dram_ctrl.cc revision 11673:9f3ccf96bb5a
1/*
2 * Copyright (c) 2010-2015 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 *          Omar Naji
44 */
45
46#include "base/bitfield.hh"
47#include "base/trace.hh"
48#include "debug/DRAM.hh"
49#include "debug/DRAMPower.hh"
50#include "debug/DRAMState.hh"
51#include "debug/Drain.hh"
52#include "mem/dram_ctrl.hh"
53#include "sim/system.hh"
54
55using namespace std;
56using namespace Data;
57
58DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
59    AbstractMemory(p),
60    port(name() + ".port", *this), isTimingMode(false),
61    retryRdReq(false), retryWrReq(false),
62    busState(READ),
63    nextReqEvent(this), respondEvent(this),
64    deviceSize(p->device_size),
65    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
66    deviceRowBufferSize(p->device_rowbuffer_size),
67    devicesPerRank(p->devices_per_rank),
68    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
69    rowBufferSize(devicesPerRank * deviceRowBufferSize),
70    columnsPerRowBuffer(rowBufferSize / burstSize),
71    columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1),
72    ranksPerChannel(p->ranks_per_channel),
73    bankGroupsPerRank(p->bank_groups_per_rank),
74    bankGroupArch(p->bank_groups_per_rank > 0),
75    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
76    readBufferSize(p->read_buffer_size),
77    writeBufferSize(p->write_buffer_size),
78    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
79    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
80    minWritesPerSwitch(p->min_writes_per_switch),
81    writesThisTime(0), readsThisTime(0),
82    tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
83    tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
84    tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
85    tRRD_L(p->tRRD_L), tXAW(p->tXAW), tXP(p->tXP), tXS(p->tXS),
86    activationLimit(p->activation_limit),
87    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
88    pageMgmt(p->page_policy),
89    maxAccessesPerRow(p->max_accesses_per_row),
90    frontendLatency(p->static_frontend_latency),
91    backendLatency(p->static_backend_latency),
92    busBusyUntil(0), prevArrival(0),
93    nextReqTime(0), activeRank(0), timeStampOffset(0)
94{
95    // sanity check the ranks since we rely on bit slicing for the
96    // address decoding
97    fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
98             "allowed, must be a power of two\n", ranksPerChannel);
99
100    fatal_if(!isPowerOf2(burstSize), "DRAM burst size %d is not allowed, "
101             "must be a power of two\n", burstSize);
102
103    for (int i = 0; i < ranksPerChannel; i++) {
104        Rank* rank = new Rank(*this, p);
105        ranks.push_back(rank);
106
107        rank->actTicks.resize(activationLimit, 0);
108        rank->banks.resize(banksPerRank);
109        rank->rank = i;
110
111        for (int b = 0; b < banksPerRank; b++) {
112            rank->banks[b].bank = b;
113            // GDDR addressing of banks to BG is linear.
114            // Here we assume that all DRAM generations address bank groups as
115            // follows:
116            if (bankGroupArch) {
117                // Simply assign lower bits to bank group in order to
118                // rotate across bank groups as banks are incremented
119                // e.g. with 4 banks per bank group and 16 banks total:
120                //    banks 0,4,8,12  are in bank group 0
121                //    banks 1,5,9,13  are in bank group 1
122                //    banks 2,6,10,14 are in bank group 2
123                //    banks 3,7,11,15 are in bank group 3
124                rank->banks[b].bankgr = b % bankGroupsPerRank;
125            } else {
126                // No bank groups; simply assign to bank number
127                rank->banks[b].bankgr = b;
128            }
129        }
130    }
131
132    // perform a basic check of the write thresholds
133    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
134        fatal("Write buffer low threshold %d must be smaller than the "
135              "high threshold %d\n", p->write_low_thresh_perc,
136              p->write_high_thresh_perc);
137
138    // determine the rows per bank by looking at the total capacity
139    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
140
141    // determine the dram actual capacity from the DRAM config in Mbytes
142    uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
143        ranksPerChannel;
144
145    // if actual DRAM size does not match memory capacity in system warn!
146    if (deviceCapacity != capacity / (1024 * 1024))
147        warn("DRAM device capacity (%d Mbytes) does not match the "
148             "address range assigned (%d Mbytes)\n", deviceCapacity,
149             capacity / (1024 * 1024));
150
151    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
152            AbstractMemory::size());
153
154    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
155            rowBufferSize, columnsPerRowBuffer);
156
157    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
158
159    // some basic sanity checks
160    if (tREFI <= tRP || tREFI <= tRFC) {
161        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
162              tREFI, tRP, tRFC);
163    }
164
165    // basic bank group architecture checks ->
166    if (bankGroupArch) {
167        // must have at least one bank per bank group
168        if (bankGroupsPerRank > banksPerRank) {
169            fatal("banks per rank (%d) must be equal to or larger than "
170                  "banks groups per rank (%d)\n",
171                  banksPerRank, bankGroupsPerRank);
172        }
173        // must have same number of banks in each bank group
174        if ((banksPerRank % bankGroupsPerRank) != 0) {
175            fatal("Banks per rank (%d) must be evenly divisible by bank groups "
176                  "per rank (%d) for equal banks per bank group\n",
177                  banksPerRank, bankGroupsPerRank);
178        }
179        // tCCD_L should be greater than minimal, back-to-back burst delay
180        if (tCCD_L <= tBURST) {
181            fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
182                  "bank groups per rank (%d) is greater than 1\n",
183                  tCCD_L, tBURST, bankGroupsPerRank);
184        }
185        // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
186        // some datasheets might specify it equal to tRRD
187        if (tRRD_L < tRRD) {
188            fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
189                  "bank groups per rank (%d) is greater than 1\n",
190                  tRRD_L, tRRD, bankGroupsPerRank);
191        }
192    }
193
194}
195
196void
197DRAMCtrl::init()
198{
199    AbstractMemory::init();
200
201   if (!port.isConnected()) {
202        fatal("DRAMCtrl %s is unconnected!\n", name());
203    } else {
204        port.sendRangeChange();
205    }
206
207    // a bit of sanity checks on the interleaving, save it for here to
208    // ensure that the system pointer is initialised
209    if (range.interleaved()) {
210        if (channels != range.stripes())
211            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
212                  name(), range.stripes(), channels);
213
214        if (addrMapping == Enums::RoRaBaChCo) {
215            if (rowBufferSize != range.granularity()) {
216                fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
217                      "address map\n", name());
218            }
219        } else if (addrMapping == Enums::RoRaBaCoCh ||
220                   addrMapping == Enums::RoCoRaBaCh) {
221            // for the interleavings with channel bits in the bottom,
222            // if the system uses a channel striping granularity that
223            // is larger than the DRAM burst size, then map the
224            // sequential accesses within a stripe to a number of
225            // columns in the DRAM, effectively placing some of the
226            // lower-order column bits as the least-significant bits
227            // of the address (above the ones denoting the burst size)
228            assert(columnsPerStripe >= 1);
229
230            // channel striping has to be done at a granularity that
231            // is equal or larger to a cache line
232            if (system()->cacheLineSize() > range.granularity()) {
233                fatal("Channel interleaving of %s must be at least as large "
234                      "as the cache line size\n", name());
235            }
236
237            // ...and equal or smaller than the row-buffer size
238            if (rowBufferSize < range.granularity()) {
239                fatal("Channel interleaving of %s must be at most as large "
240                      "as the row-buffer size\n", name());
241            }
242            // this is essentially the check above, so just to be sure
243            assert(columnsPerStripe <= columnsPerRowBuffer);
244        }
245    }
246}
247
248void
249DRAMCtrl::startup()
250{
251    // remember the memory system mode of operation
252    isTimingMode = system()->isTimingMode();
253
254    if (isTimingMode) {
255        // timestamp offset should be in clock cycles for DRAMPower
256        timeStampOffset = divCeil(curTick(), tCK);
257
258        // update the start tick for the precharge accounting to the
259        // current tick
260        for (auto r : ranks) {
261            r->startup(curTick() + tREFI - tRP);
262        }
263
264        // shift the bus busy time sufficiently far ahead that we never
265        // have to worry about negative values when computing the time for
266        // the next request, this will add an insignificant bubble at the
267        // start of simulation
268        busBusyUntil = curTick() + tRP + tRCD + tCL;
269    }
270}
271
272Tick
273DRAMCtrl::recvAtomic(PacketPtr pkt)
274{
275    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
276
277    panic_if(pkt->cacheResponding(), "Should not see packets where cache "
278             "is responding");
279
280    // do the actual memory access and turn the packet into a response
281    access(pkt);
282
283    Tick latency = 0;
284    if (pkt->hasData()) {
285        // this value is not supposed to be accurate, just enough to
286        // keep things going, mimic a closed page
287        latency = tRP + tRCD + tCL;
288    }
289    return latency;
290}
291
292bool
293DRAMCtrl::readQueueFull(unsigned int neededEntries) const
294{
295    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
296            readBufferSize, readQueue.size() + respQueue.size(),
297            neededEntries);
298
299    return
300        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
301}
302
303bool
304DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
305{
306    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
307            writeBufferSize, writeQueue.size(), neededEntries);
308    return (writeQueue.size() + neededEntries) > writeBufferSize;
309}
310
311DRAMCtrl::DRAMPacket*
312DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
313                       bool isRead)
314{
315    // decode the address based on the address mapping scheme, with
316    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
317    // channel, respectively
318    uint8_t rank;
319    uint8_t bank;
320    // use a 64-bit unsigned during the computations as the row is
321    // always the top bits, and check before creating the DRAMPacket
322    uint64_t row;
323
324    // truncate the address to a DRAM burst, which makes it unique to
325    // a specific column, row, bank, rank and channel
326    Addr addr = dramPktAddr / burstSize;
327
328    // we have removed the lowest order address bits that denote the
329    // position within the column
330    if (addrMapping == Enums::RoRaBaChCo) {
331        // the lowest order bits denote the column to ensure that
332        // sequential cache lines occupy the same row
333        addr = addr / columnsPerRowBuffer;
334
335        // take out the channel part of the address
336        addr = addr / channels;
337
338        // after the channel bits, get the bank bits to interleave
339        // over the banks
340        bank = addr % banksPerRank;
341        addr = addr / banksPerRank;
342
343        // after the bank, we get the rank bits which thus interleaves
344        // over the ranks
345        rank = addr % ranksPerChannel;
346        addr = addr / ranksPerChannel;
347
348        // lastly, get the row bits, no need to remove them from addr
349        row = addr % rowsPerBank;
350    } else if (addrMapping == Enums::RoRaBaCoCh) {
351        // take out the lower-order column bits
352        addr = addr / columnsPerStripe;
353
354        // take out the channel part of the address
355        addr = addr / channels;
356
357        // next, the higher-order column bites
358        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
359
360        // after the column bits, we get the bank bits to interleave
361        // over the banks
362        bank = addr % banksPerRank;
363        addr = addr / banksPerRank;
364
365        // after the bank, we get the rank bits which thus interleaves
366        // over the ranks
367        rank = addr % ranksPerChannel;
368        addr = addr / ranksPerChannel;
369
370        // lastly, get the row bits, no need to remove them from addr
371        row = addr % rowsPerBank;
372    } else if (addrMapping == Enums::RoCoRaBaCh) {
373        // optimise for closed page mode and utilise maximum
374        // parallelism of the DRAM (at the cost of power)
375
376        // take out the lower-order column bits
377        addr = addr / columnsPerStripe;
378
379        // take out the channel part of the address, not that this has
380        // to match with how accesses are interleaved between the
381        // controllers in the address mapping
382        addr = addr / channels;
383
384        // start with the bank bits, as this provides the maximum
385        // opportunity for parallelism between requests
386        bank = addr % banksPerRank;
387        addr = addr / banksPerRank;
388
389        // next get the rank bits
390        rank = addr % ranksPerChannel;
391        addr = addr / ranksPerChannel;
392
393        // next, the higher-order column bites
394        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
395
396        // lastly, get the row bits, no need to remove them from addr
397        row = addr % rowsPerBank;
398    } else
399        panic("Unknown address mapping policy chosen!");
400
401    assert(rank < ranksPerChannel);
402    assert(bank < banksPerRank);
403    assert(row < rowsPerBank);
404    assert(row < Bank::NO_ROW);
405
406    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
407            dramPktAddr, rank, bank, row);
408
409    // create the corresponding DRAM packet with the entry time and
410    // ready time set to the current tick, the latter will be updated
411    // later
412    uint16_t bank_id = banksPerRank * rank + bank;
413    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
414                          size, ranks[rank]->banks[bank], *ranks[rank]);
415}
416
417void
418DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
419{
420    // only add to the read queue here. whenever the request is
421    // eventually done, set the readyTime, and call schedule()
422    assert(!pkt->isWrite());
423
424    assert(pktCount != 0);
425
426    // if the request size is larger than burst size, the pkt is split into
427    // multiple DRAM packets
428    // Note if the pkt starting address is not aligened to burst size, the
429    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
430    // are aligned to burst size boundaries. This is to ensure we accurately
431    // check read packets against packets in write queue.
432    Addr addr = pkt->getAddr();
433    unsigned pktsServicedByWrQ = 0;
434    BurstHelper* burst_helper = NULL;
435    for (int cnt = 0; cnt < pktCount; ++cnt) {
436        unsigned size = std::min((addr | (burstSize - 1)) + 1,
437                        pkt->getAddr() + pkt->getSize()) - addr;
438        readPktSize[ceilLog2(size)]++;
439        readBursts++;
440
441        // First check write buffer to see if the data is already at
442        // the controller
443        bool foundInWrQ = false;
444        Addr burst_addr = burstAlign(addr);
445        // if the burst address is not present then there is no need
446        // looking any further
447        if (isInWriteQueue.find(burst_addr) != isInWriteQueue.end()) {
448            for (const auto& p : writeQueue) {
449                // check if the read is subsumed in the write queue
450                // packet we are looking at
451                if (p->addr <= addr && (addr + size) <= (p->addr + p->size)) {
452                    foundInWrQ = true;
453                    servicedByWrQ++;
454                    pktsServicedByWrQ++;
455                    DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
456                            "write queue\n", addr, size);
457                    bytesReadWrQ += burstSize;
458                    break;
459                }
460            }
461        }
462
463        // If not found in the write q, make a DRAM packet and
464        // push it onto the read queue
465        if (!foundInWrQ) {
466
467            // Make the burst helper for split packets
468            if (pktCount > 1 && burst_helper == NULL) {
469                DPRINTF(DRAM, "Read to addr %lld translates to %d "
470                        "dram requests\n", pkt->getAddr(), pktCount);
471                burst_helper = new BurstHelper(pktCount);
472            }
473
474            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
475            dram_pkt->burstHelper = burst_helper;
476
477            assert(!readQueueFull(1));
478            rdQLenPdf[readQueue.size() + respQueue.size()]++;
479
480            DPRINTF(DRAM, "Adding to read queue\n");
481
482            readQueue.push_back(dram_pkt);
483
484            // Update stats
485            avgRdQLen = readQueue.size() + respQueue.size();
486        }
487
488        // Starting address of next dram pkt (aligend to burstSize boundary)
489        addr = (addr | (burstSize - 1)) + 1;
490    }
491
492    // If all packets are serviced by write queue, we send the repsonse back
493    if (pktsServicedByWrQ == pktCount) {
494        accessAndRespond(pkt, frontendLatency);
495        return;
496    }
497
498    // Update how many split packets are serviced by write queue
499    if (burst_helper != NULL)
500        burst_helper->burstsServiced = pktsServicedByWrQ;
501
502    // If we are not already scheduled to get a request out of the
503    // queue, do so now
504    if (!nextReqEvent.scheduled()) {
505        DPRINTF(DRAM, "Request scheduled immediately\n");
506        schedule(nextReqEvent, curTick());
507    }
508}
509
510void
511DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
512{
513    // only add to the write queue here. whenever the request is
514    // eventually done, set the readyTime, and call schedule()
515    assert(pkt->isWrite());
516
517    // if the request size is larger than burst size, the pkt is split into
518    // multiple DRAM packets
519    Addr addr = pkt->getAddr();
520    for (int cnt = 0; cnt < pktCount; ++cnt) {
521        unsigned size = std::min((addr | (burstSize - 1)) + 1,
522                        pkt->getAddr() + pkt->getSize()) - addr;
523        writePktSize[ceilLog2(size)]++;
524        writeBursts++;
525
526        // see if we can merge with an existing item in the write
527        // queue and keep track of whether we have merged or not
528        bool merged = isInWriteQueue.find(burstAlign(addr)) !=
529            isInWriteQueue.end();
530
531        // if the item was not merged we need to create a new write
532        // and enqueue it
533        if (!merged) {
534            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
535
536            assert(writeQueue.size() < writeBufferSize);
537            wrQLenPdf[writeQueue.size()]++;
538
539            DPRINTF(DRAM, "Adding to write queue\n");
540
541            writeQueue.push_back(dram_pkt);
542            isInWriteQueue.insert(burstAlign(addr));
543            assert(writeQueue.size() == isInWriteQueue.size());
544
545            // Update stats
546            avgWrQLen = writeQueue.size();
547        } else {
548            DPRINTF(DRAM, "Merging write burst with existing queue entry\n");
549
550            // keep track of the fact that this burst effectively
551            // disappeared as it was merged with an existing one
552            mergedWrBursts++;
553        }
554
555        // Starting address of next dram pkt (aligend to burstSize boundary)
556        addr = (addr | (burstSize - 1)) + 1;
557    }
558
559    // we do not wait for the writes to be send to the actual memory,
560    // but instead take responsibility for the consistency here and
561    // snoop the write queue for any upcoming reads
562    // @todo, if a pkt size is larger than burst size, we might need a
563    // different front end latency
564    accessAndRespond(pkt, frontendLatency);
565
566    // If we are not already scheduled to get a request out of the
567    // queue, do so now
568    if (!nextReqEvent.scheduled()) {
569        DPRINTF(DRAM, "Request scheduled immediately\n");
570        schedule(nextReqEvent, curTick());
571    }
572}
573
574void
575DRAMCtrl::printQs() const {
576    DPRINTF(DRAM, "===READ QUEUE===\n\n");
577    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
578        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
579    }
580    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
581    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
582        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
583    }
584    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
585    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
586        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
587    }
588}
589
590bool
591DRAMCtrl::recvTimingReq(PacketPtr pkt)
592{
593    // This is where we enter from the outside world
594    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
595            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
596
597    panic_if(pkt->cacheResponding(), "Should not see packets where cache "
598             "is responding");
599
600    panic_if(!(pkt->isRead() || pkt->isWrite()),
601             "Should only see read and writes at memory controller\n");
602
603    // Calc avg gap between requests
604    if (prevArrival != 0) {
605        totGap += curTick() - prevArrival;
606    }
607    prevArrival = curTick();
608
609
610    // Find out how many dram packets a pkt translates to
611    // If the burst size is equal or larger than the pkt size, then a pkt
612    // translates to only one dram packet. Otherwise, a pkt translates to
613    // multiple dram packets
614    unsigned size = pkt->getSize();
615    unsigned offset = pkt->getAddr() & (burstSize - 1);
616    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
617
618    // check local buffers and do not accept if full
619    if (pkt->isRead()) {
620        assert(size != 0);
621        if (readQueueFull(dram_pkt_count)) {
622            DPRINTF(DRAM, "Read queue full, not accepting\n");
623            // remember that we have to retry this port
624            retryRdReq = true;
625            numRdRetry++;
626            return false;
627        } else {
628            addToReadQueue(pkt, dram_pkt_count);
629            readReqs++;
630            bytesReadSys += size;
631        }
632    } else {
633        assert(pkt->isWrite());
634        assert(size != 0);
635        if (writeQueueFull(dram_pkt_count)) {
636            DPRINTF(DRAM, "Write queue full, not accepting\n");
637            // remember that we have to retry this port
638            retryWrReq = true;
639            numWrRetry++;
640            return false;
641        } else {
642            addToWriteQueue(pkt, dram_pkt_count);
643            writeReqs++;
644            bytesWrittenSys += size;
645        }
646    }
647
648    return true;
649}
650
651void
652DRAMCtrl::processRespondEvent()
653{
654    DPRINTF(DRAM,
655            "processRespondEvent(): Some req has reached its readyTime\n");
656
657    DRAMPacket* dram_pkt = respQueue.front();
658
659    if (dram_pkt->burstHelper) {
660        // it is a split packet
661        dram_pkt->burstHelper->burstsServiced++;
662        if (dram_pkt->burstHelper->burstsServiced ==
663            dram_pkt->burstHelper->burstCount) {
664            // we have now serviced all children packets of a system packet
665            // so we can now respond to the requester
666            // @todo we probably want to have a different front end and back
667            // end latency for split packets
668            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
669            delete dram_pkt->burstHelper;
670            dram_pkt->burstHelper = NULL;
671        }
672    } else {
673        // it is not a split packet
674        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
675    }
676
677    delete respQueue.front();
678    respQueue.pop_front();
679
680    if (!respQueue.empty()) {
681        assert(respQueue.front()->readyTime >= curTick());
682        assert(!respondEvent.scheduled());
683        schedule(respondEvent, respQueue.front()->readyTime);
684    } else {
685        // if there is nothing left in any queue, signal a drain
686        if (drainState() == DrainState::Draining &&
687            writeQueue.empty() && readQueue.empty()) {
688
689            DPRINTF(Drain, "DRAM controller done draining\n");
690            signalDrainDone();
691        }
692    }
693
694    // We have made a location in the queue available at this point,
695    // so if there is a read that was forced to wait, retry now
696    if (retryRdReq) {
697        retryRdReq = false;
698        port.sendRetryReq();
699    }
700}
701
702bool
703DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
704{
705    // This method does the arbitration between requests. The chosen
706    // packet is simply moved to the head of the queue. The other
707    // methods know that this is the place to look. For example, with
708    // FCFS, this method does nothing
709    assert(!queue.empty());
710
711    // bool to indicate if a packet to an available rank is found
712    bool found_packet = false;
713    if (queue.size() == 1) {
714        DRAMPacket* dram_pkt = queue.front();
715        // available rank corresponds to state refresh idle
716        if (ranks[dram_pkt->rank]->isAvailable()) {
717            found_packet = true;
718            DPRINTF(DRAM, "Single request, going to a free rank\n");
719        } else {
720            DPRINTF(DRAM, "Single request, going to a busy rank\n");
721        }
722        return found_packet;
723    }
724
725    if (memSchedPolicy == Enums::fcfs) {
726        // check if there is a packet going to a free rank
727        for (auto i = queue.begin(); i != queue.end() ; ++i) {
728            DRAMPacket* dram_pkt = *i;
729            if (ranks[dram_pkt->rank]->isAvailable()) {
730                queue.erase(i);
731                queue.push_front(dram_pkt);
732                found_packet = true;
733                break;
734            }
735        }
736    } else if (memSchedPolicy == Enums::frfcfs) {
737        found_packet = reorderQueue(queue, extra_col_delay);
738    } else
739        panic("No scheduling policy chosen\n");
740    return found_packet;
741}
742
743bool
744DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, Tick extra_col_delay)
745{
746    // Only determine this if needed
747    uint64_t earliest_banks = 0;
748    bool hidden_bank_prep = false;
749
750    // search for seamless row hits first, if no seamless row hit is
751    // found then determine if there are other packets that can be issued
752    // without incurring additional bus delay due to bank timing
753    // Will select closed rows first to enable more open row possibilies
754    // in future selections
755    bool found_hidden_bank = false;
756
757    // remember if we found a row hit, not seamless, but bank prepped
758    // and ready
759    bool found_prepped_pkt = false;
760
761    // if we have no row hit, prepped or not, and no seamless packet,
762    // just go for the earliest possible
763    bool found_earliest_pkt = false;
764
765    auto selected_pkt_it = queue.end();
766
767    // time we need to issue a column command to be seamless
768    const Tick min_col_at = std::max(busBusyUntil - tCL + extra_col_delay,
769                                     curTick());
770
771    for (auto i = queue.begin(); i != queue.end() ; ++i) {
772        DRAMPacket* dram_pkt = *i;
773        const Bank& bank = dram_pkt->bankRef;
774
775        // check if rank is available, if not, jump to the next packet
776        if (dram_pkt->rankRef.isAvailable()) {
777            // check if it is a row hit
778            if (bank.openRow == dram_pkt->row) {
779                // no additional rank-to-rank or same bank-group
780                // delays, or we switched read/write and might as well
781                // go for the row hit
782                if (bank.colAllowedAt <= min_col_at) {
783                    // FCFS within the hits, giving priority to
784                    // commands that can issue seamlessly, without
785                    // additional delay, such as same rank accesses
786                    // and/or different bank-group accesses
787                    DPRINTF(DRAM, "Seamless row buffer hit\n");
788                    selected_pkt_it = i;
789                    // no need to look through the remaining queue entries
790                    break;
791                } else if (!found_hidden_bank && !found_prepped_pkt) {
792                    // if we did not find a packet to a closed row that can
793                    // issue the bank commands without incurring delay, and
794                    // did not yet find a packet to a prepped row, remember
795                    // the current one
796                    selected_pkt_it = i;
797                    found_prepped_pkt = true;
798                    DPRINTF(DRAM, "Prepped row buffer hit\n");
799                }
800            } else if (!found_earliest_pkt) {
801                // if we have not initialised the bank status, do it
802                // now, and only once per scheduling decisions
803                if (earliest_banks == 0) {
804                    // determine entries with earliest bank delay
805                    pair<uint64_t, bool> bankStatus =
806                        minBankPrep(queue, min_col_at);
807                    earliest_banks = bankStatus.first;
808                    hidden_bank_prep = bankStatus.second;
809                }
810
811                // bank is amongst first available banks
812                // minBankPrep will give priority to packets that can
813                // issue seamlessly
814                if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
815                    found_earliest_pkt = true;
816                    found_hidden_bank = hidden_bank_prep;
817
818                    // give priority to packets that can issue
819                    // bank commands 'behind the scenes'
820                    // any additional delay if any will be due to
821                    // col-to-col command requirements
822                    if (hidden_bank_prep || !found_prepped_pkt)
823                        selected_pkt_it = i;
824                }
825            }
826        }
827    }
828
829    if (selected_pkt_it != queue.end()) {
830        DRAMPacket* selected_pkt = *selected_pkt_it;
831        queue.erase(selected_pkt_it);
832        queue.push_front(selected_pkt);
833        return true;
834    }
835
836    return false;
837}
838
839void
840DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
841{
842    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
843
844    bool needsResponse = pkt->needsResponse();
845    // do the actual memory access which also turns the packet into a
846    // response
847    access(pkt);
848
849    // turn packet around to go back to requester if response expected
850    if (needsResponse) {
851        // access already turned the packet into a response
852        assert(pkt->isResponse());
853        // response_time consumes the static latency and is charged also
854        // with headerDelay that takes into account the delay provided by
855        // the xbar and also the payloadDelay that takes into account the
856        // number of data beats.
857        Tick response_time = curTick() + static_latency + pkt->headerDelay +
858                             pkt->payloadDelay;
859        // Here we reset the timing of the packet before sending it out.
860        pkt->headerDelay = pkt->payloadDelay = 0;
861
862        // queue the packet in the response queue to be sent out after
863        // the static latency has passed
864        port.schedTimingResp(pkt, response_time, true);
865    } else {
866        // @todo the packet is going to be deleted, and the DRAMPacket
867        // is still having a pointer to it
868        pendingDelete.reset(pkt);
869    }
870
871    DPRINTF(DRAM, "Done\n");
872
873    return;
874}
875
876void
877DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
878                       Tick act_tick, uint32_t row)
879{
880    assert(rank_ref.actTicks.size() == activationLimit);
881
882    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
883
884    // update the open row
885    assert(bank_ref.openRow == Bank::NO_ROW);
886    bank_ref.openRow = row;
887
888    // start counting anew, this covers both the case when we
889    // auto-precharged, and when this access is forced to
890    // precharge
891    bank_ref.bytesAccessed = 0;
892    bank_ref.rowAccesses = 0;
893
894    ++rank_ref.numBanksActive;
895    assert(rank_ref.numBanksActive <= banksPerRank);
896
897    DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
898            bank_ref.bank, rank_ref.rank, act_tick,
899            ranks[rank_ref.rank]->numBanksActive);
900
901    rank_ref.power.powerlib.doCommand(MemCommand::ACT, bank_ref.bank,
902                                      divCeil(act_tick, tCK) -
903                                      timeStampOffset);
904
905    DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
906            timeStampOffset, bank_ref.bank, rank_ref.rank);
907
908    // The next access has to respect tRAS for this bank
909    bank_ref.preAllowedAt = act_tick + tRAS;
910
911    // Respect the row-to-column command delay
912    bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt);
913
914    // start by enforcing tRRD
915    for (int i = 0; i < banksPerRank; i++) {
916        // next activate to any bank in this rank must not happen
917        // before tRRD
918        if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
919            // bank group architecture requires longer delays between
920            // ACT commands within the same bank group.  Use tRRD_L
921            // in this case
922            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
923                                             rank_ref.banks[i].actAllowedAt);
924        } else {
925            // use shorter tRRD value when either
926            // 1) bank group architecture is not supportted
927            // 2) bank is in a different bank group
928            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
929                                             rank_ref.banks[i].actAllowedAt);
930        }
931    }
932
933    // next, we deal with tXAW, if the activation limit is disabled
934    // then we directly schedule an activate power event
935    if (!rank_ref.actTicks.empty()) {
936        // sanity check
937        if (rank_ref.actTicks.back() &&
938           (act_tick - rank_ref.actTicks.back()) < tXAW) {
939            panic("Got %d activates in window %d (%llu - %llu) which "
940                  "is smaller than %llu\n", activationLimit, act_tick -
941                  rank_ref.actTicks.back(), act_tick,
942                  rank_ref.actTicks.back(), tXAW);
943        }
944
945        // shift the times used for the book keeping, the last element
946        // (highest index) is the oldest one and hence the lowest value
947        rank_ref.actTicks.pop_back();
948
949        // record an new activation (in the future)
950        rank_ref.actTicks.push_front(act_tick);
951
952        // cannot activate more than X times in time window tXAW, push the
953        // next one (the X + 1'st activate) to be tXAW away from the
954        // oldest in our window of X
955        if (rank_ref.actTicks.back() &&
956           (act_tick - rank_ref.actTicks.back()) < tXAW) {
957            DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
958                    "no earlier than %llu\n", activationLimit,
959                    rank_ref.actTicks.back() + tXAW);
960            for (int j = 0; j < banksPerRank; j++)
961                // next activate must not happen before end of window
962                rank_ref.banks[j].actAllowedAt =
963                    std::max(rank_ref.actTicks.back() + tXAW,
964                             rank_ref.banks[j].actAllowedAt);
965        }
966    }
967
968    // at the point when this activate takes place, make sure we
969    // transition to the active power state
970    if (!rank_ref.activateEvent.scheduled())
971        schedule(rank_ref.activateEvent, act_tick);
972    else if (rank_ref.activateEvent.when() > act_tick)
973        // move it sooner in time
974        reschedule(rank_ref.activateEvent, act_tick);
975}
976
977void
978DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
979{
980    // make sure the bank has an open row
981    assert(bank.openRow != Bank::NO_ROW);
982
983    // sample the bytes per activate here since we are closing
984    // the page
985    bytesPerActivate.sample(bank.bytesAccessed);
986
987    bank.openRow = Bank::NO_ROW;
988
989    // no precharge allowed before this one
990    bank.preAllowedAt = pre_at;
991
992    Tick pre_done_at = pre_at + tRP;
993
994    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
995
996    assert(rank_ref.numBanksActive != 0);
997    --rank_ref.numBanksActive;
998
999    DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
1000            "%d active\n", bank.bank, rank_ref.rank, pre_at,
1001            rank_ref.numBanksActive);
1002
1003    if (trace) {
1004
1005        rank_ref.power.powerlib.doCommand(MemCommand::PRE, bank.bank,
1006                                                divCeil(pre_at, tCK) -
1007                                                timeStampOffset);
1008        DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1009                timeStampOffset, bank.bank, rank_ref.rank);
1010    }
1011    // if we look at the current number of active banks we might be
1012    // tempted to think the DRAM is now idle, however this can be
1013    // undone by an activate that is scheduled to happen before we
1014    // would have reached the idle state, so schedule an event and
1015    // rather check once we actually make it to the point in time when
1016    // the (last) precharge takes place
1017    if (!rank_ref.prechargeEvent.scheduled())
1018        schedule(rank_ref.prechargeEvent, pre_done_at);
1019    else if (rank_ref.prechargeEvent.when() < pre_done_at)
1020        reschedule(rank_ref.prechargeEvent, pre_done_at);
1021}
1022
1023void
1024DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1025{
1026    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1027            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1028
1029    // get the rank
1030    Rank& rank = dram_pkt->rankRef;
1031
1032    // get the bank
1033    Bank& bank = dram_pkt->bankRef;
1034
1035    // for the state we need to track if it is a row hit or not
1036    bool row_hit = true;
1037
1038    // respect any constraints on the command (e.g. tRCD or tCCD)
1039    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1040
1041    // Determine the access latency and update the bank state
1042    if (bank.openRow == dram_pkt->row) {
1043        // nothing to do
1044    } else {
1045        row_hit = false;
1046
1047        // If there is a page open, precharge it.
1048        if (bank.openRow != Bank::NO_ROW) {
1049            prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1050        }
1051
1052        // next we need to account for the delay in activating the
1053        // page
1054        Tick act_tick = std::max(bank.actAllowedAt, curTick());
1055
1056        // Record the activation and deal with all the global timing
1057        // constraints caused be a new activation (tRRD and tXAW)
1058        activateBank(rank, bank, act_tick, dram_pkt->row);
1059
1060        // issue the command as early as possible
1061        cmd_at = bank.colAllowedAt;
1062    }
1063
1064    // we need to wait until the bus is available before we can issue
1065    // the command
1066    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1067
1068    // update the packet ready time
1069    dram_pkt->readyTime = cmd_at + tCL + tBURST;
1070
1071    // only one burst can use the bus at any one point in time
1072    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1073
1074    // update the time for the next read/write burst for each
1075    // bank (add a max with tCCD/tCCD_L here)
1076    Tick cmd_dly;
1077    for (int j = 0; j < ranksPerChannel; j++) {
1078        for (int i = 0; i < banksPerRank; i++) {
1079            // next burst to same bank group in this rank must not happen
1080            // before tCCD_L.  Different bank group timing requirement is
1081            // tBURST; Add tCS for different ranks
1082            if (dram_pkt->rank == j) {
1083                if (bankGroupArch &&
1084                   (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1085                    // bank group architecture requires longer delays between
1086                    // RD/WR burst commands to the same bank group.
1087                    // Use tCCD_L in this case
1088                    cmd_dly = tCCD_L;
1089                } else {
1090                    // use tBURST (equivalent to tCCD_S), the shorter
1091                    // cas-to-cas delay value, when either:
1092                    // 1) bank group architecture is not supportted
1093                    // 2) bank is in a different bank group
1094                    cmd_dly = tBURST;
1095                }
1096            } else {
1097                // different rank is by default in a different bank group
1098                // use tBURST (equivalent to tCCD_S), which is the shorter
1099                // cas-to-cas delay in this case
1100                // Add tCS to account for rank-to-rank bus delay requirements
1101                cmd_dly = tBURST + tCS;
1102            }
1103            ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly,
1104                                             ranks[j]->banks[i].colAllowedAt);
1105        }
1106    }
1107
1108    // Save rank of current access
1109    activeRank = dram_pkt->rank;
1110
1111    // If this is a write, we also need to respect the write recovery
1112    // time before a precharge, in the case of a read, respect the
1113    // read to precharge constraint
1114    bank.preAllowedAt = std::max(bank.preAllowedAt,
1115                                 dram_pkt->isRead ? cmd_at + tRTP :
1116                                 dram_pkt->readyTime + tWR);
1117
1118    // increment the bytes accessed and the accesses per row
1119    bank.bytesAccessed += burstSize;
1120    ++bank.rowAccesses;
1121
1122    // if we reached the max, then issue with an auto-precharge
1123    bool auto_precharge = pageMgmt == Enums::close ||
1124        bank.rowAccesses == maxAccessesPerRow;
1125
1126    // if we did not hit the limit, we might still want to
1127    // auto-precharge
1128    if (!auto_precharge &&
1129        (pageMgmt == Enums::open_adaptive ||
1130         pageMgmt == Enums::close_adaptive)) {
1131        // a twist on the open and close page policies:
1132        // 1) open_adaptive page policy does not blindly keep the
1133        // page open, but close it if there are no row hits, and there
1134        // are bank conflicts in the queue
1135        // 2) close_adaptive page policy does not blindly close the
1136        // page, but closes it only if there are no row hits in the queue.
1137        // In this case, only force an auto precharge when there
1138        // are no same page hits in the queue
1139        bool got_more_hits = false;
1140        bool got_bank_conflict = false;
1141
1142        // either look at the read queue or write queue
1143        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1144            writeQueue;
1145        auto p = queue.begin();
1146        // make sure we are not considering the packet that we are
1147        // currently dealing with (which is the head of the queue)
1148        ++p;
1149
1150        // keep on looking until we find a hit or reach the end of the queue
1151        // 1) if a hit is found, then both open and close adaptive policies keep
1152        // the page open
1153        // 2) if no hit is found, got_bank_conflict is set to true if a bank
1154        // conflict request is waiting in the queue
1155        while (!got_more_hits && p != queue.end()) {
1156            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1157                (dram_pkt->bank == (*p)->bank);
1158            bool same_row = dram_pkt->row == (*p)->row;
1159            got_more_hits |= same_rank_bank && same_row;
1160            got_bank_conflict |= same_rank_bank && !same_row;
1161            ++p;
1162        }
1163
1164        // auto pre-charge when either
1165        // 1) open_adaptive policy, we have not got any more hits, and
1166        //    have a bank conflict
1167        // 2) close_adaptive policy and we have not got any more hits
1168        auto_precharge = !got_more_hits &&
1169            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1170    }
1171
1172    // DRAMPower trace command to be written
1173    std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1174
1175    // MemCommand required for DRAMPower library
1176    MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1177                                                   MemCommand::WR;
1178
1179    // if this access should use auto-precharge, then we are
1180    // closing the row
1181    if (auto_precharge) {
1182        // if auto-precharge push a PRE command at the correct tick to the
1183        // list used by DRAMPower library to calculate power
1184        prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
1185
1186        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1187    }
1188
1189    // Update bus state
1190    busBusyUntil = dram_pkt->readyTime;
1191
1192    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1193            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1194
1195    dram_pkt->rankRef.power.powerlib.doCommand(command, dram_pkt->bank,
1196                                                 divCeil(cmd_at, tCK) -
1197                                                 timeStampOffset);
1198
1199    DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1200            timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1201
1202    // Update the minimum timing between the requests, this is a
1203    // conservative estimate of when we have to schedule the next
1204    // request to not introduce any unecessary bubbles. In most cases
1205    // we will wake up sooner than we have to.
1206    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1207
1208    // Update the stats and schedule the next request
1209    if (dram_pkt->isRead) {
1210        ++readsThisTime;
1211        if (row_hit)
1212            readRowHits++;
1213        bytesReadDRAM += burstSize;
1214        perBankRdBursts[dram_pkt->bankId]++;
1215
1216        // Update latency stats
1217        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1218        totBusLat += tBURST;
1219        totQLat += cmd_at - dram_pkt->entryTime;
1220    } else {
1221        ++writesThisTime;
1222        if (row_hit)
1223            writeRowHits++;
1224        bytesWritten += burstSize;
1225        perBankWrBursts[dram_pkt->bankId]++;
1226    }
1227}
1228
1229void
1230DRAMCtrl::processNextReqEvent()
1231{
1232    int busyRanks = 0;
1233    for (auto r : ranks) {
1234        if (!r->isAvailable()) {
1235            // rank is busy refreshing
1236            busyRanks++;
1237
1238            // let the rank know that if it was waiting to drain, it
1239            // is now done and ready to proceed
1240            r->checkDrainDone();
1241        }
1242    }
1243
1244    if (busyRanks == ranksPerChannel) {
1245        // if all ranks are refreshing wait for them to finish
1246        // and stall this state machine without taking any further
1247        // action, and do not schedule a new nextReqEvent
1248        return;
1249    }
1250
1251    // pre-emptively set to false.  Overwrite if in READ_TO_WRITE
1252    // or WRITE_TO_READ state
1253    bool switched_cmd_type = false;
1254    if (busState == READ_TO_WRITE) {
1255        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1256                "waiting\n", readsThisTime, readQueue.size());
1257
1258        // sample and reset the read-related stats as we are now
1259        // transitioning to writes, and all reads are done
1260        rdPerTurnAround.sample(readsThisTime);
1261        readsThisTime = 0;
1262
1263        // now proceed to do the actual writes
1264        busState = WRITE;
1265        switched_cmd_type = true;
1266    } else if (busState == WRITE_TO_READ) {
1267        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1268                "waiting\n", writesThisTime, writeQueue.size());
1269
1270        wrPerTurnAround.sample(writesThisTime);
1271        writesThisTime = 0;
1272
1273        busState = READ;
1274        switched_cmd_type = true;
1275    }
1276
1277    // when we get here it is either a read or a write
1278    if (busState == READ) {
1279
1280        // track if we should switch or not
1281        bool switch_to_writes = false;
1282
1283        if (readQueue.empty()) {
1284            // In the case there is no read request to go next,
1285            // trigger writes if we have passed the low threshold (or
1286            // if we are draining)
1287            if (!writeQueue.empty() &&
1288                (drainState() == DrainState::Draining ||
1289                 writeQueue.size() > writeLowThreshold)) {
1290
1291                switch_to_writes = true;
1292            } else {
1293                // check if we are drained
1294                if (drainState() == DrainState::Draining &&
1295                    respQueue.empty()) {
1296
1297                    DPRINTF(Drain, "DRAM controller done draining\n");
1298                    signalDrainDone();
1299                }
1300
1301                // nothing to do, not even any point in scheduling an
1302                // event for the next request
1303                return;
1304            }
1305        } else {
1306            // bool to check if there is a read to a free rank
1307            bool found_read = false;
1308
1309            // Figure out which read request goes next, and move it to the
1310            // front of the read queue
1311            // If we are changing command type, incorporate the minimum
1312            // bus turnaround delay which will be tCS (different rank) case
1313            found_read = chooseNext(readQueue,
1314                             switched_cmd_type ? tCS : 0);
1315
1316            // if no read to an available rank is found then return
1317            // at this point. There could be writes to the available ranks
1318            // which are above the required threshold. However, to
1319            // avoid adding more complexity to the code, return and wait
1320            // for a refresh event to kick things into action again.
1321            if (!found_read)
1322                return;
1323
1324            DRAMPacket* dram_pkt = readQueue.front();
1325            assert(dram_pkt->rankRef.isAvailable());
1326            // here we get a bit creative and shift the bus busy time not
1327            // just the tWTR, but also a CAS latency to capture the fact
1328            // that we are allowed to prepare a new bank, but not issue a
1329            // read command until after tWTR, in essence we capture a
1330            // bubble on the data bus that is tWTR + tCL
1331            if (switched_cmd_type && dram_pkt->rank == activeRank) {
1332                busBusyUntil += tWTR + tCL;
1333            }
1334
1335            doDRAMAccess(dram_pkt);
1336
1337            // At this point we're done dealing with the request
1338            readQueue.pop_front();
1339
1340            // sanity check
1341            assert(dram_pkt->size <= burstSize);
1342            assert(dram_pkt->readyTime >= curTick());
1343
1344            // Insert into response queue. It will be sent back to the
1345            // requestor at its readyTime
1346            if (respQueue.empty()) {
1347                assert(!respondEvent.scheduled());
1348                schedule(respondEvent, dram_pkt->readyTime);
1349            } else {
1350                assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1351                assert(respondEvent.scheduled());
1352            }
1353
1354            respQueue.push_back(dram_pkt);
1355
1356            // we have so many writes that we have to transition
1357            if (writeQueue.size() > writeHighThreshold) {
1358                switch_to_writes = true;
1359            }
1360        }
1361
1362        // switching to writes, either because the read queue is empty
1363        // and the writes have passed the low threshold (or we are
1364        // draining), or because the writes hit the hight threshold
1365        if (switch_to_writes) {
1366            // transition to writing
1367            busState = READ_TO_WRITE;
1368        }
1369    } else {
1370        // bool to check if write to free rank is found
1371        bool found_write = false;
1372
1373        // If we are changing command type, incorporate the minimum
1374        // bus turnaround delay
1375        found_write = chooseNext(writeQueue,
1376                                 switched_cmd_type ? std::min(tRTW, tCS) : 0);
1377
1378        // if no writes to an available rank are found then return.
1379        // There could be reads to the available ranks. However, to avoid
1380        // adding more complexity to the code, return at this point and wait
1381        // for a refresh event to kick things into action again.
1382        if (!found_write)
1383            return;
1384
1385        DRAMPacket* dram_pkt = writeQueue.front();
1386        assert(dram_pkt->rankRef.isAvailable());
1387        // sanity check
1388        assert(dram_pkt->size <= burstSize);
1389
1390        // add a bubble to the data bus, as defined by the
1391        // tRTW when access is to the same rank as previous burst
1392        // Different rank timing is handled with tCS, which is
1393        // applied to colAllowedAt
1394        if (switched_cmd_type && dram_pkt->rank == activeRank) {
1395            busBusyUntil += tRTW;
1396        }
1397
1398        doDRAMAccess(dram_pkt);
1399
1400        writeQueue.pop_front();
1401        isInWriteQueue.erase(burstAlign(dram_pkt->addr));
1402        delete dram_pkt;
1403
1404        // If we emptied the write queue, or got sufficiently below the
1405        // threshold (using the minWritesPerSwitch as the hysteresis) and
1406        // are not draining, or we have reads waiting and have done enough
1407        // writes, then switch to reads.
1408        if (writeQueue.empty() ||
1409            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1410             drainState() != DrainState::Draining) ||
1411            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1412            // turn the bus back around for reads again
1413            busState = WRITE_TO_READ;
1414
1415            // note that the we switch back to reads also in the idle
1416            // case, which eventually will check for any draining and
1417            // also pause any further scheduling if there is really
1418            // nothing to do
1419        }
1420    }
1421    // It is possible that a refresh to another rank kicks things back into
1422    // action before reaching this point.
1423    if (!nextReqEvent.scheduled())
1424        schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1425
1426    // If there is space available and we have writes waiting then let
1427    // them retry. This is done here to ensure that the retry does not
1428    // cause a nextReqEvent to be scheduled before we do so as part of
1429    // the next request processing
1430    if (retryWrReq && writeQueue.size() < writeBufferSize) {
1431        retryWrReq = false;
1432        port.sendRetryReq();
1433    }
1434}
1435
1436pair<uint64_t, bool>
1437DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1438                      Tick min_col_at) const
1439{
1440    uint64_t bank_mask = 0;
1441    Tick min_act_at = MaxTick;
1442
1443    // latest Tick for which ACT can occur without incurring additoinal
1444    // delay on the data bus
1445    const Tick hidden_act_max = std::max(min_col_at - tRCD, curTick());
1446
1447    // Flag condition when burst can issue back-to-back with previous burst
1448    bool found_seamless_bank = false;
1449
1450    // Flag condition when bank can be opened without incurring additional
1451    // delay on the data bus
1452    bool hidden_bank_prep = false;
1453
1454    // determine if we have queued transactions targetting the
1455    // bank in question
1456    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1457    for (const auto& p : queue) {
1458        if (p->rankRef.isAvailable())
1459            got_waiting[p->bankId] = true;
1460    }
1461
1462    // Find command with optimal bank timing
1463    // Will prioritize commands that can issue seamlessly.
1464    for (int i = 0; i < ranksPerChannel; i++) {
1465        for (int j = 0; j < banksPerRank; j++) {
1466            uint16_t bank_id = i * banksPerRank + j;
1467
1468            // if we have waiting requests for the bank, and it is
1469            // amongst the first available, update the mask
1470            if (got_waiting[bank_id]) {
1471                // make sure this rank is not currently refreshing.
1472                assert(ranks[i]->isAvailable());
1473                // simplistic approximation of when the bank can issue
1474                // an activate, ignoring any rank-to-rank switching
1475                // cost in this calculation
1476                Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1477                    std::max(ranks[i]->banks[j].actAllowedAt, curTick()) :
1478                    std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1479
1480                // When is the earliest the R/W burst can issue?
1481                Tick col_at = std::max(ranks[i]->banks[j].colAllowedAt,
1482                                       act_at + tRCD);
1483
1484                // bank can issue burst back-to-back (seamlessly) with
1485                // previous burst
1486                bool new_seamless_bank = col_at <= min_col_at;
1487
1488                // if we found a new seamless bank or we have no
1489                // seamless banks, and got a bank with an earlier
1490                // activate time, it should be added to the bit mask
1491                if (new_seamless_bank ||
1492                    (!found_seamless_bank && act_at <= min_act_at)) {
1493                    // if we did not have a seamless bank before, and
1494                    // we do now, reset the bank mask, also reset it
1495                    // if we have not yet found a seamless bank and
1496                    // the activate time is smaller than what we have
1497                    // seen so far
1498                    if (!found_seamless_bank &&
1499                        (new_seamless_bank || act_at < min_act_at)) {
1500                        bank_mask = 0;
1501                    }
1502
1503                    found_seamless_bank |= new_seamless_bank;
1504
1505                    // ACT can occur 'behind the scenes'
1506                    hidden_bank_prep = act_at <= hidden_act_max;
1507
1508                    // set the bit corresponding to the available bank
1509                    replaceBits(bank_mask, bank_id, bank_id, 1);
1510                    min_act_at = act_at;
1511                }
1512            }
1513        }
1514    }
1515
1516    return make_pair(bank_mask, hidden_bank_prep);
1517}
1518
1519DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p)
1520    : EventManager(&_memory), memory(_memory),
1521      pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0),
1522      refreshState(REF_IDLE), refreshDueAt(0),
1523      power(_p, false), numBanksActive(0),
1524      activateEvent(*this), prechargeEvent(*this),
1525      refreshEvent(*this), powerEvent(*this)
1526{ }
1527
1528void
1529DRAMCtrl::Rank::startup(Tick ref_tick)
1530{
1531    assert(ref_tick > curTick());
1532
1533    pwrStateTick = curTick();
1534
1535    // kick off the refresh, and give ourselves enough time to
1536    // precharge
1537    schedule(refreshEvent, ref_tick);
1538}
1539
1540void
1541DRAMCtrl::Rank::suspend()
1542{
1543    deschedule(refreshEvent);
1544}
1545
1546void
1547DRAMCtrl::Rank::checkDrainDone()
1548{
1549    // if this rank was waiting to drain it is now able to proceed to
1550    // precharge
1551    if (refreshState == REF_DRAIN) {
1552        DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1553
1554        refreshState = REF_PRE;
1555
1556        // hand control back to the refresh event loop
1557        schedule(refreshEvent, curTick());
1558    }
1559}
1560
1561void
1562DRAMCtrl::Rank::processActivateEvent()
1563{
1564    // we should transition to the active state as soon as any bank is active
1565    if (pwrState != PWR_ACT)
1566        // note that at this point numBanksActive could be back at
1567        // zero again due to a precharge scheduled in the future
1568        schedulePowerEvent(PWR_ACT, curTick());
1569}
1570
1571void
1572DRAMCtrl::Rank::processPrechargeEvent()
1573{
1574    // if we reached zero, then special conditions apply as we track
1575    // if all banks are precharged for the power models
1576    if (numBanksActive == 0) {
1577        // we should transition to the idle state when the last bank
1578        // is precharged
1579        schedulePowerEvent(PWR_IDLE, curTick());
1580    }
1581}
1582
1583void
1584DRAMCtrl::Rank::processRefreshEvent()
1585{
1586    // when first preparing the refresh, remember when it was due
1587    if (refreshState == REF_IDLE) {
1588        // remember when the refresh is due
1589        refreshDueAt = curTick();
1590
1591        // proceed to drain
1592        refreshState = REF_DRAIN;
1593
1594        DPRINTF(DRAM, "Refresh due\n");
1595    }
1596
1597    // let any scheduled read or write to the same rank go ahead,
1598    // after which it will
1599    // hand control back to this event loop
1600    if (refreshState == REF_DRAIN) {
1601        // if a request is at the moment being handled and this request is
1602        // accessing the current rank then wait for it to finish
1603        if ((rank == memory.activeRank)
1604            && (memory.nextReqEvent.scheduled())) {
1605            // hand control over to the request loop until it is
1606            // evaluated next
1607            DPRINTF(DRAM, "Refresh awaiting draining\n");
1608
1609            return;
1610        } else {
1611            refreshState = REF_PRE;
1612        }
1613    }
1614
1615    // at this point, ensure that all banks are precharged
1616    if (refreshState == REF_PRE) {
1617        // precharge any active bank if we are not already in the idle
1618        // state
1619        if (pwrState != PWR_IDLE) {
1620            // at the moment, we use a precharge all even if there is
1621            // only a single bank open
1622            DPRINTF(DRAM, "Precharging all\n");
1623
1624            // first determine when we can precharge
1625            Tick pre_at = curTick();
1626
1627            for (auto &b : banks) {
1628                // respect both causality and any existing bank
1629                // constraints, some banks could already have a
1630                // (auto) precharge scheduled
1631                pre_at = std::max(b.preAllowedAt, pre_at);
1632            }
1633
1634            // make sure all banks per rank are precharged, and for those that
1635            // already are, update their availability
1636            Tick act_allowed_at = pre_at + memory.tRP;
1637
1638            for (auto &b : banks) {
1639                if (b.openRow != Bank::NO_ROW) {
1640                    memory.prechargeBank(*this, b, pre_at, false);
1641                } else {
1642                    b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1643                    b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1644                }
1645            }
1646
1647            // precharge all banks in rank
1648            power.powerlib.doCommand(MemCommand::PREA, 0,
1649                                     divCeil(pre_at, memory.tCK) -
1650                                     memory.timeStampOffset);
1651
1652            DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1653                    divCeil(pre_at, memory.tCK) -
1654                            memory.timeStampOffset, rank);
1655        } else {
1656            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1657
1658            // go ahead and kick the power state machine into gear if
1659            // we are already idle
1660            schedulePowerEvent(PWR_REF, curTick());
1661        }
1662
1663        refreshState = REF_RUN;
1664        assert(numBanksActive == 0);
1665
1666        // wait for all banks to be precharged, at which point the
1667        // power state machine will transition to the idle state, and
1668        // automatically move to a refresh, at that point it will also
1669        // call this method to get the refresh event loop going again
1670        return;
1671    }
1672
1673    // last but not least we perform the actual refresh
1674    if (refreshState == REF_RUN) {
1675        // should never get here with any banks active
1676        assert(numBanksActive == 0);
1677        assert(pwrState == PWR_REF);
1678
1679        Tick ref_done_at = curTick() + memory.tRFC;
1680
1681        for (auto &b : banks) {
1682            b.actAllowedAt = ref_done_at;
1683        }
1684
1685        // at the moment this affects all ranks
1686        power.powerlib.doCommand(MemCommand::REF, 0,
1687                                 divCeil(curTick(), memory.tCK) -
1688                                 memory.timeStampOffset);
1689
1690        // at the moment sort the list of commands and update the counters
1691        // for DRAMPower libray when doing a refresh
1692        sort(power.powerlib.cmdList.begin(),
1693             power.powerlib.cmdList.end(), DRAMCtrl::sortTime);
1694
1695        // update the counters for DRAMPower, passing false to
1696        // indicate that this is not the last command in the
1697        // list. DRAMPower requires this information for the
1698        // correct calculation of the background energy at the end
1699        // of the simulation. Ideally we would want to call this
1700        // function with true once at the end of the
1701        // simulation. However, the discarded energy is extremly
1702        // small and does not effect the final results.
1703        power.powerlib.updateCounters(false);
1704
1705        // call the energy function
1706        power.powerlib.calcEnergy();
1707
1708        // Update the stats
1709        updatePowerStats();
1710
1711        DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1712                memory.timeStampOffset, rank);
1713
1714        // make sure we did not wait so long that we cannot make up
1715        // for it
1716        if (refreshDueAt + memory.tREFI < ref_done_at) {
1717            fatal("Refresh was delayed so long we cannot catch up\n");
1718        }
1719
1720        // compensate for the delay in actually performing the refresh
1721        // when scheduling the next one
1722        schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP);
1723
1724        assert(!powerEvent.scheduled());
1725
1726        // move to the idle power state once the refresh is done, this
1727        // will also move the refresh state machine to the refresh
1728        // idle state
1729        schedulePowerEvent(PWR_IDLE, ref_done_at);
1730
1731        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1732                ref_done_at, refreshDueAt + memory.tREFI);
1733    }
1734}
1735
1736void
1737DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1738{
1739    // respect causality
1740    assert(tick >= curTick());
1741
1742    if (!powerEvent.scheduled()) {
1743        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1744                tick, pwr_state);
1745
1746        // insert the new transition
1747        pwrStateTrans = pwr_state;
1748
1749        schedule(powerEvent, tick);
1750    } else {
1751        panic("Scheduled power event at %llu to state %d, "
1752              "with scheduled event at %llu to %d\n", tick, pwr_state,
1753              powerEvent.when(), pwrStateTrans);
1754    }
1755}
1756
1757void
1758DRAMCtrl::Rank::processPowerEvent()
1759{
1760    // remember where we were, and for how long
1761    Tick duration = curTick() - pwrStateTick;
1762    PowerState prev_state = pwrState;
1763
1764    // update the accounting
1765    pwrStateTime[prev_state] += duration;
1766
1767    pwrState = pwrStateTrans;
1768    pwrStateTick = curTick();
1769
1770    if (pwrState == PWR_IDLE) {
1771        DPRINTF(DRAMState, "All banks precharged\n");
1772
1773        // if we were refreshing, make sure we start scheduling requests again
1774        if (prev_state == PWR_REF) {
1775            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1776            assert(pwrState == PWR_IDLE);
1777
1778            // kick things into action again
1779            refreshState = REF_IDLE;
1780            // a request event could be already scheduled by the state
1781            // machine of the other rank
1782            if (!memory.nextReqEvent.scheduled())
1783                schedule(memory.nextReqEvent, curTick());
1784        } else {
1785            assert(prev_state == PWR_ACT);
1786
1787            // if we have a pending refresh, and are now moving to
1788            // the idle state, direclty transition to a refresh
1789            if (refreshState == REF_RUN) {
1790                // there should be nothing waiting at this point
1791                assert(!powerEvent.scheduled());
1792
1793                // update the state in zero time and proceed below
1794                pwrState = PWR_REF;
1795            }
1796        }
1797    }
1798
1799    // we transition to the refresh state, let the refresh state
1800    // machine know of this state update and let it deal with the
1801    // scheduling of the next power state transition as well as the
1802    // following refresh
1803    if (pwrState == PWR_REF) {
1804        DPRINTF(DRAMState, "Refreshing\n");
1805        // kick the refresh event loop into action again, and that
1806        // in turn will schedule a transition to the idle power
1807        // state once the refresh is done
1808        assert(refreshState == REF_RUN);
1809        processRefreshEvent();
1810    }
1811}
1812
1813void
1814DRAMCtrl::Rank::updatePowerStats()
1815{
1816    // Get the energy and power from DRAMPower
1817    Data::MemoryPowerModel::Energy energy =
1818        power.powerlib.getEnergy();
1819    Data::MemoryPowerModel::Power rank_power =
1820        power.powerlib.getPower();
1821
1822    actEnergy = energy.act_energy * memory.devicesPerRank;
1823    preEnergy = energy.pre_energy * memory.devicesPerRank;
1824    readEnergy = energy.read_energy * memory.devicesPerRank;
1825    writeEnergy = energy.write_energy * memory.devicesPerRank;
1826    refreshEnergy = energy.ref_energy * memory.devicesPerRank;
1827    actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
1828    preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
1829    totalEnergy = energy.total_energy * memory.devicesPerRank;
1830    averagePower = rank_power.average_power * memory.devicesPerRank;
1831}
1832
1833void
1834DRAMCtrl::Rank::regStats()
1835{
1836    using namespace Stats;
1837
1838    pwrStateTime
1839        .init(5)
1840        .name(name() + ".memoryStateTime")
1841        .desc("Time in different power states");
1842    pwrStateTime.subname(0, "IDLE");
1843    pwrStateTime.subname(1, "REF");
1844    pwrStateTime.subname(2, "PRE_PDN");
1845    pwrStateTime.subname(3, "ACT");
1846    pwrStateTime.subname(4, "ACT_PDN");
1847
1848    actEnergy
1849        .name(name() + ".actEnergy")
1850        .desc("Energy for activate commands per rank (pJ)");
1851
1852    preEnergy
1853        .name(name() + ".preEnergy")
1854        .desc("Energy for precharge commands per rank (pJ)");
1855
1856    readEnergy
1857        .name(name() + ".readEnergy")
1858        .desc("Energy for read commands per rank (pJ)");
1859
1860    writeEnergy
1861        .name(name() + ".writeEnergy")
1862        .desc("Energy for write commands per rank (pJ)");
1863
1864    refreshEnergy
1865        .name(name() + ".refreshEnergy")
1866        .desc("Energy for refresh commands per rank (pJ)");
1867
1868    actBackEnergy
1869        .name(name() + ".actBackEnergy")
1870        .desc("Energy for active background per rank (pJ)");
1871
1872    preBackEnergy
1873        .name(name() + ".preBackEnergy")
1874        .desc("Energy for precharge background per rank (pJ)");
1875
1876    totalEnergy
1877        .name(name() + ".totalEnergy")
1878        .desc("Total energy per rank (pJ)");
1879
1880    averagePower
1881        .name(name() + ".averagePower")
1882        .desc("Core power per rank (mW)");
1883}
1884void
1885DRAMCtrl::regStats()
1886{
1887    using namespace Stats;
1888
1889    AbstractMemory::regStats();
1890
1891    for (auto r : ranks) {
1892        r->regStats();
1893    }
1894
1895    readReqs
1896        .name(name() + ".readReqs")
1897        .desc("Number of read requests accepted");
1898
1899    writeReqs
1900        .name(name() + ".writeReqs")
1901        .desc("Number of write requests accepted");
1902
1903    readBursts
1904        .name(name() + ".readBursts")
1905        .desc("Number of DRAM read bursts, "
1906              "including those serviced by the write queue");
1907
1908    writeBursts
1909        .name(name() + ".writeBursts")
1910        .desc("Number of DRAM write bursts, "
1911              "including those merged in the write queue");
1912
1913    servicedByWrQ
1914        .name(name() + ".servicedByWrQ")
1915        .desc("Number of DRAM read bursts serviced by the write queue");
1916
1917    mergedWrBursts
1918        .name(name() + ".mergedWrBursts")
1919        .desc("Number of DRAM write bursts merged with an existing one");
1920
1921    neitherReadNorWrite
1922        .name(name() + ".neitherReadNorWriteReqs")
1923        .desc("Number of requests that are neither read nor write");
1924
1925    perBankRdBursts
1926        .init(banksPerRank * ranksPerChannel)
1927        .name(name() + ".perBankRdBursts")
1928        .desc("Per bank write bursts");
1929
1930    perBankWrBursts
1931        .init(banksPerRank * ranksPerChannel)
1932        .name(name() + ".perBankWrBursts")
1933        .desc("Per bank write bursts");
1934
1935    avgRdQLen
1936        .name(name() + ".avgRdQLen")
1937        .desc("Average read queue length when enqueuing")
1938        .precision(2);
1939
1940    avgWrQLen
1941        .name(name() + ".avgWrQLen")
1942        .desc("Average write queue length when enqueuing")
1943        .precision(2);
1944
1945    totQLat
1946        .name(name() + ".totQLat")
1947        .desc("Total ticks spent queuing");
1948
1949    totBusLat
1950        .name(name() + ".totBusLat")
1951        .desc("Total ticks spent in databus transfers");
1952
1953    totMemAccLat
1954        .name(name() + ".totMemAccLat")
1955        .desc("Total ticks spent from burst creation until serviced "
1956              "by the DRAM");
1957
1958    avgQLat
1959        .name(name() + ".avgQLat")
1960        .desc("Average queueing delay per DRAM burst")
1961        .precision(2);
1962
1963    avgQLat = totQLat / (readBursts - servicedByWrQ);
1964
1965    avgBusLat
1966        .name(name() + ".avgBusLat")
1967        .desc("Average bus latency per DRAM burst")
1968        .precision(2);
1969
1970    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1971
1972    avgMemAccLat
1973        .name(name() + ".avgMemAccLat")
1974        .desc("Average memory access latency per DRAM burst")
1975        .precision(2);
1976
1977    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1978
1979    numRdRetry
1980        .name(name() + ".numRdRetry")
1981        .desc("Number of times read queue was full causing retry");
1982
1983    numWrRetry
1984        .name(name() + ".numWrRetry")
1985        .desc("Number of times write queue was full causing retry");
1986
1987    readRowHits
1988        .name(name() + ".readRowHits")
1989        .desc("Number of row buffer hits during reads");
1990
1991    writeRowHits
1992        .name(name() + ".writeRowHits")
1993        .desc("Number of row buffer hits during writes");
1994
1995    readRowHitRate
1996        .name(name() + ".readRowHitRate")
1997        .desc("Row buffer hit rate for reads")
1998        .precision(2);
1999
2000    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2001
2002    writeRowHitRate
2003        .name(name() + ".writeRowHitRate")
2004        .desc("Row buffer hit rate for writes")
2005        .precision(2);
2006
2007    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2008
2009    readPktSize
2010        .init(ceilLog2(burstSize) + 1)
2011        .name(name() + ".readPktSize")
2012        .desc("Read request sizes (log2)");
2013
2014     writePktSize
2015        .init(ceilLog2(burstSize) + 1)
2016        .name(name() + ".writePktSize")
2017        .desc("Write request sizes (log2)");
2018
2019     rdQLenPdf
2020        .init(readBufferSize)
2021        .name(name() + ".rdQLenPdf")
2022        .desc("What read queue length does an incoming req see");
2023
2024     wrQLenPdf
2025        .init(writeBufferSize)
2026        .name(name() + ".wrQLenPdf")
2027        .desc("What write queue length does an incoming req see");
2028
2029     bytesPerActivate
2030         .init(maxAccessesPerRow)
2031         .name(name() + ".bytesPerActivate")
2032         .desc("Bytes accessed per row activation")
2033         .flags(nozero);
2034
2035     rdPerTurnAround
2036         .init(readBufferSize)
2037         .name(name() + ".rdPerTurnAround")
2038         .desc("Reads before turning the bus around for writes")
2039         .flags(nozero);
2040
2041     wrPerTurnAround
2042         .init(writeBufferSize)
2043         .name(name() + ".wrPerTurnAround")
2044         .desc("Writes before turning the bus around for reads")
2045         .flags(nozero);
2046
2047    bytesReadDRAM
2048        .name(name() + ".bytesReadDRAM")
2049        .desc("Total number of bytes read from DRAM");
2050
2051    bytesReadWrQ
2052        .name(name() + ".bytesReadWrQ")
2053        .desc("Total number of bytes read from write queue");
2054
2055    bytesWritten
2056        .name(name() + ".bytesWritten")
2057        .desc("Total number of bytes written to DRAM");
2058
2059    bytesReadSys
2060        .name(name() + ".bytesReadSys")
2061        .desc("Total read bytes from the system interface side");
2062
2063    bytesWrittenSys
2064        .name(name() + ".bytesWrittenSys")
2065        .desc("Total written bytes from the system interface side");
2066
2067    avgRdBW
2068        .name(name() + ".avgRdBW")
2069        .desc("Average DRAM read bandwidth in MiByte/s")
2070        .precision(2);
2071
2072    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2073
2074    avgWrBW
2075        .name(name() + ".avgWrBW")
2076        .desc("Average achieved write bandwidth in MiByte/s")
2077        .precision(2);
2078
2079    avgWrBW = (bytesWritten / 1000000) / simSeconds;
2080
2081    avgRdBWSys
2082        .name(name() + ".avgRdBWSys")
2083        .desc("Average system read bandwidth in MiByte/s")
2084        .precision(2);
2085
2086    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2087
2088    avgWrBWSys
2089        .name(name() + ".avgWrBWSys")
2090        .desc("Average system write bandwidth in MiByte/s")
2091        .precision(2);
2092
2093    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2094
2095    peakBW
2096        .name(name() + ".peakBW")
2097        .desc("Theoretical peak bandwidth in MiByte/s")
2098        .precision(2);
2099
2100    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2101
2102    busUtil
2103        .name(name() + ".busUtil")
2104        .desc("Data bus utilization in percentage")
2105        .precision(2);
2106    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2107
2108    totGap
2109        .name(name() + ".totGap")
2110        .desc("Total gap between requests");
2111
2112    avgGap
2113        .name(name() + ".avgGap")
2114        .desc("Average gap between requests")
2115        .precision(2);
2116
2117    avgGap = totGap / (readReqs + writeReqs);
2118
2119    // Stats for DRAM Power calculation based on Micron datasheet
2120    busUtilRead
2121        .name(name() + ".busUtilRead")
2122        .desc("Data bus utilization in percentage for reads")
2123        .precision(2);
2124
2125    busUtilRead = avgRdBW / peakBW * 100;
2126
2127    busUtilWrite
2128        .name(name() + ".busUtilWrite")
2129        .desc("Data bus utilization in percentage for writes")
2130        .precision(2);
2131
2132    busUtilWrite = avgWrBW / peakBW * 100;
2133
2134    pageHitRate
2135        .name(name() + ".pageHitRate")
2136        .desc("Row buffer hit rate, read and write combined")
2137        .precision(2);
2138
2139    pageHitRate = (writeRowHits + readRowHits) /
2140        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2141}
2142
2143void
2144DRAMCtrl::recvFunctional(PacketPtr pkt)
2145{
2146    // rely on the abstract memory
2147    functionalAccess(pkt);
2148}
2149
2150BaseSlavePort&
2151DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2152{
2153    if (if_name != "port") {
2154        return MemObject::getSlavePort(if_name, idx);
2155    } else {
2156        return port;
2157    }
2158}
2159
2160DrainState
2161DRAMCtrl::drain()
2162{
2163    // if there is anything in any of our internal queues, keep track
2164    // of that as well
2165    if (!(writeQueue.empty() && readQueue.empty() && respQueue.empty())) {
2166        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2167                " resp: %d\n", writeQueue.size(), readQueue.size(),
2168                respQueue.size());
2169
2170        // the only part that is not drained automatically over time
2171        // is the write queue, thus kick things into action if needed
2172        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2173            schedule(nextReqEvent, curTick());
2174        }
2175        return DrainState::Draining;
2176    } else {
2177        return DrainState::Drained;
2178    }
2179}
2180
2181void
2182DRAMCtrl::drainResume()
2183{
2184    if (!isTimingMode && system()->isTimingMode()) {
2185        // if we switched to timing mode, kick things into action,
2186        // and behave as if we restored from a checkpoint
2187        startup();
2188    } else if (isTimingMode && !system()->isTimingMode()) {
2189        // if we switch from timing mode, stop the refresh events to
2190        // not cause issues with KVM
2191        for (auto r : ranks) {
2192            r->suspend();
2193        }
2194    }
2195
2196    // update the mode
2197    isTimingMode = system()->isTimingMode();
2198}
2199
2200DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2201    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2202      memory(_memory)
2203{ }
2204
2205AddrRangeList
2206DRAMCtrl::MemoryPort::getAddrRanges() const
2207{
2208    AddrRangeList ranges;
2209    ranges.push_back(memory.getAddrRange());
2210    return ranges;
2211}
2212
2213void
2214DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2215{
2216    pkt->pushLabel(memory.name());
2217
2218    if (!queue.checkFunctional(pkt)) {
2219        // Default implementation of SimpleTimingPort::recvFunctional()
2220        // calls recvAtomic() and throws away the latency; we can save a
2221        // little here by just not calculating the latency.
2222        memory.recvFunctional(pkt);
2223    }
2224
2225    pkt->popLabel();
2226}
2227
2228Tick
2229DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2230{
2231    return memory.recvAtomic(pkt);
2232}
2233
2234bool
2235DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2236{
2237    // pass it to the memory controller
2238    return memory.recvTimingReq(pkt);
2239}
2240
2241DRAMCtrl*
2242DRAMCtrlParams::create()
2243{
2244    return new DRAMCtrl(this);
2245}
2246