dram_ctrl.cc revision 10883:9294c4a60251
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 *          Omar Naji
44 */
45
46#include "base/bitfield.hh"
47#include "base/trace.hh"
48#include "debug/DRAM.hh"
49#include "debug/DRAMPower.hh"
50#include "debug/DRAMState.hh"
51#include "debug/Drain.hh"
52#include "mem/dram_ctrl.hh"
53#include "sim/system.hh"
54
55using namespace std;
56using namespace Data;
57
58DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
59    AbstractMemory(p),
60    port(name() + ".port", *this), isTimingMode(false),
61    retryRdReq(false), retryWrReq(false),
62    busState(READ),
63    nextReqEvent(this), respondEvent(this),
64    drainManager(NULL),
65    deviceSize(p->device_size),
66    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
67    deviceRowBufferSize(p->device_rowbuffer_size),
68    devicesPerRank(p->devices_per_rank),
69    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
70    rowBufferSize(devicesPerRank * deviceRowBufferSize),
71    columnsPerRowBuffer(rowBufferSize / burstSize),
72    columnsPerStripe(range.interleaved() ? range.granularity() / burstSize : 1),
73    ranksPerChannel(p->ranks_per_channel),
74    bankGroupsPerRank(p->bank_groups_per_rank),
75    bankGroupArch(p->bank_groups_per_rank > 0),
76    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
77    readBufferSize(p->read_buffer_size),
78    writeBufferSize(p->write_buffer_size),
79    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
80    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
81    minWritesPerSwitch(p->min_writes_per_switch),
82    writesThisTime(0), readsThisTime(0),
83    tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
84    tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
85    tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
86    tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
87    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
88    pageMgmt(p->page_policy),
89    maxAccessesPerRow(p->max_accesses_per_row),
90    frontendLatency(p->static_frontend_latency),
91    backendLatency(p->static_backend_latency),
92    busBusyUntil(0), prevArrival(0),
93    nextReqTime(0), activeRank(0), timeStampOffset(0)
94{
95    // sanity check the ranks since we rely on bit slicing for the
96    // address decoding
97    fatal_if(!isPowerOf2(ranksPerChannel), "DRAM rank count of %d is not "
98             "allowed, must be a power of two\n", ranksPerChannel);
99
100    for (int i = 0; i < ranksPerChannel; i++) {
101        Rank* rank = new Rank(*this, p);
102        ranks.push_back(rank);
103
104        rank->actTicks.resize(activationLimit, 0);
105        rank->banks.resize(banksPerRank);
106        rank->rank = i;
107
108        for (int b = 0; b < banksPerRank; b++) {
109            rank->banks[b].bank = b;
110            // GDDR addressing of banks to BG is linear.
111            // Here we assume that all DRAM generations address bank groups as
112            // follows:
113            if (bankGroupArch) {
114                // Simply assign lower bits to bank group in order to
115                // rotate across bank groups as banks are incremented
116                // e.g. with 4 banks per bank group and 16 banks total:
117                //    banks 0,4,8,12  are in bank group 0
118                //    banks 1,5,9,13  are in bank group 1
119                //    banks 2,6,10,14 are in bank group 2
120                //    banks 3,7,11,15 are in bank group 3
121                rank->banks[b].bankgr = b % bankGroupsPerRank;
122            } else {
123                // No bank groups; simply assign to bank number
124                rank->banks[b].bankgr = b;
125            }
126        }
127    }
128
129    // perform a basic check of the write thresholds
130    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
131        fatal("Write buffer low threshold %d must be smaller than the "
132              "high threshold %d\n", p->write_low_thresh_perc,
133              p->write_high_thresh_perc);
134
135    // determine the rows per bank by looking at the total capacity
136    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
137
138    // determine the dram actual capacity from the DRAM config in Mbytes
139    uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
140        ranksPerChannel;
141
142    // if actual DRAM size does not match memory capacity in system warn!
143    if (deviceCapacity != capacity / (1024 * 1024))
144        warn("DRAM device capacity (%d Mbytes) does not match the "
145             "address range assigned (%d Mbytes)\n", deviceCapacity,
146             capacity / (1024 * 1024));
147
148    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
149            AbstractMemory::size());
150
151    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
152            rowBufferSize, columnsPerRowBuffer);
153
154    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
155
156    // some basic sanity checks
157    if (tREFI <= tRP || tREFI <= tRFC) {
158        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
159              tREFI, tRP, tRFC);
160    }
161
162    // basic bank group architecture checks ->
163    if (bankGroupArch) {
164        // must have at least one bank per bank group
165        if (bankGroupsPerRank > banksPerRank) {
166            fatal("banks per rank (%d) must be equal to or larger than "
167                  "banks groups per rank (%d)\n",
168                  banksPerRank, bankGroupsPerRank);
169        }
170        // must have same number of banks in each bank group
171        if ((banksPerRank % bankGroupsPerRank) != 0) {
172            fatal("Banks per rank (%d) must be evenly divisible by bank groups "
173                  "per rank (%d) for equal banks per bank group\n",
174                  banksPerRank, bankGroupsPerRank);
175        }
176        // tCCD_L should be greater than minimal, back-to-back burst delay
177        if (tCCD_L <= tBURST) {
178            fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
179                  "bank groups per rank (%d) is greater than 1\n",
180                  tCCD_L, tBURST, bankGroupsPerRank);
181        }
182        // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
183        // some datasheets might specify it equal to tRRD
184        if (tRRD_L < tRRD) {
185            fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
186                  "bank groups per rank (%d) is greater than 1\n",
187                  tRRD_L, tRRD, bankGroupsPerRank);
188        }
189    }
190
191}
192
193void
194DRAMCtrl::init()
195{
196    AbstractMemory::init();
197
198   if (!port.isConnected()) {
199        fatal("DRAMCtrl %s is unconnected!\n", name());
200    } else {
201        port.sendRangeChange();
202    }
203
204    // a bit of sanity checks on the interleaving, save it for here to
205    // ensure that the system pointer is initialised
206    if (range.interleaved()) {
207        if (channels != range.stripes())
208            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
209                  name(), range.stripes(), channels);
210
211        if (addrMapping == Enums::RoRaBaChCo) {
212            if (rowBufferSize != range.granularity()) {
213                fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
214                      "address map\n", name());
215            }
216        } else if (addrMapping == Enums::RoRaBaCoCh ||
217                   addrMapping == Enums::RoCoRaBaCh) {
218            // for the interleavings with channel bits in the bottom,
219            // if the system uses a channel striping granularity that
220            // is larger than the DRAM burst size, then map the
221            // sequential accesses within a stripe to a number of
222            // columns in the DRAM, effectively placing some of the
223            // lower-order column bits as the least-significant bits
224            // of the address (above the ones denoting the burst size)
225            assert(columnsPerStripe >= 1);
226
227            // channel striping has to be done at a granularity that
228            // is equal or larger to a cache line
229            if (system()->cacheLineSize() > range.granularity()) {
230                fatal("Channel interleaving of %s must be at least as large "
231                      "as the cache line size\n", name());
232            }
233
234            // ...and equal or smaller than the row-buffer size
235            if (rowBufferSize < range.granularity()) {
236                fatal("Channel interleaving of %s must be at most as large "
237                      "as the row-buffer size\n", name());
238            }
239            // this is essentially the check above, so just to be sure
240            assert(columnsPerStripe <= columnsPerRowBuffer);
241        }
242    }
243}
244
245void
246DRAMCtrl::startup()
247{
248    // remember the memory system mode of operation
249    isTimingMode = system()->isTimingMode();
250
251    if (isTimingMode) {
252        // timestamp offset should be in clock cycles for DRAMPower
253        timeStampOffset = divCeil(curTick(), tCK);
254
255        // update the start tick for the precharge accounting to the
256        // current tick
257        for (auto r : ranks) {
258            r->startup(curTick() + tREFI - tRP);
259        }
260
261        // shift the bus busy time sufficiently far ahead that we never
262        // have to worry about negative values when computing the time for
263        // the next request, this will add an insignificant bubble at the
264        // start of simulation
265        busBusyUntil = curTick() + tRP + tRCD + tCL;
266    }
267}
268
269Tick
270DRAMCtrl::recvAtomic(PacketPtr pkt)
271{
272    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
273
274    // do the actual memory access and turn the packet into a response
275    access(pkt);
276
277    Tick latency = 0;
278    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
279        // this value is not supposed to be accurate, just enough to
280        // keep things going, mimic a closed page
281        latency = tRP + tRCD + tCL;
282    }
283    return latency;
284}
285
286bool
287DRAMCtrl::readQueueFull(unsigned int neededEntries) const
288{
289    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
290            readBufferSize, readQueue.size() + respQueue.size(),
291            neededEntries);
292
293    return
294        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
295}
296
297bool
298DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
299{
300    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
301            writeBufferSize, writeQueue.size(), neededEntries);
302    return (writeQueue.size() + neededEntries) > writeBufferSize;
303}
304
305DRAMCtrl::DRAMPacket*
306DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
307                       bool isRead)
308{
309    // decode the address based on the address mapping scheme, with
310    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
311    // channel, respectively
312    uint8_t rank;
313    uint8_t bank;
314    // use a 64-bit unsigned during the computations as the row is
315    // always the top bits, and check before creating the DRAMPacket
316    uint64_t row;
317
318    // truncate the address to a DRAM burst, which makes it unique to
319    // a specific column, row, bank, rank and channel
320    Addr addr = dramPktAddr / burstSize;
321
322    // we have removed the lowest order address bits that denote the
323    // position within the column
324    if (addrMapping == Enums::RoRaBaChCo) {
325        // the lowest order bits denote the column to ensure that
326        // sequential cache lines occupy the same row
327        addr = addr / columnsPerRowBuffer;
328
329        // take out the channel part of the address
330        addr = addr / channels;
331
332        // after the channel bits, get the bank bits to interleave
333        // over the banks
334        bank = addr % banksPerRank;
335        addr = addr / banksPerRank;
336
337        // after the bank, we get the rank bits which thus interleaves
338        // over the ranks
339        rank = addr % ranksPerChannel;
340        addr = addr / ranksPerChannel;
341
342        // lastly, get the row bits
343        row = addr % rowsPerBank;
344        addr = addr / rowsPerBank;
345    } else if (addrMapping == Enums::RoRaBaCoCh) {
346        // take out the lower-order column bits
347        addr = addr / columnsPerStripe;
348
349        // take out the channel part of the address
350        addr = addr / channels;
351
352        // next, the higher-order column bites
353        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
354
355        // after the column bits, we get the bank bits to interleave
356        // over the banks
357        bank = addr % banksPerRank;
358        addr = addr / banksPerRank;
359
360        // after the bank, we get the rank bits which thus interleaves
361        // over the ranks
362        rank = addr % ranksPerChannel;
363        addr = addr / ranksPerChannel;
364
365        // lastly, get the row bits
366        row = addr % rowsPerBank;
367        addr = addr / rowsPerBank;
368    } else if (addrMapping == Enums::RoCoRaBaCh) {
369        // optimise for closed page mode and utilise maximum
370        // parallelism of the DRAM (at the cost of power)
371
372        // take out the lower-order column bits
373        addr = addr / columnsPerStripe;
374
375        // take out the channel part of the address, not that this has
376        // to match with how accesses are interleaved between the
377        // controllers in the address mapping
378        addr = addr / channels;
379
380        // start with the bank bits, as this provides the maximum
381        // opportunity for parallelism between requests
382        bank = addr % banksPerRank;
383        addr = addr / banksPerRank;
384
385        // next get the rank bits
386        rank = addr % ranksPerChannel;
387        addr = addr / ranksPerChannel;
388
389        // next, the higher-order column bites
390        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
391
392        // lastly, get the row bits
393        row = addr % rowsPerBank;
394        addr = addr / rowsPerBank;
395    } else
396        panic("Unknown address mapping policy chosen!");
397
398    assert(rank < ranksPerChannel);
399    assert(bank < banksPerRank);
400    assert(row < rowsPerBank);
401    assert(row < Bank::NO_ROW);
402
403    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
404            dramPktAddr, rank, bank, row);
405
406    // create the corresponding DRAM packet with the entry time and
407    // ready time set to the current tick, the latter will be updated
408    // later
409    uint16_t bank_id = banksPerRank * rank + bank;
410    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
411                          size, ranks[rank]->banks[bank], *ranks[rank]);
412}
413
414void
415DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
416{
417    // only add to the read queue here. whenever the request is
418    // eventually done, set the readyTime, and call schedule()
419    assert(!pkt->isWrite());
420
421    assert(pktCount != 0);
422
423    // if the request size is larger than burst size, the pkt is split into
424    // multiple DRAM packets
425    // Note if the pkt starting address is not aligened to burst size, the
426    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
427    // are aligned to burst size boundaries. This is to ensure we accurately
428    // check read packets against packets in write queue.
429    Addr addr = pkt->getAddr();
430    unsigned pktsServicedByWrQ = 0;
431    BurstHelper* burst_helper = NULL;
432    for (int cnt = 0; cnt < pktCount; ++cnt) {
433        unsigned size = std::min((addr | (burstSize - 1)) + 1,
434                        pkt->getAddr() + pkt->getSize()) - addr;
435        readPktSize[ceilLog2(size)]++;
436        readBursts++;
437
438        // First check write buffer to see if the data is already at
439        // the controller
440        bool foundInWrQ = false;
441        for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
442            // check if the read is subsumed in the write entry we are
443            // looking at
444            if ((*i)->addr <= addr &&
445                (addr + size) <= ((*i)->addr + (*i)->size)) {
446                foundInWrQ = true;
447                servicedByWrQ++;
448                pktsServicedByWrQ++;
449                DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
450                        "write queue\n", addr, size);
451                bytesReadWrQ += burstSize;
452                break;
453            }
454        }
455
456        // If not found in the write q, make a DRAM packet and
457        // push it onto the read queue
458        if (!foundInWrQ) {
459
460            // Make the burst helper for split packets
461            if (pktCount > 1 && burst_helper == NULL) {
462                DPRINTF(DRAM, "Read to addr %lld translates to %d "
463                        "dram requests\n", pkt->getAddr(), pktCount);
464                burst_helper = new BurstHelper(pktCount);
465            }
466
467            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
468            dram_pkt->burstHelper = burst_helper;
469
470            assert(!readQueueFull(1));
471            rdQLenPdf[readQueue.size() + respQueue.size()]++;
472
473            DPRINTF(DRAM, "Adding to read queue\n");
474
475            readQueue.push_back(dram_pkt);
476
477            // Update stats
478            avgRdQLen = readQueue.size() + respQueue.size();
479        }
480
481        // Starting address of next dram pkt (aligend to burstSize boundary)
482        addr = (addr | (burstSize - 1)) + 1;
483    }
484
485    // If all packets are serviced by write queue, we send the repsonse back
486    if (pktsServicedByWrQ == pktCount) {
487        accessAndRespond(pkt, frontendLatency);
488        return;
489    }
490
491    // Update how many split packets are serviced by write queue
492    if (burst_helper != NULL)
493        burst_helper->burstsServiced = pktsServicedByWrQ;
494
495    // If we are not already scheduled to get a request out of the
496    // queue, do so now
497    if (!nextReqEvent.scheduled()) {
498        DPRINTF(DRAM, "Request scheduled immediately\n");
499        schedule(nextReqEvent, curTick());
500    }
501}
502
503void
504DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
505{
506    // only add to the write queue here. whenever the request is
507    // eventually done, set the readyTime, and call schedule()
508    assert(pkt->isWrite());
509
510    // if the request size is larger than burst size, the pkt is split into
511    // multiple DRAM packets
512    Addr addr = pkt->getAddr();
513    for (int cnt = 0; cnt < pktCount; ++cnt) {
514        unsigned size = std::min((addr | (burstSize - 1)) + 1,
515                        pkt->getAddr() + pkt->getSize()) - addr;
516        writePktSize[ceilLog2(size)]++;
517        writeBursts++;
518
519        // see if we can merge with an existing item in the write
520        // queue and keep track of whether we have merged or not so we
521        // can stop at that point and also avoid enqueueing a new
522        // request
523        bool merged = false;
524        auto w = writeQueue.begin();
525
526        while(!merged && w != writeQueue.end()) {
527            // either of the two could be first, if they are the same
528            // it does not matter which way we go
529            if ((*w)->addr >= addr) {
530                // the existing one starts after the new one, figure
531                // out where the new one ends with respect to the
532                // existing one
533                if ((addr + size) >= ((*w)->addr + (*w)->size)) {
534                    // check if the existing one is completely
535                    // subsumed in the new one
536                    DPRINTF(DRAM, "Merging write covering existing burst\n");
537                    merged = true;
538                    // update both the address and the size
539                    (*w)->addr = addr;
540                    (*w)->size = size;
541                } else if ((addr + size) >= (*w)->addr &&
542                           ((*w)->addr + (*w)->size - addr) <= burstSize) {
543                    // the new one is just before or partially
544                    // overlapping with the existing one, and together
545                    // they fit within a burst
546                    DPRINTF(DRAM, "Merging write before existing burst\n");
547                    merged = true;
548                    // the existing queue item needs to be adjusted with
549                    // respect to both address and size
550                    (*w)->size = (*w)->addr + (*w)->size - addr;
551                    (*w)->addr = addr;
552                }
553            } else {
554                // the new one starts after the current one, figure
555                // out where the existing one ends with respect to the
556                // new one
557                if (((*w)->addr + (*w)->size) >= (addr + size)) {
558                    // check if the new one is completely subsumed in the
559                    // existing one
560                    DPRINTF(DRAM, "Merging write into existing burst\n");
561                    merged = true;
562                    // no adjustments necessary
563                } else if (((*w)->addr + (*w)->size) >= addr &&
564                           (addr + size - (*w)->addr) <= burstSize) {
565                    // the existing one is just before or partially
566                    // overlapping with the new one, and together
567                    // they fit within a burst
568                    DPRINTF(DRAM, "Merging write after existing burst\n");
569                    merged = true;
570                    // the address is right, and only the size has
571                    // to be adjusted
572                    (*w)->size = addr + size - (*w)->addr;
573                }
574            }
575            ++w;
576        }
577
578        // if the item was not merged we need to create a new write
579        // and enqueue it
580        if (!merged) {
581            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
582
583            assert(writeQueue.size() < writeBufferSize);
584            wrQLenPdf[writeQueue.size()]++;
585
586            DPRINTF(DRAM, "Adding to write queue\n");
587
588            writeQueue.push_back(dram_pkt);
589
590            // Update stats
591            avgWrQLen = writeQueue.size();
592        } else {
593            // keep track of the fact that this burst effectively
594            // disappeared as it was merged with an existing one
595            mergedWrBursts++;
596        }
597
598        // Starting address of next dram pkt (aligend to burstSize boundary)
599        addr = (addr | (burstSize - 1)) + 1;
600    }
601
602    // we do not wait for the writes to be send to the actual memory,
603    // but instead take responsibility for the consistency here and
604    // snoop the write queue for any upcoming reads
605    // @todo, if a pkt size is larger than burst size, we might need a
606    // different front end latency
607    accessAndRespond(pkt, frontendLatency);
608
609    // If we are not already scheduled to get a request out of the
610    // queue, do so now
611    if (!nextReqEvent.scheduled()) {
612        DPRINTF(DRAM, "Request scheduled immediately\n");
613        schedule(nextReqEvent, curTick());
614    }
615}
616
617void
618DRAMCtrl::printQs() const {
619    DPRINTF(DRAM, "===READ QUEUE===\n\n");
620    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
621        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
622    }
623    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
624    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
625        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
626    }
627    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
628    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
629        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
630    }
631}
632
633bool
634DRAMCtrl::recvTimingReq(PacketPtr pkt)
635{
636    /// @todo temporary hack to deal with memory corruption issues until
637    /// 4-phase transactions are complete
638    for (int x = 0; x < pendingDelete.size(); x++)
639        delete pendingDelete[x];
640    pendingDelete.clear();
641
642    // This is where we enter from the outside world
643    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
644            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
645
646    // simply drop inhibited packets and clean evictions
647    if (pkt->memInhibitAsserted() ||
648        pkt->cmd == MemCmd::CleanEvict) {
649        DPRINTF(DRAM, "Inhibited packet or clean evict -- Dropping it now\n");
650        pendingDelete.push_back(pkt);
651        return true;
652    }
653
654    // Calc avg gap between requests
655    if (prevArrival != 0) {
656        totGap += curTick() - prevArrival;
657    }
658    prevArrival = curTick();
659
660
661    // Find out how many dram packets a pkt translates to
662    // If the burst size is equal or larger than the pkt size, then a pkt
663    // translates to only one dram packet. Otherwise, a pkt translates to
664    // multiple dram packets
665    unsigned size = pkt->getSize();
666    unsigned offset = pkt->getAddr() & (burstSize - 1);
667    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
668
669    // check local buffers and do not accept if full
670    if (pkt->isRead()) {
671        assert(size != 0);
672        if (readQueueFull(dram_pkt_count)) {
673            DPRINTF(DRAM, "Read queue full, not accepting\n");
674            // remember that we have to retry this port
675            retryRdReq = true;
676            numRdRetry++;
677            return false;
678        } else {
679            addToReadQueue(pkt, dram_pkt_count);
680            readReqs++;
681            bytesReadSys += size;
682        }
683    } else if (pkt->isWrite()) {
684        assert(size != 0);
685        if (writeQueueFull(dram_pkt_count)) {
686            DPRINTF(DRAM, "Write queue full, not accepting\n");
687            // remember that we have to retry this port
688            retryWrReq = true;
689            numWrRetry++;
690            return false;
691        } else {
692            addToWriteQueue(pkt, dram_pkt_count);
693            writeReqs++;
694            bytesWrittenSys += size;
695        }
696    } else {
697        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
698        neitherReadNorWrite++;
699        accessAndRespond(pkt, 1);
700    }
701
702    return true;
703}
704
705void
706DRAMCtrl::processRespondEvent()
707{
708    DPRINTF(DRAM,
709            "processRespondEvent(): Some req has reached its readyTime\n");
710
711    DRAMPacket* dram_pkt = respQueue.front();
712
713    if (dram_pkt->burstHelper) {
714        // it is a split packet
715        dram_pkt->burstHelper->burstsServiced++;
716        if (dram_pkt->burstHelper->burstsServiced ==
717            dram_pkt->burstHelper->burstCount) {
718            // we have now serviced all children packets of a system packet
719            // so we can now respond to the requester
720            // @todo we probably want to have a different front end and back
721            // end latency for split packets
722            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
723            delete dram_pkt->burstHelper;
724            dram_pkt->burstHelper = NULL;
725        }
726    } else {
727        // it is not a split packet
728        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
729    }
730
731    delete respQueue.front();
732    respQueue.pop_front();
733
734    if (!respQueue.empty()) {
735        assert(respQueue.front()->readyTime >= curTick());
736        assert(!respondEvent.scheduled());
737        schedule(respondEvent, respQueue.front()->readyTime);
738    } else {
739        // if there is nothing left in any queue, signal a drain
740        if (writeQueue.empty() && readQueue.empty() &&
741            drainManager) {
742            DPRINTF(Drain, "DRAM controller done draining\n");
743            drainManager->signalDrainDone();
744            drainManager = NULL;
745        }
746    }
747
748    // We have made a location in the queue available at this point,
749    // so if there is a read that was forced to wait, retry now
750    if (retryRdReq) {
751        retryRdReq = false;
752        port.sendRetryReq();
753    }
754}
755
756bool
757DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
758{
759    // This method does the arbitration between requests. The chosen
760    // packet is simply moved to the head of the queue. The other
761    // methods know that this is the place to look. For example, with
762    // FCFS, this method does nothing
763    assert(!queue.empty());
764
765    // bool to indicate if a packet to an available rank is found
766    bool found_packet = false;
767    if (queue.size() == 1) {
768        DRAMPacket* dram_pkt = queue.front();
769        // available rank corresponds to state refresh idle
770        if (ranks[dram_pkt->rank]->isAvailable()) {
771            found_packet = true;
772            DPRINTF(DRAM, "Single request, going to a free rank\n");
773        } else {
774            DPRINTF(DRAM, "Single request, going to a busy rank\n");
775        }
776        return found_packet;
777    }
778
779    if (memSchedPolicy == Enums::fcfs) {
780        // check if there is a packet going to a free rank
781        for(auto i = queue.begin(); i != queue.end() ; ++i) {
782            DRAMPacket* dram_pkt = *i;
783            if (ranks[dram_pkt->rank]->isAvailable()) {
784                queue.erase(i);
785                queue.push_front(dram_pkt);
786                found_packet = true;
787                break;
788            }
789        }
790    } else if (memSchedPolicy == Enums::frfcfs) {
791        found_packet = reorderQueue(queue, switched_cmd_type);
792    } else
793        panic("No scheduling policy chosen\n");
794    return found_packet;
795}
796
797bool
798DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
799{
800    // Only determine this when needed
801    uint64_t earliest_banks = 0;
802
803    // Search for row hits first, if no row hit is found then schedule the
804    // packet to one of the earliest banks available
805    bool found_packet = false;
806    bool found_earliest_pkt = false;
807    bool found_prepped_diff_rank_pkt = false;
808    auto selected_pkt_it = queue.end();
809
810    for (auto i = queue.begin(); i != queue.end() ; ++i) {
811        DRAMPacket* dram_pkt = *i;
812        const Bank& bank = dram_pkt->bankRef;
813        // check if rank is busy. If this is the case jump to the next packet
814        // Check if it is a row hit
815        if (dram_pkt->rankRef.isAvailable()) {
816            if (bank.openRow == dram_pkt->row) {
817                if (dram_pkt->rank == activeRank || switched_cmd_type) {
818                    // FCFS within the hits, giving priority to commands
819                    // that access the same rank as the previous burst
820                    // to minimize bus turnaround delays
821                    // Only give rank prioity when command type is
822                    // not changing
823                    DPRINTF(DRAM, "Row buffer hit\n");
824                    selected_pkt_it = i;
825                    break;
826                } else if (!found_prepped_diff_rank_pkt) {
827                    // found row hit for command on different rank
828                    // than prev burst
829                    selected_pkt_it = i;
830                    found_prepped_diff_rank_pkt = true;
831                }
832            } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) {
833                // packet going to a rank which is currently not waiting for a
834                // refresh, No row hit and
835                // haven't found an entry with a row hit to a new rank
836                if (earliest_banks == 0)
837                    // Determine entries with earliest bank prep delay
838                    // Function will give priority to commands that access the
839                    // same rank as previous burst and can prep
840                    // the bank seamlessly
841                    earliest_banks = minBankPrep(queue, switched_cmd_type);
842
843                // FCFS - Bank is first available bank
844                if (bits(earliest_banks, dram_pkt->bankId,
845                    dram_pkt->bankId)) {
846                    // Remember the packet to be scheduled to one of
847                    // the earliest banks available, FCFS amongst the
848                    // earliest banks
849                    selected_pkt_it = i;
850                    //if the packet found is going to a rank that is currently
851                    //not busy then update the found_packet to true
852                    found_earliest_pkt = true;
853                }
854            }
855        }
856    }
857
858    if (selected_pkt_it != queue.end()) {
859        DRAMPacket* selected_pkt = *selected_pkt_it;
860        queue.erase(selected_pkt_it);
861        queue.push_front(selected_pkt);
862        found_packet = true;
863    }
864    return found_packet;
865}
866
867void
868DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
869{
870    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
871
872    bool needsResponse = pkt->needsResponse();
873    // do the actual memory access which also turns the packet into a
874    // response
875    access(pkt);
876
877    // turn packet around to go back to requester if response expected
878    if (needsResponse) {
879        // access already turned the packet into a response
880        assert(pkt->isResponse());
881        // response_time consumes the static latency and is charged also
882        // with headerDelay that takes into account the delay provided by
883        // the xbar and also the payloadDelay that takes into account the
884        // number of data beats.
885        Tick response_time = curTick() + static_latency + pkt->headerDelay +
886                             pkt->payloadDelay;
887        // Here we reset the timing of the packet before sending it out.
888        pkt->headerDelay = pkt->payloadDelay = 0;
889
890        // queue the packet in the response queue to be sent out after
891        // the static latency has passed
892        port.schedTimingResp(pkt, response_time);
893    } else {
894        // @todo the packet is going to be deleted, and the DRAMPacket
895        // is still having a pointer to it
896        pendingDelete.push_back(pkt);
897    }
898
899    DPRINTF(DRAM, "Done\n");
900
901    return;
902}
903
904void
905DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
906                       Tick act_tick, uint32_t row)
907{
908    assert(rank_ref.actTicks.size() == activationLimit);
909
910    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
911
912    // update the open row
913    assert(bank_ref.openRow == Bank::NO_ROW);
914    bank_ref.openRow = row;
915
916    // start counting anew, this covers both the case when we
917    // auto-precharged, and when this access is forced to
918    // precharge
919    bank_ref.bytesAccessed = 0;
920    bank_ref.rowAccesses = 0;
921
922    ++rank_ref.numBanksActive;
923    assert(rank_ref.numBanksActive <= banksPerRank);
924
925    DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
926            bank_ref.bank, rank_ref.rank, act_tick,
927            ranks[rank_ref.rank]->numBanksActive);
928
929    rank_ref.power.powerlib.doCommand(MemCommand::ACT, bank_ref.bank,
930                                      divCeil(act_tick, tCK) -
931                                      timeStampOffset);
932
933    DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
934            timeStampOffset, bank_ref.bank, rank_ref.rank);
935
936    // The next access has to respect tRAS for this bank
937    bank_ref.preAllowedAt = act_tick + tRAS;
938
939    // Respect the row-to-column command delay
940    bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt);
941
942    // start by enforcing tRRD
943    for(int i = 0; i < banksPerRank; i++) {
944        // next activate to any bank in this rank must not happen
945        // before tRRD
946        if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
947            // bank group architecture requires longer delays between
948            // ACT commands within the same bank group.  Use tRRD_L
949            // in this case
950            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
951                                             rank_ref.banks[i].actAllowedAt);
952        } else {
953            // use shorter tRRD value when either
954            // 1) bank group architecture is not supportted
955            // 2) bank is in a different bank group
956            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
957                                             rank_ref.banks[i].actAllowedAt);
958        }
959    }
960
961    // next, we deal with tXAW, if the activation limit is disabled
962    // then we directly schedule an activate power event
963    if (!rank_ref.actTicks.empty()) {
964        // sanity check
965        if (rank_ref.actTicks.back() &&
966           (act_tick - rank_ref.actTicks.back()) < tXAW) {
967            panic("Got %d activates in window %d (%llu - %llu) which "
968                  "is smaller than %llu\n", activationLimit, act_tick -
969                  rank_ref.actTicks.back(), act_tick,
970                  rank_ref.actTicks.back(), tXAW);
971        }
972
973        // shift the times used for the book keeping, the last element
974        // (highest index) is the oldest one and hence the lowest value
975        rank_ref.actTicks.pop_back();
976
977        // record an new activation (in the future)
978        rank_ref.actTicks.push_front(act_tick);
979
980        // cannot activate more than X times in time window tXAW, push the
981        // next one (the X + 1'st activate) to be tXAW away from the
982        // oldest in our window of X
983        if (rank_ref.actTicks.back() &&
984           (act_tick - rank_ref.actTicks.back()) < tXAW) {
985            DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
986                    "no earlier than %llu\n", activationLimit,
987                    rank_ref.actTicks.back() + tXAW);
988            for(int j = 0; j < banksPerRank; j++)
989                // next activate must not happen before end of window
990                rank_ref.banks[j].actAllowedAt =
991                    std::max(rank_ref.actTicks.back() + tXAW,
992                             rank_ref.banks[j].actAllowedAt);
993        }
994    }
995
996    // at the point when this activate takes place, make sure we
997    // transition to the active power state
998    if (!rank_ref.activateEvent.scheduled())
999        schedule(rank_ref.activateEvent, act_tick);
1000    else if (rank_ref.activateEvent.when() > act_tick)
1001        // move it sooner in time
1002        reschedule(rank_ref.activateEvent, act_tick);
1003}
1004
1005void
1006DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
1007{
1008    // make sure the bank has an open row
1009    assert(bank.openRow != Bank::NO_ROW);
1010
1011    // sample the bytes per activate here since we are closing
1012    // the page
1013    bytesPerActivate.sample(bank.bytesAccessed);
1014
1015    bank.openRow = Bank::NO_ROW;
1016
1017    // no precharge allowed before this one
1018    bank.preAllowedAt = pre_at;
1019
1020    Tick pre_done_at = pre_at + tRP;
1021
1022    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
1023
1024    assert(rank_ref.numBanksActive != 0);
1025    --rank_ref.numBanksActive;
1026
1027    DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
1028            "%d active\n", bank.bank, rank_ref.rank, pre_at,
1029            rank_ref.numBanksActive);
1030
1031    if (trace) {
1032
1033        rank_ref.power.powerlib.doCommand(MemCommand::PRE, bank.bank,
1034                                                divCeil(pre_at, tCK) -
1035                                                timeStampOffset);
1036        DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1037                timeStampOffset, bank.bank, rank_ref.rank);
1038    }
1039    // if we look at the current number of active banks we might be
1040    // tempted to think the DRAM is now idle, however this can be
1041    // undone by an activate that is scheduled to happen before we
1042    // would have reached the idle state, so schedule an event and
1043    // rather check once we actually make it to the point in time when
1044    // the (last) precharge takes place
1045    if (!rank_ref.prechargeEvent.scheduled())
1046        schedule(rank_ref.prechargeEvent, pre_done_at);
1047    else if (rank_ref.prechargeEvent.when() < pre_done_at)
1048        reschedule(rank_ref.prechargeEvent, pre_done_at);
1049}
1050
1051void
1052DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1053{
1054    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1055            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1056
1057    // get the rank
1058    Rank& rank = dram_pkt->rankRef;
1059
1060    // get the bank
1061    Bank& bank = dram_pkt->bankRef;
1062
1063    // for the state we need to track if it is a row hit or not
1064    bool row_hit = true;
1065
1066    // respect any constraints on the command (e.g. tRCD or tCCD)
1067    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1068
1069    // Determine the access latency and update the bank state
1070    if (bank.openRow == dram_pkt->row) {
1071        // nothing to do
1072    } else {
1073        row_hit = false;
1074
1075        // If there is a page open, precharge it.
1076        if (bank.openRow != Bank::NO_ROW) {
1077            prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1078        }
1079
1080        // next we need to account for the delay in activating the
1081        // page
1082        Tick act_tick = std::max(bank.actAllowedAt, curTick());
1083
1084        // Record the activation and deal with all the global timing
1085        // constraints caused be a new activation (tRRD and tXAW)
1086        activateBank(rank, bank, act_tick, dram_pkt->row);
1087
1088        // issue the command as early as possible
1089        cmd_at = bank.colAllowedAt;
1090    }
1091
1092    // we need to wait until the bus is available before we can issue
1093    // the command
1094    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1095
1096    // update the packet ready time
1097    dram_pkt->readyTime = cmd_at + tCL + tBURST;
1098
1099    // only one burst can use the bus at any one point in time
1100    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1101
1102    // update the time for the next read/write burst for each
1103    // bank (add a max with tCCD/tCCD_L here)
1104    Tick cmd_dly;
1105    for(int j = 0; j < ranksPerChannel; j++) {
1106        for(int i = 0; i < banksPerRank; i++) {
1107            // next burst to same bank group in this rank must not happen
1108            // before tCCD_L.  Different bank group timing requirement is
1109            // tBURST; Add tCS for different ranks
1110            if (dram_pkt->rank == j) {
1111                if (bankGroupArch &&
1112                   (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1113                    // bank group architecture requires longer delays between
1114                    // RD/WR burst commands to the same bank group.
1115                    // Use tCCD_L in this case
1116                    cmd_dly = tCCD_L;
1117                } else {
1118                    // use tBURST (equivalent to tCCD_S), the shorter
1119                    // cas-to-cas delay value, when either:
1120                    // 1) bank group architecture is not supportted
1121                    // 2) bank is in a different bank group
1122                    cmd_dly = tBURST;
1123                }
1124            } else {
1125                // different rank is by default in a different bank group
1126                // use tBURST (equivalent to tCCD_S), which is the shorter
1127                // cas-to-cas delay in this case
1128                // Add tCS to account for rank-to-rank bus delay requirements
1129                cmd_dly = tBURST + tCS;
1130            }
1131            ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly,
1132                                             ranks[j]->banks[i].colAllowedAt);
1133        }
1134    }
1135
1136    // Save rank of current access
1137    activeRank = dram_pkt->rank;
1138
1139    // If this is a write, we also need to respect the write recovery
1140    // time before a precharge, in the case of a read, respect the
1141    // read to precharge constraint
1142    bank.preAllowedAt = std::max(bank.preAllowedAt,
1143                                 dram_pkt->isRead ? cmd_at + tRTP :
1144                                 dram_pkt->readyTime + tWR);
1145
1146    // increment the bytes accessed and the accesses per row
1147    bank.bytesAccessed += burstSize;
1148    ++bank.rowAccesses;
1149
1150    // if we reached the max, then issue with an auto-precharge
1151    bool auto_precharge = pageMgmt == Enums::close ||
1152        bank.rowAccesses == maxAccessesPerRow;
1153
1154    // if we did not hit the limit, we might still want to
1155    // auto-precharge
1156    if (!auto_precharge &&
1157        (pageMgmt == Enums::open_adaptive ||
1158         pageMgmt == Enums::close_adaptive)) {
1159        // a twist on the open and close page policies:
1160        // 1) open_adaptive page policy does not blindly keep the
1161        // page open, but close it if there are no row hits, and there
1162        // are bank conflicts in the queue
1163        // 2) close_adaptive page policy does not blindly close the
1164        // page, but closes it only if there are no row hits in the queue.
1165        // In this case, only force an auto precharge when there
1166        // are no same page hits in the queue
1167        bool got_more_hits = false;
1168        bool got_bank_conflict = false;
1169
1170        // either look at the read queue or write queue
1171        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1172            writeQueue;
1173        auto p = queue.begin();
1174        // make sure we are not considering the packet that we are
1175        // currently dealing with (which is the head of the queue)
1176        ++p;
1177
1178        // keep on looking until we find a hit or reach the end of the queue
1179        // 1) if a hit is found, then both open and close adaptive policies keep
1180        // the page open
1181        // 2) if no hit is found, got_bank_conflict is set to true if a bank
1182        // conflict request is waiting in the queue
1183        while (!got_more_hits && p != queue.end()) {
1184            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1185                (dram_pkt->bank == (*p)->bank);
1186            bool same_row = dram_pkt->row == (*p)->row;
1187            got_more_hits |= same_rank_bank && same_row;
1188            got_bank_conflict |= same_rank_bank && !same_row;
1189            ++p;
1190        }
1191
1192        // auto pre-charge when either
1193        // 1) open_adaptive policy, we have not got any more hits, and
1194        //    have a bank conflict
1195        // 2) close_adaptive policy and we have not got any more hits
1196        auto_precharge = !got_more_hits &&
1197            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1198    }
1199
1200    // DRAMPower trace command to be written
1201    std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1202
1203    // MemCommand required for DRAMPower library
1204    MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1205                                                   MemCommand::WR;
1206
1207    // if this access should use auto-precharge, then we are
1208    // closing the row
1209    if (auto_precharge) {
1210        // if auto-precharge push a PRE command at the correct tick to the
1211        // list used by DRAMPower library to calculate power
1212        prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
1213
1214        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1215    }
1216
1217    // Update bus state
1218    busBusyUntil = dram_pkt->readyTime;
1219
1220    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1221            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1222
1223    dram_pkt->rankRef.power.powerlib.doCommand(command, dram_pkt->bank,
1224                                                 divCeil(cmd_at, tCK) -
1225                                                 timeStampOffset);
1226
1227    DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1228            timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1229
1230    // Update the minimum timing between the requests, this is a
1231    // conservative estimate of when we have to schedule the next
1232    // request to not introduce any unecessary bubbles. In most cases
1233    // we will wake up sooner than we have to.
1234    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1235
1236    // Update the stats and schedule the next request
1237    if (dram_pkt->isRead) {
1238        ++readsThisTime;
1239        if (row_hit)
1240            readRowHits++;
1241        bytesReadDRAM += burstSize;
1242        perBankRdBursts[dram_pkt->bankId]++;
1243
1244        // Update latency stats
1245        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1246        totBusLat += tBURST;
1247        totQLat += cmd_at - dram_pkt->entryTime;
1248    } else {
1249        ++writesThisTime;
1250        if (row_hit)
1251            writeRowHits++;
1252        bytesWritten += burstSize;
1253        perBankWrBursts[dram_pkt->bankId]++;
1254    }
1255}
1256
1257void
1258DRAMCtrl::processNextReqEvent()
1259{
1260    int busyRanks = 0;
1261    for (auto r : ranks) {
1262        if (!r->isAvailable()) {
1263            // rank is busy refreshing
1264            busyRanks++;
1265
1266            // let the rank know that if it was waiting to drain, it
1267            // is now done and ready to proceed
1268            r->checkDrainDone();
1269        }
1270    }
1271
1272    if (busyRanks == ranksPerChannel) {
1273        // if all ranks are refreshing wait for them to finish
1274        // and stall this state machine without taking any further
1275        // action, and do not schedule a new nextReqEvent
1276        return;
1277    }
1278
1279    // pre-emptively set to false.  Overwrite if in READ_TO_WRITE
1280    // or WRITE_TO_READ state
1281    bool switched_cmd_type = false;
1282    if (busState == READ_TO_WRITE) {
1283        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1284                "waiting\n", readsThisTime, readQueue.size());
1285
1286        // sample and reset the read-related stats as we are now
1287        // transitioning to writes, and all reads are done
1288        rdPerTurnAround.sample(readsThisTime);
1289        readsThisTime = 0;
1290
1291        // now proceed to do the actual writes
1292        busState = WRITE;
1293        switched_cmd_type = true;
1294    } else if (busState == WRITE_TO_READ) {
1295        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1296                "waiting\n", writesThisTime, writeQueue.size());
1297
1298        wrPerTurnAround.sample(writesThisTime);
1299        writesThisTime = 0;
1300
1301        busState = READ;
1302        switched_cmd_type = true;
1303    }
1304
1305    // when we get here it is either a read or a write
1306    if (busState == READ) {
1307
1308        // track if we should switch or not
1309        bool switch_to_writes = false;
1310
1311        if (readQueue.empty()) {
1312            // In the case there is no read request to go next,
1313            // trigger writes if we have passed the low threshold (or
1314            // if we are draining)
1315            if (!writeQueue.empty() &&
1316                (drainManager || writeQueue.size() > writeLowThreshold)) {
1317
1318                switch_to_writes = true;
1319            } else {
1320                // check if we are drained
1321                if (respQueue.empty () && drainManager) {
1322                    DPRINTF(Drain, "DRAM controller done draining\n");
1323                    drainManager->signalDrainDone();
1324                    drainManager = NULL;
1325                }
1326
1327                // nothing to do, not even any point in scheduling an
1328                // event for the next request
1329                return;
1330            }
1331        } else {
1332            // bool to check if there is a read to a free rank
1333            bool found_read = false;
1334
1335            // Figure out which read request goes next, and move it to the
1336            // front of the read queue
1337            found_read = chooseNext(readQueue, switched_cmd_type);
1338
1339            // if no read to an available rank is found then return
1340            // at this point. There could be writes to the available ranks
1341            // which are above the required threshold. However, to
1342            // avoid adding more complexity to the code, return and wait
1343            // for a refresh event to kick things into action again.
1344            if (!found_read)
1345                return;
1346
1347            DRAMPacket* dram_pkt = readQueue.front();
1348            assert(dram_pkt->rankRef.isAvailable());
1349            // here we get a bit creative and shift the bus busy time not
1350            // just the tWTR, but also a CAS latency to capture the fact
1351            // that we are allowed to prepare a new bank, but not issue a
1352            // read command until after tWTR, in essence we capture a
1353            // bubble on the data bus that is tWTR + tCL
1354            if (switched_cmd_type && dram_pkt->rank == activeRank) {
1355                busBusyUntil += tWTR + tCL;
1356            }
1357
1358            doDRAMAccess(dram_pkt);
1359
1360            // At this point we're done dealing with the request
1361            readQueue.pop_front();
1362
1363            // sanity check
1364            assert(dram_pkt->size <= burstSize);
1365            assert(dram_pkt->readyTime >= curTick());
1366
1367            // Insert into response queue. It will be sent back to the
1368            // requestor at its readyTime
1369            if (respQueue.empty()) {
1370                assert(!respondEvent.scheduled());
1371                schedule(respondEvent, dram_pkt->readyTime);
1372            } else {
1373                assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1374                assert(respondEvent.scheduled());
1375            }
1376
1377            respQueue.push_back(dram_pkt);
1378
1379            // we have so many writes that we have to transition
1380            if (writeQueue.size() > writeHighThreshold) {
1381                switch_to_writes = true;
1382            }
1383        }
1384
1385        // switching to writes, either because the read queue is empty
1386        // and the writes have passed the low threshold (or we are
1387        // draining), or because the writes hit the hight threshold
1388        if (switch_to_writes) {
1389            // transition to writing
1390            busState = READ_TO_WRITE;
1391        }
1392    } else {
1393        // bool to check if write to free rank is found
1394        bool found_write = false;
1395
1396        found_write = chooseNext(writeQueue, switched_cmd_type);
1397
1398        // if no writes to an available rank are found then return.
1399        // There could be reads to the available ranks. However, to avoid
1400        // adding more complexity to the code, return at this point and wait
1401        // for a refresh event to kick things into action again.
1402        if (!found_write)
1403            return;
1404
1405        DRAMPacket* dram_pkt = writeQueue.front();
1406        assert(dram_pkt->rankRef.isAvailable());
1407        // sanity check
1408        assert(dram_pkt->size <= burstSize);
1409
1410        // add a bubble to the data bus, as defined by the
1411        // tRTW when access is to the same rank as previous burst
1412        // Different rank timing is handled with tCS, which is
1413        // applied to colAllowedAt
1414        if (switched_cmd_type && dram_pkt->rank == activeRank) {
1415            busBusyUntil += tRTW;
1416        }
1417
1418        doDRAMAccess(dram_pkt);
1419
1420        writeQueue.pop_front();
1421        delete dram_pkt;
1422
1423        // If we emptied the write queue, or got sufficiently below the
1424        // threshold (using the minWritesPerSwitch as the hysteresis) and
1425        // are not draining, or we have reads waiting and have done enough
1426        // writes, then switch to reads.
1427        if (writeQueue.empty() ||
1428            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1429             !drainManager) ||
1430            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1431            // turn the bus back around for reads again
1432            busState = WRITE_TO_READ;
1433
1434            // note that the we switch back to reads also in the idle
1435            // case, which eventually will check for any draining and
1436            // also pause any further scheduling if there is really
1437            // nothing to do
1438        }
1439    }
1440    // It is possible that a refresh to another rank kicks things back into
1441    // action before reaching this point.
1442    if (!nextReqEvent.scheduled())
1443        schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1444
1445    // If there is space available and we have writes waiting then let
1446    // them retry. This is done here to ensure that the retry does not
1447    // cause a nextReqEvent to be scheduled before we do so as part of
1448    // the next request processing
1449    if (retryWrReq && writeQueue.size() < writeBufferSize) {
1450        retryWrReq = false;
1451        port.sendRetryReq();
1452    }
1453}
1454
1455uint64_t
1456DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1457                      bool switched_cmd_type) const
1458{
1459    uint64_t bank_mask = 0;
1460    Tick min_act_at = MaxTick;
1461
1462    uint64_t bank_mask_same_rank = 0;
1463    Tick min_act_at_same_rank = MaxTick;
1464
1465    // Give precedence to commands that access same rank as previous command
1466    bool same_rank_match = false;
1467
1468    // determine if we have queued transactions targetting the
1469    // bank in question
1470    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1471    for (const auto& p : queue) {
1472        if(p->rankRef.isAvailable())
1473            got_waiting[p->bankId] = true;
1474    }
1475
1476    for (int i = 0; i < ranksPerChannel; i++) {
1477        for (int j = 0; j < banksPerRank; j++) {
1478            uint16_t bank_id = i * banksPerRank + j;
1479
1480            // if we have waiting requests for the bank, and it is
1481            // amongst the first available, update the mask
1482            if (got_waiting[bank_id]) {
1483                // make sure this rank is not currently refreshing.
1484                assert(ranks[i]->isAvailable());
1485                // simplistic approximation of when the bank can issue
1486                // an activate, ignoring any rank-to-rank switching
1487                // cost in this calculation
1488                Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1489                    ranks[i]->banks[j].actAllowedAt :
1490                    std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1491
1492                // prioritize commands that access the
1493                // same rank as previous burst
1494                // Calculate bank mask separately for the case and
1495                // evaluate after loop iterations complete
1496                if (i == activeRank && ranksPerChannel > 1) {
1497                    if (act_at <= min_act_at_same_rank) {
1498                        // reset same rank bank mask if new minimum is found
1499                        // and previous minimum could not immediately send ACT
1500                        if (act_at < min_act_at_same_rank &&
1501                            min_act_at_same_rank > curTick())
1502                            bank_mask_same_rank = 0;
1503
1504                        // Set flag indicating that a same rank
1505                        // opportunity was found
1506                        same_rank_match = true;
1507
1508                        // set the bit corresponding to the available bank
1509                        replaceBits(bank_mask_same_rank, bank_id, bank_id, 1);
1510                        min_act_at_same_rank = act_at;
1511                    }
1512                } else {
1513                    if (act_at <= min_act_at) {
1514                        // reset bank mask if new minimum is found
1515                        // and either previous minimum could not immediately send ACT
1516                        if (act_at < min_act_at && min_act_at > curTick())
1517                            bank_mask = 0;
1518                        // set the bit corresponding to the available bank
1519                        replaceBits(bank_mask, bank_id, bank_id, 1);
1520                        min_act_at = act_at;
1521                    }
1522                }
1523            }
1524        }
1525    }
1526
1527    // Determine the earliest time when the next burst can issue based
1528    // on the current busBusyUntil delay.
1529    // Offset by tRCD to correlate with ACT timing variables
1530    Tick min_cmd_at = busBusyUntil - tCL - tRCD;
1531
1532    // if we have multiple ranks and all
1533    // waiting packets are accessing a rank which was previously active
1534    // then bank_mask_same_rank will be set to a value while bank_mask will
1535    // remain 0. In this case, the function should return the value of
1536    // bank_mask_same_rank.
1537    // else if waiting packets access a rank which was previously active and
1538    // other ranks, prioritize same rank accesses that can issue B2B
1539    // Only optimize for same ranks when the command type
1540    // does not change; do not want to unnecessarily incur tWTR
1541    //
1542    // Resulting FCFS prioritization Order is:
1543    // 1) Commands that access the same rank as previous burst
1544    //    and can prep the bank seamlessly.
1545    // 2) Commands (any rank) with earliest bank prep
1546    if ((bank_mask == 0) || (!switched_cmd_type && same_rank_match &&
1547        min_act_at_same_rank <= min_cmd_at)) {
1548        bank_mask = bank_mask_same_rank;
1549    }
1550
1551    return bank_mask;
1552}
1553
1554DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p)
1555    : EventManager(&_memory), memory(_memory),
1556      pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0),
1557      refreshState(REF_IDLE), refreshDueAt(0),
1558      power(_p, false), numBanksActive(0),
1559      activateEvent(*this), prechargeEvent(*this),
1560      refreshEvent(*this), powerEvent(*this)
1561{ }
1562
1563void
1564DRAMCtrl::Rank::startup(Tick ref_tick)
1565{
1566    assert(ref_tick > curTick());
1567
1568    pwrStateTick = curTick();
1569
1570    // kick off the refresh, and give ourselves enough time to
1571    // precharge
1572    schedule(refreshEvent, ref_tick);
1573}
1574
1575void
1576DRAMCtrl::Rank::suspend()
1577{
1578    deschedule(refreshEvent);
1579}
1580
1581void
1582DRAMCtrl::Rank::checkDrainDone()
1583{
1584    // if this rank was waiting to drain it is now able to proceed to
1585    // precharge
1586    if (refreshState == REF_DRAIN) {
1587        DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1588
1589        refreshState = REF_PRE;
1590
1591        // hand control back to the refresh event loop
1592        schedule(refreshEvent, curTick());
1593    }
1594}
1595
1596void
1597DRAMCtrl::Rank::processActivateEvent()
1598{
1599    // we should transition to the active state as soon as any bank is active
1600    if (pwrState != PWR_ACT)
1601        // note that at this point numBanksActive could be back at
1602        // zero again due to a precharge scheduled in the future
1603        schedulePowerEvent(PWR_ACT, curTick());
1604}
1605
1606void
1607DRAMCtrl::Rank::processPrechargeEvent()
1608{
1609    // if we reached zero, then special conditions apply as we track
1610    // if all banks are precharged for the power models
1611    if (numBanksActive == 0) {
1612        // we should transition to the idle state when the last bank
1613        // is precharged
1614        schedulePowerEvent(PWR_IDLE, curTick());
1615    }
1616}
1617
1618void
1619DRAMCtrl::Rank::processRefreshEvent()
1620{
1621    // when first preparing the refresh, remember when it was due
1622    if (refreshState == REF_IDLE) {
1623        // remember when the refresh is due
1624        refreshDueAt = curTick();
1625
1626        // proceed to drain
1627        refreshState = REF_DRAIN;
1628
1629        DPRINTF(DRAM, "Refresh due\n");
1630    }
1631
1632    // let any scheduled read or write to the same rank go ahead,
1633    // after which it will
1634    // hand control back to this event loop
1635    if (refreshState == REF_DRAIN) {
1636        // if a request is at the moment being handled and this request is
1637        // accessing the current rank then wait for it to finish
1638        if ((rank == memory.activeRank)
1639            && (memory.nextReqEvent.scheduled())) {
1640            // hand control over to the request loop until it is
1641            // evaluated next
1642            DPRINTF(DRAM, "Refresh awaiting draining\n");
1643
1644            return;
1645        } else {
1646            refreshState = REF_PRE;
1647        }
1648    }
1649
1650    // at this point, ensure that all banks are precharged
1651    if (refreshState == REF_PRE) {
1652        // precharge any active bank if we are not already in the idle
1653        // state
1654        if (pwrState != PWR_IDLE) {
1655            // at the moment, we use a precharge all even if there is
1656            // only a single bank open
1657            DPRINTF(DRAM, "Precharging all\n");
1658
1659            // first determine when we can precharge
1660            Tick pre_at = curTick();
1661
1662            for (auto &b : banks) {
1663                // respect both causality and any existing bank
1664                // constraints, some banks could already have a
1665                // (auto) precharge scheduled
1666                pre_at = std::max(b.preAllowedAt, pre_at);
1667            }
1668
1669            // make sure all banks per rank are precharged, and for those that
1670            // already are, update their availability
1671            Tick act_allowed_at = pre_at + memory.tRP;
1672
1673            for (auto &b : banks) {
1674                if (b.openRow != Bank::NO_ROW) {
1675                    memory.prechargeBank(*this, b, pre_at, false);
1676                } else {
1677                    b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1678                    b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1679                }
1680            }
1681
1682            // precharge all banks in rank
1683            power.powerlib.doCommand(MemCommand::PREA, 0,
1684                                     divCeil(pre_at, memory.tCK) -
1685                                     memory.timeStampOffset);
1686
1687            DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1688                    divCeil(pre_at, memory.tCK) -
1689                            memory.timeStampOffset, rank);
1690        } else {
1691            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1692
1693            // go ahead and kick the power state machine into gear if
1694            // we are already idle
1695            schedulePowerEvent(PWR_REF, curTick());
1696        }
1697
1698        refreshState = REF_RUN;
1699        assert(numBanksActive == 0);
1700
1701        // wait for all banks to be precharged, at which point the
1702        // power state machine will transition to the idle state, and
1703        // automatically move to a refresh, at that point it will also
1704        // call this method to get the refresh event loop going again
1705        return;
1706    }
1707
1708    // last but not least we perform the actual refresh
1709    if (refreshState == REF_RUN) {
1710        // should never get here with any banks active
1711        assert(numBanksActive == 0);
1712        assert(pwrState == PWR_REF);
1713
1714        Tick ref_done_at = curTick() + memory.tRFC;
1715
1716        for (auto &b : banks) {
1717            b.actAllowedAt = ref_done_at;
1718        }
1719
1720        // at the moment this affects all ranks
1721        power.powerlib.doCommand(MemCommand::REF, 0,
1722                                 divCeil(curTick(), memory.tCK) -
1723                                 memory.timeStampOffset);
1724
1725        // at the moment sort the list of commands and update the counters
1726        // for DRAMPower libray when doing a refresh
1727        sort(power.powerlib.cmdList.begin(),
1728             power.powerlib.cmdList.end(), DRAMCtrl::sortTime);
1729
1730        // update the counters for DRAMPower, passing false to
1731        // indicate that this is not the last command in the
1732        // list. DRAMPower requires this information for the
1733        // correct calculation of the background energy at the end
1734        // of the simulation. Ideally we would want to call this
1735        // function with true once at the end of the
1736        // simulation. However, the discarded energy is extremly
1737        // small and does not effect the final results.
1738        power.powerlib.updateCounters(false);
1739
1740        // call the energy function
1741        power.powerlib.calcEnergy();
1742
1743        // Update the stats
1744        updatePowerStats();
1745
1746        DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1747                memory.timeStampOffset, rank);
1748
1749        // make sure we did not wait so long that we cannot make up
1750        // for it
1751        if (refreshDueAt + memory.tREFI < ref_done_at) {
1752            fatal("Refresh was delayed so long we cannot catch up\n");
1753        }
1754
1755        // compensate for the delay in actually performing the refresh
1756        // when scheduling the next one
1757        schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP);
1758
1759        assert(!powerEvent.scheduled());
1760
1761        // move to the idle power state once the refresh is done, this
1762        // will also move the refresh state machine to the refresh
1763        // idle state
1764        schedulePowerEvent(PWR_IDLE, ref_done_at);
1765
1766        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1767                ref_done_at, refreshDueAt + memory.tREFI);
1768    }
1769}
1770
1771void
1772DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1773{
1774    // respect causality
1775    assert(tick >= curTick());
1776
1777    if (!powerEvent.scheduled()) {
1778        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1779                tick, pwr_state);
1780
1781        // insert the new transition
1782        pwrStateTrans = pwr_state;
1783
1784        schedule(powerEvent, tick);
1785    } else {
1786        panic("Scheduled power event at %llu to state %d, "
1787              "with scheduled event at %llu to %d\n", tick, pwr_state,
1788              powerEvent.when(), pwrStateTrans);
1789    }
1790}
1791
1792void
1793DRAMCtrl::Rank::processPowerEvent()
1794{
1795    // remember where we were, and for how long
1796    Tick duration = curTick() - pwrStateTick;
1797    PowerState prev_state = pwrState;
1798
1799    // update the accounting
1800    pwrStateTime[prev_state] += duration;
1801
1802    pwrState = pwrStateTrans;
1803    pwrStateTick = curTick();
1804
1805    if (pwrState == PWR_IDLE) {
1806        DPRINTF(DRAMState, "All banks precharged\n");
1807
1808        // if we were refreshing, make sure we start scheduling requests again
1809        if (prev_state == PWR_REF) {
1810            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1811            assert(pwrState == PWR_IDLE);
1812
1813            // kick things into action again
1814            refreshState = REF_IDLE;
1815            // a request event could be already scheduled by the state
1816            // machine of the other rank
1817            if (!memory.nextReqEvent.scheduled())
1818                schedule(memory.nextReqEvent, curTick());
1819        } else {
1820            assert(prev_state == PWR_ACT);
1821
1822            // if we have a pending refresh, and are now moving to
1823            // the idle state, direclty transition to a refresh
1824            if (refreshState == REF_RUN) {
1825                // there should be nothing waiting at this point
1826                assert(!powerEvent.scheduled());
1827
1828                // update the state in zero time and proceed below
1829                pwrState = PWR_REF;
1830            }
1831        }
1832    }
1833
1834    // we transition to the refresh state, let the refresh state
1835    // machine know of this state update and let it deal with the
1836    // scheduling of the next power state transition as well as the
1837    // following refresh
1838    if (pwrState == PWR_REF) {
1839        DPRINTF(DRAMState, "Refreshing\n");
1840        // kick the refresh event loop into action again, and that
1841        // in turn will schedule a transition to the idle power
1842        // state once the refresh is done
1843        assert(refreshState == REF_RUN);
1844        processRefreshEvent();
1845    }
1846}
1847
1848void
1849DRAMCtrl::Rank::updatePowerStats()
1850{
1851    // Get the energy and power from DRAMPower
1852    Data::MemoryPowerModel::Energy energy =
1853        power.powerlib.getEnergy();
1854    Data::MemoryPowerModel::Power rank_power =
1855        power.powerlib.getPower();
1856
1857    actEnergy = energy.act_energy * memory.devicesPerRank;
1858    preEnergy = energy.pre_energy * memory.devicesPerRank;
1859    readEnergy = energy.read_energy * memory.devicesPerRank;
1860    writeEnergy = energy.write_energy * memory.devicesPerRank;
1861    refreshEnergy = energy.ref_energy * memory.devicesPerRank;
1862    actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
1863    preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
1864    totalEnergy = energy.total_energy * memory.devicesPerRank;
1865    averagePower = rank_power.average_power * memory.devicesPerRank;
1866}
1867
1868void
1869DRAMCtrl::Rank::regStats()
1870{
1871    using namespace Stats;
1872
1873    pwrStateTime
1874        .init(5)
1875        .name(name() + ".memoryStateTime")
1876        .desc("Time in different power states");
1877    pwrStateTime.subname(0, "IDLE");
1878    pwrStateTime.subname(1, "REF");
1879    pwrStateTime.subname(2, "PRE_PDN");
1880    pwrStateTime.subname(3, "ACT");
1881    pwrStateTime.subname(4, "ACT_PDN");
1882
1883    actEnergy
1884        .name(name() + ".actEnergy")
1885        .desc("Energy for activate commands per rank (pJ)");
1886
1887    preEnergy
1888        .name(name() + ".preEnergy")
1889        .desc("Energy for precharge commands per rank (pJ)");
1890
1891    readEnergy
1892        .name(name() + ".readEnergy")
1893        .desc("Energy for read commands per rank (pJ)");
1894
1895    writeEnergy
1896        .name(name() + ".writeEnergy")
1897        .desc("Energy for write commands per rank (pJ)");
1898
1899    refreshEnergy
1900        .name(name() + ".refreshEnergy")
1901        .desc("Energy for refresh commands per rank (pJ)");
1902
1903    actBackEnergy
1904        .name(name() + ".actBackEnergy")
1905        .desc("Energy for active background per rank (pJ)");
1906
1907    preBackEnergy
1908        .name(name() + ".preBackEnergy")
1909        .desc("Energy for precharge background per rank (pJ)");
1910
1911    totalEnergy
1912        .name(name() + ".totalEnergy")
1913        .desc("Total energy per rank (pJ)");
1914
1915    averagePower
1916        .name(name() + ".averagePower")
1917        .desc("Core power per rank (mW)");
1918}
1919void
1920DRAMCtrl::regStats()
1921{
1922    using namespace Stats;
1923
1924    AbstractMemory::regStats();
1925
1926    for (auto r : ranks) {
1927        r->regStats();
1928    }
1929
1930    readReqs
1931        .name(name() + ".readReqs")
1932        .desc("Number of read requests accepted");
1933
1934    writeReqs
1935        .name(name() + ".writeReqs")
1936        .desc("Number of write requests accepted");
1937
1938    readBursts
1939        .name(name() + ".readBursts")
1940        .desc("Number of DRAM read bursts, "
1941              "including those serviced by the write queue");
1942
1943    writeBursts
1944        .name(name() + ".writeBursts")
1945        .desc("Number of DRAM write bursts, "
1946              "including those merged in the write queue");
1947
1948    servicedByWrQ
1949        .name(name() + ".servicedByWrQ")
1950        .desc("Number of DRAM read bursts serviced by the write queue");
1951
1952    mergedWrBursts
1953        .name(name() + ".mergedWrBursts")
1954        .desc("Number of DRAM write bursts merged with an existing one");
1955
1956    neitherReadNorWrite
1957        .name(name() + ".neitherReadNorWriteReqs")
1958        .desc("Number of requests that are neither read nor write");
1959
1960    perBankRdBursts
1961        .init(banksPerRank * ranksPerChannel)
1962        .name(name() + ".perBankRdBursts")
1963        .desc("Per bank write bursts");
1964
1965    perBankWrBursts
1966        .init(banksPerRank * ranksPerChannel)
1967        .name(name() + ".perBankWrBursts")
1968        .desc("Per bank write bursts");
1969
1970    avgRdQLen
1971        .name(name() + ".avgRdQLen")
1972        .desc("Average read queue length when enqueuing")
1973        .precision(2);
1974
1975    avgWrQLen
1976        .name(name() + ".avgWrQLen")
1977        .desc("Average write queue length when enqueuing")
1978        .precision(2);
1979
1980    totQLat
1981        .name(name() + ".totQLat")
1982        .desc("Total ticks spent queuing");
1983
1984    totBusLat
1985        .name(name() + ".totBusLat")
1986        .desc("Total ticks spent in databus transfers");
1987
1988    totMemAccLat
1989        .name(name() + ".totMemAccLat")
1990        .desc("Total ticks spent from burst creation until serviced "
1991              "by the DRAM");
1992
1993    avgQLat
1994        .name(name() + ".avgQLat")
1995        .desc("Average queueing delay per DRAM burst")
1996        .precision(2);
1997
1998    avgQLat = totQLat / (readBursts - servicedByWrQ);
1999
2000    avgBusLat
2001        .name(name() + ".avgBusLat")
2002        .desc("Average bus latency per DRAM burst")
2003        .precision(2);
2004
2005    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
2006
2007    avgMemAccLat
2008        .name(name() + ".avgMemAccLat")
2009        .desc("Average memory access latency per DRAM burst")
2010        .precision(2);
2011
2012    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
2013
2014    numRdRetry
2015        .name(name() + ".numRdRetry")
2016        .desc("Number of times read queue was full causing retry");
2017
2018    numWrRetry
2019        .name(name() + ".numWrRetry")
2020        .desc("Number of times write queue was full causing retry");
2021
2022    readRowHits
2023        .name(name() + ".readRowHits")
2024        .desc("Number of row buffer hits during reads");
2025
2026    writeRowHits
2027        .name(name() + ".writeRowHits")
2028        .desc("Number of row buffer hits during writes");
2029
2030    readRowHitRate
2031        .name(name() + ".readRowHitRate")
2032        .desc("Row buffer hit rate for reads")
2033        .precision(2);
2034
2035    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2036
2037    writeRowHitRate
2038        .name(name() + ".writeRowHitRate")
2039        .desc("Row buffer hit rate for writes")
2040        .precision(2);
2041
2042    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2043
2044    readPktSize
2045        .init(ceilLog2(burstSize) + 1)
2046        .name(name() + ".readPktSize")
2047        .desc("Read request sizes (log2)");
2048
2049     writePktSize
2050        .init(ceilLog2(burstSize) + 1)
2051        .name(name() + ".writePktSize")
2052        .desc("Write request sizes (log2)");
2053
2054     rdQLenPdf
2055        .init(readBufferSize)
2056        .name(name() + ".rdQLenPdf")
2057        .desc("What read queue length does an incoming req see");
2058
2059     wrQLenPdf
2060        .init(writeBufferSize)
2061        .name(name() + ".wrQLenPdf")
2062        .desc("What write queue length does an incoming req see");
2063
2064     bytesPerActivate
2065         .init(maxAccessesPerRow)
2066         .name(name() + ".bytesPerActivate")
2067         .desc("Bytes accessed per row activation")
2068         .flags(nozero);
2069
2070     rdPerTurnAround
2071         .init(readBufferSize)
2072         .name(name() + ".rdPerTurnAround")
2073         .desc("Reads before turning the bus around for writes")
2074         .flags(nozero);
2075
2076     wrPerTurnAround
2077         .init(writeBufferSize)
2078         .name(name() + ".wrPerTurnAround")
2079         .desc("Writes before turning the bus around for reads")
2080         .flags(nozero);
2081
2082    bytesReadDRAM
2083        .name(name() + ".bytesReadDRAM")
2084        .desc("Total number of bytes read from DRAM");
2085
2086    bytesReadWrQ
2087        .name(name() + ".bytesReadWrQ")
2088        .desc("Total number of bytes read from write queue");
2089
2090    bytesWritten
2091        .name(name() + ".bytesWritten")
2092        .desc("Total number of bytes written to DRAM");
2093
2094    bytesReadSys
2095        .name(name() + ".bytesReadSys")
2096        .desc("Total read bytes from the system interface side");
2097
2098    bytesWrittenSys
2099        .name(name() + ".bytesWrittenSys")
2100        .desc("Total written bytes from the system interface side");
2101
2102    avgRdBW
2103        .name(name() + ".avgRdBW")
2104        .desc("Average DRAM read bandwidth in MiByte/s")
2105        .precision(2);
2106
2107    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2108
2109    avgWrBW
2110        .name(name() + ".avgWrBW")
2111        .desc("Average achieved write bandwidth in MiByte/s")
2112        .precision(2);
2113
2114    avgWrBW = (bytesWritten / 1000000) / simSeconds;
2115
2116    avgRdBWSys
2117        .name(name() + ".avgRdBWSys")
2118        .desc("Average system read bandwidth in MiByte/s")
2119        .precision(2);
2120
2121    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2122
2123    avgWrBWSys
2124        .name(name() + ".avgWrBWSys")
2125        .desc("Average system write bandwidth in MiByte/s")
2126        .precision(2);
2127
2128    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2129
2130    peakBW
2131        .name(name() + ".peakBW")
2132        .desc("Theoretical peak bandwidth in MiByte/s")
2133        .precision(2);
2134
2135    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2136
2137    busUtil
2138        .name(name() + ".busUtil")
2139        .desc("Data bus utilization in percentage")
2140        .precision(2);
2141    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2142
2143    totGap
2144        .name(name() + ".totGap")
2145        .desc("Total gap between requests");
2146
2147    avgGap
2148        .name(name() + ".avgGap")
2149        .desc("Average gap between requests")
2150        .precision(2);
2151
2152    avgGap = totGap / (readReqs + writeReqs);
2153
2154    // Stats for DRAM Power calculation based on Micron datasheet
2155    busUtilRead
2156        .name(name() + ".busUtilRead")
2157        .desc("Data bus utilization in percentage for reads")
2158        .precision(2);
2159
2160    busUtilRead = avgRdBW / peakBW * 100;
2161
2162    busUtilWrite
2163        .name(name() + ".busUtilWrite")
2164        .desc("Data bus utilization in percentage for writes")
2165        .precision(2);
2166
2167    busUtilWrite = avgWrBW / peakBW * 100;
2168
2169    pageHitRate
2170        .name(name() + ".pageHitRate")
2171        .desc("Row buffer hit rate, read and write combined")
2172        .precision(2);
2173
2174    pageHitRate = (writeRowHits + readRowHits) /
2175        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2176}
2177
2178void
2179DRAMCtrl::recvFunctional(PacketPtr pkt)
2180{
2181    // rely on the abstract memory
2182    functionalAccess(pkt);
2183}
2184
2185BaseSlavePort&
2186DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2187{
2188    if (if_name != "port") {
2189        return MemObject::getSlavePort(if_name, idx);
2190    } else {
2191        return port;
2192    }
2193}
2194
2195unsigned int
2196DRAMCtrl::drain(DrainManager *dm)
2197{
2198    unsigned int count = port.drain(dm);
2199
2200    // if there is anything in any of our internal queues, keep track
2201    // of that as well
2202    if (!(writeQueue.empty() && readQueue.empty() &&
2203          respQueue.empty())) {
2204        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2205                " resp: %d\n", writeQueue.size(), readQueue.size(),
2206                respQueue.size());
2207        ++count;
2208        drainManager = dm;
2209
2210        // the only part that is not drained automatically over time
2211        // is the write queue, thus kick things into action if needed
2212        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2213            schedule(nextReqEvent, curTick());
2214        }
2215    }
2216
2217    if (count)
2218        setDrainState(Drainable::Draining);
2219    else
2220        setDrainState(Drainable::Drained);
2221    return count;
2222}
2223
2224void
2225DRAMCtrl::drainResume()
2226{
2227    if (!isTimingMode && system()->isTimingMode()) {
2228        // if we switched to timing mode, kick things into action,
2229        // and behave as if we restored from a checkpoint
2230        startup();
2231    } else if (isTimingMode && !system()->isTimingMode()) {
2232        // if we switch from timing mode, stop the refresh events to
2233        // not cause issues with KVM
2234        for (auto r : ranks) {
2235            r->suspend();
2236        }
2237    }
2238
2239    // update the mode
2240    isTimingMode = system()->isTimingMode();
2241}
2242
2243DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2244    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2245      memory(_memory)
2246{ }
2247
2248AddrRangeList
2249DRAMCtrl::MemoryPort::getAddrRanges() const
2250{
2251    AddrRangeList ranges;
2252    ranges.push_back(memory.getAddrRange());
2253    return ranges;
2254}
2255
2256void
2257DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2258{
2259    pkt->pushLabel(memory.name());
2260
2261    if (!queue.checkFunctional(pkt)) {
2262        // Default implementation of SimpleTimingPort::recvFunctional()
2263        // calls recvAtomic() and throws away the latency; we can save a
2264        // little here by just not calculating the latency.
2265        memory.recvFunctional(pkt);
2266    }
2267
2268    pkt->popLabel();
2269}
2270
2271Tick
2272DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2273{
2274    return memory.recvAtomic(pkt);
2275}
2276
2277bool
2278DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2279{
2280    // pass it to the memory controller
2281    return memory.recvTimingReq(pkt);
2282}
2283
2284DRAMCtrl*
2285DRAMCtrlParams::create()
2286{
2287    return new DRAMCtrl(this);
2288}
2289