bank_id, 1);
1617                    min_act_at = act_at;
1618                }
1619            }
1620        }
1621    }
1622
1623    return make_pair(bank_mask, hidden_bank_prep);
1624}
1625
1626DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p)
1627    : EventManager(&_memory), memory(_memory),
1628      pwrStateTrans(PWR_IDLE), pwrStatePostRefresh(PWR_IDLE),
1629      pwrStateTick(0), refreshDueAt(0), pwrState(PWR_IDLE),
1630      refreshState(REF_IDLE), inLowPowerState(false), rank(0),
1631      readEntries(0), writeEntries(0), outstandingEvents(0),
1632      wakeUpAllowedAt(0), power(_p, false), numBanksActive(0),
1633      writeDoneEvent(*this), activateEvent(*this), prechargeEvent(*this),
1634      refreshEvent(*this), powerEvent(*this), wakeUpEvent(*this)
1635{ }
1636
1637void
1638DRAMCtrl::Rank::startup(Tick ref_tick)
1639{
1640    assert(ref_tick > curTick());
1641
1642    pwrStateTick = curTick();
1643
1644    // kick off the refresh, and give ourselves enough time to
1645    // precharge
1646    schedule(refreshEvent, ref_tick);
1647}
1648
1649void
1650DRAMCtrl::Rank::suspend()
1651{
1652    deschedule(refreshEvent);
1653
1654    // Update the stats
1655    updatePowerStats();
1656
1657    // don't automatically transition back to LP state after next REF
1658    pwrStatePostRefresh = PWR_IDLE;
1659}
1660
1661bool
1662DRAMCtrl::Rank::lowPowerEntryReady() const
1663{
1664    bool no_queued_cmds = ((memory.busStateNext == READ) && (readEntries == 0))
1665                          || ((memory.busStateNext == WRITE) &&
1666                              (writeEntries == 0));
1667
1668    if (refreshState == REF_RUN) {
1669       // have not decremented outstandingEvents for refresh command
1670       // still check if there are no commands queued to force PD
1671       // entry after refresh completes
1672       return no_queued_cmds;
1673    } else {
1674       // ensure no commands in Q and no commands scheduled
1675       return (no_queued_cmds && (outstandingEvents == 0));
1676    }
1677}
1678
1679void
1680DRAMCtrl::Rank::checkDrainDone()
1681{
1682    // if this rank was waiting to drain it is now able to proceed to
1683    // precharge
1684    if (refreshState == REF_DRAIN) {
1685        DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1686
1687        refreshState = REF_PD_EXIT;
1688
1689        // hand control back to the refresh event loop
1690        schedule(refreshEvent, curTick());
1691    }
1692}
1693
1694void
1695DRAMCtrl::Rank::flushCmdList()
1696{
1697    // at the moment sort the list of commands and update the counters
1698    // for DRAMPower libray when doing a refresh
1699    sort(cmdList.begin(), cmdList.end(), DRAMCtrl::sortTime);
1700
1701    auto next_iter = cmdList.begin();
1702    // push to commands to DRAMPower
1703    for ( ; next_iter != cmdList.end() ; ++next_iter) {
1704         Command cmd = *next_iter;
1705         if (cmd.timeStamp <= curTick()) {
1706             // Move all commands at or before curTick to DRAMPower
1707             power.powerlib.doCommand(cmd.type, cmd.bank,
1708                                      divCeil(cmd.timeStamp, memory.tCK) -
1709                                      memory.timeStampOffset);
1710         } else {
1711             // done - found all commands at or before curTick()
1712             // next_iter references the 1st command after curTick
1713             break;
1714         }
1715    }
1716    // reset cmdList to only contain commands after curTick
1717    // if there are no commands after curTick, updated cmdList will be empty
1718    // in this case, next_iter is cmdList.end()
1719    cmdList.assign(next_iter, cmdList.end());
1720}
1721
1722void
1723DRAMCtrl::Rank::processActivateEvent()
1724{
1725    // we should transition to the active state as soon as any bank is active
1726    if (pwrState != PWR_ACT)
1727        // note that at this point numBanksActive could be back at
1728        // zero again due to a precharge scheduled in the future
1729        schedulePowerEvent(PWR_ACT, curTick());
1730}
1731
1732void
1733DRAMCtrl::Rank::processPrechargeEvent()
1734{
1735    // counter should at least indicate one outstanding request
1736    // for this precharge
1737    assert(outstandingEvents > 0);
1738    // precharge complete, decrement count
1739    --outstandingEvents;
1740
1741    // if we reached zero, then special conditions apply as we track
1742    // if all banks are precharged for the power models
1743    if (numBanksActive == 0) {
1744        // no reads to this rank in the Q and no pending
1745        // RD/WR or refresh commands
1746        if (lowPowerEntryReady()) {
1747            // should still be in ACT state since bank still open
1748            assert(pwrState == PWR_ACT);
1749
1750            // All banks closed - switch to precharge power down state.
1751            DPRINTF(DRAMState, "Rank %d sleep at tick %d\n",
1752                    rank, curTick());
1753            powerDownSleep(PWR_PRE_PDN, curTick());
1754        } else {
1755            // we should transition to the idle state when the last bank
1756            // is precharged
1757            schedulePowerEvent(PWR_IDLE, curTick());
1758        }
1759    }
1760}
1761
1762void
1763DRAMCtrl::Rank::processWriteDoneEvent()
1764{
1765    // counter should at least indicate one outstanding request
1766    // for this write
1767    assert(outstandingEvents > 0);
1768    // Write transfer on bus has completed
1769    // decrement per rank counter
1770    --outstandingEvents;
1771}
1772
1773void
1774DRAMCtrl::Rank::processRefreshEvent()
1775{
1776    // when first preparing the refresh, remember when it was due
1777    if ((refreshState == REF_IDLE) || (refreshState == REF_SREF_EXIT)) {
1778        // remember when the refresh is due
1779        refreshDueAt = curTick();
1780
1781        // proceed to drain
1782        refreshState = REF_DRAIN;
1783
1784        // make nonzero while refresh is pending to ensure
1785        // power down and self-refresh are not entered
1786        ++outstandingEvents;
1787
1788        DPRINTF(DRAM, "Refresh due\n");
1789    }
1790
1791    // let any scheduled read or write to the same rank go ahead,
1792    // after which it will
1793    // hand control back to this event loop
1794    if (refreshState == REF_DRAIN) {
1795        // if a request is at the moment being handled and this request is
1796        // accessing the current rank then wait for it to finish
1797        if ((rank == memory.activeRank)
1798            && (memory.nextReqEvent.scheduled())) {
1799            // hand control over to the request loop until it is
1800            // evaluated next
1801            DPRINTF(DRAM, "Refresh awaiting draining\n");
1802
1803            return;
1804        } else {
1805            refreshState = REF_PD_EXIT;
1806        }
1807    }
1808
1809    // at this point, ensure that rank is not in a power-down state
1810    if (refreshState == REF_PD_EXIT) {
1811        // if rank was sleeping and we have't started exit process,
1812        // wake-up for refresh
1813        if (inLowPowerState) {
1814            DPRINTF(DRAM, "Wake Up for refresh\n");
1815            // save state and return after refresh completes
1816            scheduleWakeUpEvent(memory.tXP);
1817            return;
1818        } else {
1819            refreshState = REF_PRE;
1820        }
1821    }
1822
1823    // at this point, ensure that all banks are precharged
1824    if (refreshState == REF_PRE) {
1825        // precharge any active bank
1826        if (numBanksActive != 0) {
1827            // at the moment, we use a precharge all even if there is
1828            // only a single bank open
1829            DPRINTF(DRAM, "Precharging all\n");
1830
1831            // first determine when we can precharge
1832            Tick pre_at = curTick();
1833
1834            for (auto &b : banks) {
1835                // respect both causality and any existing bank
1836                // constraints, some banks could already have a
1837                // (auto) precharge scheduled
1838                pre_at = std::max(b.preAllowedAt, pre_at);
1839            }
1840
1841            // make sure all banks per rank are precharged, and for those that
1842            // already are, update their availability
1843            Tick act_allowed_at = pre_at + memory.tRP;
1844
1845            for (auto &b : banks) {
1846                if (b.openRow != Bank::NO_ROW) {
1847                    memory.prechargeBank(*this, b, pre_at, false);
1848                } else {
1849                    b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1850                    b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1851                }
1852            }
1853
1854            // precharge all banks in rank
1855            cmdList.push_back(Command(MemCommand::PREA, 0, pre_at));
1856
1857            DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1858                    divCeil(pre_at, memory.tCK) -
1859                            memory.timeStampOffset, rank);
1860        } else if ((pwrState == PWR_IDLE) && (outstandingEvents == 1))  {
1861            // Banks are closed, have transitioned to IDLE state, and
1862            // no outstanding ACT,RD/WR,Auto-PRE sequence scheduled
1863            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1864
1865            // go ahead and kick the power state machine into gear since
1866            // we are already idle
1867            schedulePowerEvent(PWR_REF, curTick());
1868        } else {
1869            // banks state is closed but haven't transitioned pwrState to IDLE
1870            // or have outstanding ACT,RD/WR,Auto-PRE sequence scheduled
1871            // should have outstanding precharge event in this case
1872            assert(prechargeEvent.scheduled());
1873            // will start refresh when pwrState transitions to IDLE
1874        }
1875
1876        assert(numBanksActive == 0);
1877
1878        // wait for all banks to be precharged, at which point the
1879        // power state machine will transition to the idle state, and
1880        // automatically move to a refresh, at that point it will also
1881        // call this method to get the refresh event loop going again
1882        return;
1883    }
1884
1885    // last but not least we perform the actual refresh
1886    if (refreshState == REF_START) {
1887        // should never get here with any banks active
1888        assert(numBanksActive == 0);
1889        assert(pwrState == PWR_REF);
1890
1891        Tick ref_done_at = curTick() + memory.tRFC;
1892
1893        for (auto &b : banks) {
1894            b.actAllowedAt = ref_done_at;
1895        }
1896
1897        // at the moment this affects all ranks
1898        cmdList.push_back(Command(MemCommand::REF, 0, curTick()));
1899
1900        // Update the stats
1901        updatePowerStats();
1902
1903        DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1904                memory.timeStampOffset, rank);
1905
1906        // Update for next refresh
1907        refreshDueAt += memory.tREFI;
1908
1909        // make sure we did not wait so long that we cannot make up
1910        // for it
1911        if (refreshDueAt < ref_done_at) {
1912            fatal("Refresh was delayed so long we cannot catch up\n");
1913        }
1914
1915        // Run the refresh and schedule event to transition power states
1916        // when refresh completes
1917        refreshState = REF_RUN;
1918        schedule(refreshEvent, ref_done_at);
1919        return;
1920    }
1921
1922    if (refreshState == REF_RUN) {
1923        // should never get here with any banks active
1924        assert(numBanksActive == 0);
1925        assert(pwrState == PWR_REF);
1926
1927        assert(!powerEvent.scheduled());
1928
1929        if ((memory.drainState() == DrainState::Draining) ||
1930            (memory.drainState() == DrainState::Drained)) {
1931            // if draining, do not re-enter low-power mode.
1932            // simply go to IDLE and wait
1933            schedulePowerEvent(PWR_IDLE, curTick());
1934        } else {
1935            // At the moment, we sleep when the refresh ends and wait to be
1936            // woken up again if previously in a low-power state.
1937            if (pwrStatePostRefresh != PWR_IDLE) {
1938                // power State should be power Refresh
1939                assert(pwrState == PWR_REF);
1940                DPRINTF(DRAMState, "Rank %d sleeping after refresh and was in "
1941                        "power state %d before refreshing\n", rank,
1942                        pwrStatePostRefresh);
1943                powerDownSleep(pwrState, curTick());
1944
1945            // Force PRE power-down if there are no outstanding commands
1946            // in Q after refresh.
1947            } else if (lowPowerEntryReady()) {
1948                DPRINTF(DRAMState, "Rank %d sleeping after refresh but was NOT"
1949                        " in a low power state before refreshing\n", rank);
1950                powerDownSleep(PWR_PRE_PDN, curTick());
1951
1952            } else {
1953                // move to the idle power state once the refresh is done, this
1954                // will also move the refresh state machine to the refresh
1955                // idle state
1956                schedulePowerEvent(PWR_IDLE, curTick());
1957            }
1958        }
1959
1960        // if transitioning to self refresh do not schedule a new refresh;
1961        // when waking from self refresh, a refresh is scheduled again.
1962        if (pwrStateTrans != PWR_SREF) {
1963            // compensate for the delay in actually performing the refresh
1964            // when scheduling the next one
1965            schedule(refreshEvent, refreshDueAt - memory.tRP);
1966
1967            DPRINTF(DRAMState, "Refresh done at %llu and next refresh"
1968                    " at %llu\n", curTick(), refreshDueAt);
1969        }
1970    }
1971}
1972
1973void
1974DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1975{
1976    // respect causality
1977    assert(tick >= curTick());
1978
1979    if (!powerEvent.scheduled()) {
1980        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1981                tick, pwr_state);
1982
1983        // insert the new transition
1984        pwrStateTrans = pwr_state;
1985
1986        schedule(powerEvent, tick);
1987    } else {
1988        panic("Scheduled power event at %llu to state %d, "
1989              "with scheduled event at %llu to %d\n", tick, pwr_state,
1990              powerEvent.when(), pwrStateTrans);
1991    }
1992}
1993
1994void
1995DRAMCtrl::Rank::powerDownSleep(PowerState pwr_state, Tick tick)
1996{
1997    // if low power state is active low, schedule to active low power state.
1998    // in reality tCKE is needed to enter active low power. This is neglected
1999    // here and could be added in the future.
2000    if (pwr_state == PWR_ACT_PDN) {
2001        schedulePowerEvent(pwr_state, tick);
2002        // push command to DRAMPower
2003        cmdList.push_back(Command(MemCommand::PDN_F_ACT, 0, tick));
2004        DPRINTF(DRAMPower, "%llu,PDN_F_ACT,0,%d\n", divCeil(tick,
2005                memory.tCK) - memory.timeStampOffset, rank);
2006    } else if (pwr_state == PWR_PRE_PDN) {
2007        // if low power state is precharge low, schedule to precharge low
2008        // power state. In reality tCKE is needed to enter active low power.
2009        // This is neglected here.
2010        schedulePowerEvent(pwr_state, tick);
2011        //push Command to DRAMPower
2012        cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick));
2013        DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick,
2014                memory.tCK) - memory.timeStampOffset, rank);
2015    } else if (pwr_state == PWR_REF) {
2016        // if a refresh just occured
2017        // transition to PRE_PDN now that all banks are closed
2018        // do not transition to SREF if commands are in Q; stay in PRE_PDN
2019        if (pwrStatePostRefresh == PWR_ACT_PDN || !lowPowerEntryReady()) {
2020            // prechage power down requires tCKE to enter. For simplicity
2021            // this is not considered.
2022            schedulePowerEvent(PWR_PRE_PDN, tick);
2023            //push Command to DRAMPower
2024            cmdList.push_back(Command(MemCommand::PDN_F_PRE, 0, tick));
2025            DPRINTF(DRAMPower, "%llu,PDN_F_PRE,0,%d\n", divCeil(tick,
2026                    memory.tCK) - memory.timeStampOffset, rank);
2027        } else {
2028            // last low power State was power precharge
2029            assert(pwrStatePostRefresh == PWR_PRE_PDN);
2030            // self refresh requires time tCKESR to enter. For simplicity,
2031            // this is not considered.
2032            schedulePowerEvent(PWR_SREF, tick);
2033            // push Command to DRAMPower
2034            cmdList.push_back(Command(MemCommand::SREN, 0, tick));
2035            DPRINTF(DRAMPower, "%llu,SREN,0,%d\n", divCeil(tick,
2036                    memory.tCK) - memory.timeStampOffset, rank);
2037        }
2038    }
2039    // Ensure that we don't power-down and back up in same tick
2040    // Once we commit to PD entry, do it and wait for at least 1tCK
2041    // This could be replaced with tCKE if/when that is added to the model
2042    wakeUpAllowedAt = tick + memory.tCK;
2043
2044    // Transitioning to a low power state, set flag
2045    inLowPowerState = true;
2046}
2047
2048void
2049DRAMCtrl::Rank::scheduleWakeUpEvent(Tick exit_delay)
2050{
2051    Tick wake_up_tick = std::max(curTick(), wakeUpAllowedAt);
2052
2053    DPRINTF(DRAMState, "Scheduling wake-up for rank %d at tick %d\n",
2054            rank, wake_up_tick);
2055
2056    // if waking for refresh, hold previous state
2057    // else reset state back to IDLE
2058    if (refreshState == REF_PD_EXIT) {
2059        pwrStatePostRefresh = pwrState;
2060    } else {
2061        // don't automatically transition back to LP state after next REF
2062        pwrStatePostRefresh = PWR_IDLE;
2063    }
2064
2065    // schedule wake-up with event to ensure entry has completed before
2066    // we try to wake-up
2067    schedule(wakeUpEvent, wake_up_tick);
2068
2069    for (auto &b : banks) {
2070        // respect both causality and any existing bank
2071        // constraints, some banks could already have a
2072        // (auto) precharge scheduled
2073        b.colAllowedAt = std::max(wake_up_tick + exit_delay, b.colAllowedAt);
2074        b.preAllowedAt = std::max(wake_up_tick + exit_delay, b.preAllowedAt);
2075        b.actAllowedAt = std::max(wake_up_tick + exit_delay, b.actAllowedAt);
2076    }
2077    // Transitioning out of low power state, clear flag
2078    inLowPowerState = false;
2079
2080    // push to DRAMPower
2081    // use pwrStateTrans for cases where we have a power event scheduled
2082    // to enter low power that has not yet been processed
2083    if (pwrStateTrans == PWR_ACT_PDN) {
2084        cmdList.push_back(Command(MemCommand::PUP_ACT, 0, wake_up_tick));
2085        DPRINTF(DRAMPower, "%llu,PUP_ACT,0,%d\n", divCeil(wake_up_tick,
2086                memory.tCK) - memory.timeStampOffset, rank);
2087
2088    } else if (pwrStateTrans == PWR_PRE_PDN) {
2089        cmdList.push_back(Command(MemCommand::PUP_PRE, 0, wake_up_tick));
2090        DPRINTF(DRAMPower, "%llu,PUP_PRE,0,%d\n", divCeil(wake_up_tick,
2091                memory.tCK) - memory.timeStampOffset, rank);
2092    } else if (pwrStateTrans == PWR_SREF) {
2093        cmdList.push_back(Command(MemCommand::SREX, 0, wake_up_tick));
2094        DPRINTF(DRAMPower, "%llu,SREX,0,%d\n", divCeil(wake_up_tick,
2095                memory.tCK) - memory.timeStampOffset, rank);
2096    }
2097}
2098
2099void
2100DRAMCtrl::Rank::processWakeUpEvent()
2101{
2102    // Should be in a power-down or self-refresh state
2103    assert((pwrState == PWR_ACT_PDN) || (pwrState == PWR_PRE_PDN) ||
2104           (pwrState == PWR_SREF));
2105
2106    // Check current state to determine transition state
2107    if (pwrState == PWR_ACT_PDN) {
2108        // banks still open, transition to PWR_ACT
2109        schedulePowerEvent(PWR_ACT, curTick());
2110    } else {
2111        // transitioning from a precharge power-down or self-refresh state
2112        // banks are closed - transition to PWR_IDLE
2113        schedulePowerEvent(PWR_IDLE, curTick());
2114    }
2115}
2116
2117void
2118DRAMCtrl::Rank::processPowerEvent()
2119{
2120    assert(curTick() >= pwrStateTick);
2121    // remember where we were, and for how long
2122    Tick duration = curTick() - pwrStateTick;
2123    PowerState prev_state = pwrState;
2124
2125    // update the accounting
2126    pwrStateTime[prev_state] += duration;
2127
2128    // track to total idle time
2129    if ((prev_state == PWR_PRE_PDN) || (prev_state == PWR_ACT_PDN) ||
2130        (prev_state == PWR_SREF)) {
2131        totalIdleTime += duration;
2132    }
2133
2134    pwrState = pwrStateTrans;
2135    pwrStateTick = curTick();
2136
2137    // if rank was refreshing, make sure to start scheduling requests again
2138    if (prev_state == PWR_REF) {
2139        // bus IDLED prior to REF
2140        // counter should be one for refresh command only
2141        assert(outstandingEvents == 1);
2142        // REF complete, decrement count
2143        --outstandingEvents;
2144
2145        DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
2146        // if sleeping after refresh
2147        if (pwrState != PWR_IDLE) {
2148            assert((pwrState == PWR_PRE_PDN) || (pwrState == PWR_SREF));
2149            DPRINTF(DRAMState, "Switching to power down state after refreshing"
2150                    " rank %d at %llu tick\n", rank, curTick());
2151        }
2152        if (pwrState != PWR_SREF) {
2153            // rank is not available in SREF
2154            // don't transition to IDLE in this case
2155            refreshState = REF_IDLE;
2156        }
2157        // a request event could be already scheduled by the state
2158        // machine of the other rank
2159        if (!memory.nextReqEvent.scheduled()) {
2160            DPRINTF(DRAM, "Scheduling next request after refreshing rank %d\n",
2161                    rank);
2162            schedule(memory.nextReqEvent, curTick());
2163        }
2164    } else if (pwrState == PWR_ACT) {
2165        if (refreshState == REF_PD_EXIT) {
2166            // kick the refresh event loop into action again
2167            assert(prev_state == PWR_ACT_PDN);
2168
2169            // go back to REF event and close banks
2170            refreshState = REF_PRE;
2171            schedule(refreshEvent, curTick());
2172        }
2173    } else if (pwrState == PWR_IDLE) {
2174        DPRINTF(DRAMState, "All banks precharged\n");
2175        if (prev_state == PWR_SREF) {
2176            // set refresh state to REF_SREF_EXIT, ensuring isAvailable
2177            // continues to return false during tXS after SREF exit
2178            // Schedule a refresh which kicks things back into action
2179            // when it finishes
2180            refreshState = REF_SREF_EXIT;
2181            schedule(refreshEvent, curTick() + memory.tXS);
2182        } else {
2183            // if we have a pending refresh, and are now moving to
2184            // the idle state, directly transition to a refresh
2185            if ((refreshState == REF_PRE) || (refreshState == REF_PD_EXIT)) {
2186                // ensure refresh is restarted only after final PRE command.
2187                // do not restart refresh if controller is in an intermediate
2188                // state, after PRE_PDN exit, when banks are IDLE but an
2189                // ACT is scheduled.
2190                if (!activateEvent.scheduled()) {
2191                    // there should be nothing waiting at this point
2192                    assert(!powerEvent.scheduled());
2193                    // update the state in zero time and proceed below
2194                    pwrState = PWR_REF;
2195                } else {
2196                    // must have PRE scheduled to transition back to IDLE
2197                    // and re-kick off refresh
2198                    assert(prechargeEvent.scheduled());
2199                }
2200            }
2201       }
2202    }
2203
2204    // we transition to the refresh state, let the refresh state
2205    // machine know of this state update and let it deal with the
2206    // scheduling of the next power state transition as well as the
2207    // following refresh
2208    if (pwrState == PWR_REF) {
2209        assert(refreshState == REF_PRE || refreshState == REF_PD_EXIT);
2210        DPRINTF(DRAMState, "Refreshing\n");
2211
2212        // kick the refresh event loop into action again, and that
2213        // in turn will schedule a transition to the idle power
2214        // state once the refresh is done
2215        if (refreshState == REF_PD_EXIT) {
2216            // Wait for PD exit timing to complete before issuing REF
2217            schedule(refreshEvent, curTick() + memory.tXP);
2218        } else {
2219            schedule(refreshEvent, curTick());
2220        }
2221        // Banks transitioned to IDLE, start REF
2222        refreshState = REF_START;
2223    }
2224}
2225
2226void
2227DRAMCtrl::Rank::updatePowerStats()
2228{
2229    // All commands up to refresh have completed
2230    // flush cmdList to DRAMPower
2231    flushCmdList();
2232
2233    // update the counters for DRAMPower, passing false to
2234    // indicate that this is not the last command in the
2235    // list. DRAMPower requires this information for the
2236    // correct calculation of the background energy at the end
2237    // of the simulation. Ideally we would want to call this
2238    // function with true once at the end of the
2239    // simulation. However, the discarded energy is extremly
2240    // small and does not effect the final results.
2241    power.powerlib.updateCounters(false);
2242
2243    // call the energy function
2244    power.powerlib.calcEnergy();
2245
2246    // Get the energy and power from DRAMPower
2247    Data::MemoryPowerModel::Energy energy =
2248        power.powerlib.getEnergy();
2249    Data::MemoryPowerModel::Power rank_power =
2250        power.powerlib.getPower();
2251
2252    actEnergy = energy.act_energy * memory.devicesPerRank;
2253    preEnergy = energy.pre_energy * memory.devicesPerRank;
2254    readEnergy = energy.read_energy * memory.devicesPerRank;
2255    writeEnergy = energy.write_energy * memory.devicesPerRank;
2256    refreshEnergy = energy.ref_energy * memory.devicesPerRank;
2257    actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
2258    preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
2259    actPowerDownEnergy = energy.f_act_pd_energy * memory.devicesPerRank;
2260    prePowerDownEnergy = energy.f_pre_pd_energy * memory.devicesPerRank;
2261    selfRefreshEnergy = energy.sref_energy * memory.devicesPerRank;
2262    totalEnergy = energy.total_energy * memory.devicesPerRank;
2263    averagePower = rank_power.average_power * memory.devicesPerRank;
2264}
2265
2266void
2267DRAMCtrl::Rank::computeStats()
2268{
2269    DPRINTF(DRAM,"Computing final stats\n");
2270
2271    // Force DRAM power to update counters based on time spent in
2272    // current state up to curTick()
2273    cmdList.push_back(Command(MemCommand::NOP, 0, curTick()));
2274
2275    // Update the stats
2276    updatePowerStats();
2277
2278    // final update of power state times
2279    pwrStateTime[pwrState] += (curTick() - pwrStateTick);
2280    pwrStateTick = curTick();
2281
2282}
2283
2284void
2285DRAMCtrl::Rank::regStats()
2286{
2287    using namespace Stats;
2288
2289    pwrStateTime
2290        .init(6)
2291        .name(name() + ".memoryStateTime")
2292        .desc("Time in different power states");
2293    pwrStateTime.subname(0, "IDLE");
2294    pwrStateTime.subname(1, "REF");
2295    pwrStateTime.subname(2, "SREF");
2296    pwrStateTime.subname(3, "PRE_PDN");
2297    pwrStateTime.subname(4, "ACT");
2298    pwrStateTime.subname(5, "ACT_PDN");
2299
2300    actEnergy
2301        .name(name() + ".actEnergy")
2302        .desc("Energy for activate commands per rank (pJ)");
2303
2304    preEnergy
2305        .name(name() + ".preEnergy")
2306        .desc("Energy for precharge commands per rank (pJ)");
2307
2308    readEnergy
2309        .name(name() + ".readEnergy")
2310        .desc("Energy for read commands per rank (pJ)");
2311
2312    writeEnergy
2313        .name(name() + ".writeEnergy")
2314        .desc("Energy for write commands per rank (pJ)");
2315
2316    refreshEnergy
2317        .name(name() + ".refreshEnergy")
2318        .desc("Energy for refresh commands per rank (pJ)");
2319
2320    actBackEnergy
2321        .name(name() + ".actBackEnergy")
2322        .desc("Energy for active background per rank (pJ)");
2323
2324    preBackEnergy
2325        .name(name() + ".preBackEnergy")
2326        .desc("Energy for precharge background per rank (pJ)");
2327
2328    actPowerDownEnergy
2329        .name(name() + ".actPowerDownEnergy")
2330        .desc("Energy for active power-down per rank (pJ)");
2331
2332    prePowerDownEnergy
2333        .name(name() + ".prePowerDownEnergy")
2334        .desc("Energy for precharge power-down per rank (pJ)");
2335
2336    selfRefreshEnergy
2337        .name(name() + ".selfRefreshEnergy")
2338        .desc("Energy for self refresh per rank (pJ)");
2339
2340    totalEnergy
2341        .name(name() + ".totalEnergy")
2342        .desc("Total energy per rank (pJ)");
2343
2344    averagePower
2345        .name(name() + ".averagePower")
2346        .desc("Core power per rank (mW)");
2347
2348    totalIdleTime
2349        .name(name() + ".totalIdleTime")
2350        .desc("Total Idle time Per DRAM Rank");
2351
2352    registerDumpCallback(new RankDumpCallback(this));
2353}
2354void
2355DRAMCtrl::regStats()
2356{
2357    using namespace Stats;
2358
2359    AbstractMemory::regStats();
2360
2361    for (auto r : ranks) {
2362        r->regStats();
2363    }
2364
2365    readReqs
2366        .name(name() + ".readReqs")
2367        .desc("Number of read requests accepted");
2368
2369    writeReqs
2370        .name(name() + ".writeReqs")
2371        .desc("Number of write requests accepted");
2372
2373    readBursts
2374        .name(name() + ".readBursts")
2375        .desc("Number of DRAM read bursts, "
2376              "including those serviced by the write queue");
2377
2378    writeBursts
2379        .name(name() + ".writeBursts")
2380        .desc("Number of DRAM write bursts, "
2381              "including those merged in the write queue");
2382
2383    servicedByWrQ
2384        .name(name() + ".servicedByWrQ")
2385        .desc("Number of DRAM read bursts serviced by the write queue");
2386
2387    mergedWrBursts
2388        .name(name() + ".mergedWrBursts")
2389        .desc("Number of DRAM write bursts merged with an existing one");
2390
2391    neitherReadNorWrite
2392        .name(name() + ".neitherReadNorWriteReqs")
2393        .desc("Number of requests that are neither read nor write");
2394
2395    perBankRdBursts
2396        .init(banksPerRank * ranksPerChannel)
2397        .name(name() + ".perBankRdBursts")
2398        .desc("Per bank write bursts");
2399
2400    perBankWrBursts
2401        .init(banksPerRank * ranksPerChannel)
2402        .name(name() + ".perBankWrBursts")
2403        .desc("Per bank write bursts");
2404
2405    avgRdQLen
2406        .name(name() + ".avgRdQLen")
2407        .desc("Average read queue length when enqueuing")
2408        .precision(2);
2409
2410    avgWrQLen
2411        .name(name() + ".avgWrQLen")
2412        .desc("Average write queue length when enqueuing")
2413        .precision(2);
2414
2415    totQLat
2416        .name(name() + ".totQLat")
2417        .desc("Total ticks spent queuing");
2418
2419    totBusLat
2420        .name(name() + ".totBusLat")
2421        .desc("Total ticks spent in databus transfers");
2422
2423    totMemAccLat
2424        .name(name() + ".totMemAccLat")
2425        .desc("Total ticks spent from burst creation until serviced "
2426              "by the DRAM");
2427
2428    avgQLat
2429        .name(name() + ".avgQLat")
2430        .desc("Average queueing delay per DRAM burst")
2431        .precision(2);
2432
2433    avgQLat = totQLat / (readBursts - servicedByWrQ);
2434
2435    avgBusLat
2436        .name(name() + ".avgBusLat")
2437        .desc("Average bus latency per DRAM burst")
2438        .precision(2);
2439
2440    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
2441
2442    avgMemAccLat
2443        .name(name() + ".avgMemAccLat")
2444        .desc("Average memory access latency per DRAM burst")
2445        .precision(2);
2446
2447    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
2448
2449    numRdRetry
2450        .name(name() + ".numRdRetry")
2451        .desc("Number of times read queue was full causing retry");
2452
2453    numWrRetry
2454        .name(name() + ".numWrRetry")
2455        .desc("Number of times write queue was full causing retry");
2456
2457    readRowHits
2458        .name(name() + ".readRowHits")
2459        .desc("Number of row buffer hits during reads");
2460
2461    writeRowHits
2462        .name(name() + ".writeRowHits")
2463        .desc("Number of row buffer hits during writes");
2464
2465    readRowHitRate
2466        .name(name() + ".readRowHitRate")
2467        .desc("Row buffer hit rate for reads")
2468        .precision(2);
2469
2470    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2471
2472    writeRowHitRate
2473        .name(name() + ".writeRowHitRate")
2474        .desc("Row buffer hit rate for writes")
2475        .precision(2);
2476
2477    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2478
2479    readPktSize
2480        .init(ceilLog2(burstSize) + 1)
2481        .name(name() + ".readPktSize")
2482        .desc("Read request sizes (log2)");
2483
2484     writePktSize
2485        .init(ceilLog2(burstSize) + 1)
2486        .name(name() + ".writePktSize")
2487        .desc("Write request sizes (log2)");
2488
2489     rdQLenPdf
2490        .init(readBufferSize)
2491        .name(name() + ".rdQLenPdf")
2492        .desc("What read queue length does an incoming req see");
2493
2494     wrQLenPdf
2495        .init(writeBufferSize)
2496        .name(name() + ".wrQLenPdf")
2497        .desc("What write queue length does an incoming req see");
2498
2499     bytesPerActivate
2500         .init(maxAccessesPerRow)
2501         .name(name() + ".bytesPerActivate")
2502         .desc("Bytes accessed per row activation")
2503         .flags(nozero);
2504
2505     rdPerTurnAround
2506         .init(readBufferSize)
2507         .name(name() + ".rdPerTurnAround")
2508         .desc("Reads before turning the bus around for writes")
2509         .flags(nozero);
2510
2511     wrPerTurnAround
2512         .init(writeBufferSize)
2513         .name(name() + ".wrPerTurnAround")
2514         .desc("Writes before turning the bus around for reads")
2515         .flags(nozero);
2516
2517    bytesReadDRAM
2518        .name(name() + ".bytesReadDRAM")
2519        .desc("Total number of bytes read from DRAM");
2520
2521    bytesReadWrQ
2522        .name(name() + ".bytesReadWrQ")
2523        .desc("Total number of bytes read from write queue");
2524
2525    bytesWritten
2526        .name(name() + ".bytesWritten")
2527        .desc("Total number of bytes written to DRAM");
2528
2529    bytesReadSys
2530        .name(name() + ".bytesReadSys")
2531        .desc("Total read bytes from the system interface side");
2532
2533    bytesWrittenSys
2534        .name(name() + ".bytesWrittenSys")
2535        .desc("Total written bytes from the system interface side");
2536
2537    avgRdBW
2538        .name(name() + ".avgRdBW")
2539        .desc("Average DRAM read bandwidth in MiByte/s")
2540        .precision(2);
2541
2542    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2543
2544    avgWrBW
2545        .name(name() + ".avgWrBW")
2546        .desc("Average achieved write bandwidth in MiByte/s")
2547        .precision(2);
2548
2549    avgWrBW = (bytesWritten / 1000000) / simSeconds;
2550
2551    avgRdBWSys
2552        .name(name() + ".avgRdBWSys")
2553        .desc("Average system read bandwidth in MiByte/s")
2554        .precision(2);
2555
2556    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2557
2558    avgWrBWSys
2559        .name(name() + ".avgWrBWSys")
2560        .desc("Average system write bandwidth in MiByte/s")
2561        .precision(2);
2562
2563    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2564
2565    peakBW
2566        .name(name() + ".peakBW")
2567        .desc("Theoretical peak bandwidth in MiByte/s")
2568        .precision(2);
2569
2570    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2571
2572    busUtil
2573        .name(name() + ".busUtil")
2574        .desc("Data bus utilization in percentage")
2575        .precision(2);
2576    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2577
2578    totGap
2579        .name(name() + ".totGap")
2580        .desc("Total gap between requests");
2581
2582    avgGap
2583        .name(name() + ".avgGap")
2584        .desc("Average gap between requests")
2585        .precision(2);
2586
2587    avgGap = totGap / (readReqs + writeReqs);
2588
2589    // Stats for DRAM Power calculation based on Micron datasheet
2590    busUtilRead
2591        .name(name() + ".busUtilRead")
2592        .desc("Data bus utilization in percentage for reads")
2593        .precision(2);
2594
2595    busUtilRead = avgRdBW / peakBW * 100;
2596
2597    busUtilWrite
2598        .name(name() + ".busUtilWrite")
2599        .desc("Data bus utilization in percentage for writes")
2600        .precision(2);
2601
2602    busUtilWrite = avgWrBW / peakBW * 100;
2603
2604    pageHitRate
2605        .name(name() + ".pageHitRate")
2606        .desc("Row buffer hit rate, read and write combined")
2607        .precision(2);
2608
2609    pageHitRate = (writeRowHits + readRowHits) /
2610        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2611}
2612
2613void
2614DRAMCtrl::recvFunctional(PacketPtr pkt)
2615{
2616    // rely on the abstract memory
2617    functionalAccess(pkt);
2618}
2619
2620BaseSlavePort&
2621DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2622{
2623    if (if_name != "port") {
2624        return MemObject::getSlavePort(if_name, idx);
2625    } else {
2626        return port;
2627    }
2628}
2629
2630DrainState
2631DRAMCtrl::drain()
2632{
2633    // if there is anything in any of our internal queues, keep track
2634    // of that as well
2635    if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty() &&
2636          allRanksDrained())) {
2637
2638        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2639                " resp: %d\n", writeQueue.size(), readQueue.size(),
2640                respQueue.size());
2641
2642        // the only queue that is not drained automatically over time
2643        // is the write queue, thus kick things into action if needed
2644        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2645            schedule(nextReqEvent, curTick());
2646        }
2647
2648        // also need to kick off events to exit self-refresh
2649        for (auto r : ranks) {
2650            // force self-refresh exit, which in turn will issue auto-refresh
2651            if (r->pwrState == PWR_SREF) {
2652                DPRINTF(DRAM,"Rank%d: Forcing self-refresh wakeup in drain\n",
2653                        r->rank);
2654                r->scheduleWakeUpEvent(tXS);
2655            }
2656        }
2657
2658        return DrainState::Draining;
2659    } else {
2660        return DrainState::Drained;
2661    }
2662}
2663
2664bool
2665DRAMCtrl::allRanksDrained() const
2666{
2667    // true until proven false
2668    bool all_ranks_drained = true;
2669    for (auto r : ranks) {
2670        // then verify that the power state is IDLE
2671        // ensuring all banks are closed and rank is not in a low power state
2672        all_ranks_drained = r->inPwrIdleState() && all_ranks_drained;
2673    }
2674    return all_ranks_drained;
2675}
2676
2677void
2678DRAMCtrl::drainResume()
2679{
2680    if (!isTimingMode && system()->isTimingMode()) {
2681        // if we switched to timing mode, kick things into action,
2682        // and behave as if we restored from a checkpoint
2683        startup();
2684    } else if (isTimingMode && !system()->isTimingMode()) {
2685        // if we switch from timing mode, stop the refresh events to
2686        // not cause issues with KVM
2687        for (auto r : ranks) {
2688            r->suspend();
2689        }
2690    }
2691
2692    // update the mode
2693    isTimingMode = system()->isTimingMode();
2694}
2695
2696DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2697    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2698      memory(_memory)
2699{ }
2700
2701AddrRangeList
2702DRAMCtrl::MemoryPort::getAddrRanges() const
2703{
2704    AddrRangeList ranges;
2705    ranges.push_back(memory.getAddrRange());
2706    return ranges;
2707}
2708
2709void
2710DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2711{
2712    pkt->pushLabel(memory.name());
2713
2714    if (!queue.checkFunctional(pkt)) {
2715        // Default implementation of SimpleTimingPort::recvFunctional()
2716        // calls recvAtomic() and throws away the latency; we can save a
2717        // little here by just not calculating the latency.
2718        memory.recvFunctional(pkt);
2719    }
2720
2721    pkt->popLabel();
2722}
2723
2724Tick
2725DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2726{
2727    return memory.recvAtomic(pkt);
2728}
2729
2730bool
2731DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2732{
2733    // pass it to the memory controller
2734    return memory.recvTimingReq(pkt);
2735}
2736
2737DRAMCtrl*
2738DRAMCtrlParams::create()
2739{
2740    return new DRAMCtrl(this);
2741}
2742