dram_ctrl.cc revision 10618:bb665366cc00
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 *          Omar Naji
44 */
45
46#include "base/bitfield.hh"
47#include "base/trace.hh"
48#include "debug/DRAM.hh"
49#include "debug/DRAMPower.hh"
50#include "debug/DRAMState.hh"
51#include "debug/Drain.hh"
52#include "mem/dram_ctrl.hh"
53#include "sim/system.hh"
54
55using namespace std;
56using namespace Data;
57
58DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
59    AbstractMemory(p),
60    port(name() + ".port", *this),
61    retryRdReq(false), retryWrReq(false),
62    busState(READ),
63    nextReqEvent(this), respondEvent(this),
64    drainManager(NULL),
65    deviceSize(p->device_size),
66    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
67    deviceRowBufferSize(p->device_rowbuffer_size),
68    devicesPerRank(p->devices_per_rank),
69    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
70    rowBufferSize(devicesPerRank * deviceRowBufferSize),
71    columnsPerRowBuffer(rowBufferSize / burstSize),
72    columnsPerStripe(range.granularity() / burstSize),
73    ranksPerChannel(p->ranks_per_channel),
74    bankGroupsPerRank(p->bank_groups_per_rank),
75    bankGroupArch(p->bank_groups_per_rank > 0),
76    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
77    readBufferSize(p->read_buffer_size),
78    writeBufferSize(p->write_buffer_size),
79    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
80    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
81    minWritesPerSwitch(p->min_writes_per_switch),
82    writesThisTime(0), readsThisTime(0),
83    tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
84    tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
85    tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
86    tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
87    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
88    pageMgmt(p->page_policy),
89    maxAccessesPerRow(p->max_accesses_per_row),
90    frontendLatency(p->static_frontend_latency),
91    backendLatency(p->static_backend_latency),
92    busBusyUntil(0), prevArrival(0),
93    nextReqTime(0), activeRank(0), timeStampOffset(0)
94{
95    for (int i = 0; i < ranksPerChannel; i++) {
96        Rank* rank = new Rank(*this, p);
97        ranks.push_back(rank);
98
99        rank->actTicks.resize(activationLimit, 0);
100        rank->banks.resize(banksPerRank);
101        rank->rank = i;
102
103        for (int b = 0; b < banksPerRank; b++) {
104            rank->banks[b].bank = b;
105            // GDDR addressing of banks to BG is linear.
106            // Here we assume that all DRAM generations address bank groups as
107            // follows:
108            if (bankGroupArch) {
109                // Simply assign lower bits to bank group in order to
110                // rotate across bank groups as banks are incremented
111                // e.g. with 4 banks per bank group and 16 banks total:
112                //    banks 0,4,8,12  are in bank group 0
113                //    banks 1,5,9,13  are in bank group 1
114                //    banks 2,6,10,14 are in bank group 2
115                //    banks 3,7,11,15 are in bank group 3
116                rank->banks[b].bankgr = b % bankGroupsPerRank;
117            } else {
118                // No bank groups; simply assign to bank number
119                rank->banks[b].bankgr = b;
120            }
121        }
122    }
123
124    // perform a basic check of the write thresholds
125    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
126        fatal("Write buffer low threshold %d must be smaller than the "
127              "high threshold %d\n", p->write_low_thresh_perc,
128              p->write_high_thresh_perc);
129
130    // determine the rows per bank by looking at the total capacity
131    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
132
133    // determine the dram actual capacity from the DRAM config in Mbytes
134    uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
135        ranksPerChannel;
136
137    // if actual DRAM size does not match memory capacity in system warn!
138    if (deviceCapacity != capacity / (1024 * 1024))
139        warn("DRAM device capacity (%d Mbytes) does not match the "
140             "address range assigned (%d Mbytes)\n", deviceCapacity,
141             capacity / (1024 * 1024));
142
143    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
144            AbstractMemory::size());
145
146    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
147            rowBufferSize, columnsPerRowBuffer);
148
149    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
150
151    // a bit of sanity checks on the interleaving
152    if (range.interleaved()) {
153        if (channels != range.stripes())
154            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
155                  name(), range.stripes(), channels);
156
157        if (addrMapping == Enums::RoRaBaChCo) {
158            if (rowBufferSize != range.granularity()) {
159                fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
160                      "address map\n", name());
161            }
162        } else if (addrMapping == Enums::RoRaBaCoCh ||
163                   addrMapping == Enums::RoCoRaBaCh) {
164            // for the interleavings with channel bits in the bottom,
165            // if the system uses a channel striping granularity that
166            // is larger than the DRAM burst size, then map the
167            // sequential accesses within a stripe to a number of
168            // columns in the DRAM, effectively placing some of the
169            // lower-order column bits as the least-significant bits
170            // of the address (above the ones denoting the burst size)
171            assert(columnsPerStripe >= 1);
172
173            // channel striping has to be done at a granularity that
174            // is equal or larger to a cache line
175            if (system()->cacheLineSize() > range.granularity()) {
176                fatal("Channel interleaving of %s must be at least as large "
177                      "as the cache line size\n", name());
178            }
179
180            // ...and equal or smaller than the row-buffer size
181            if (rowBufferSize < range.granularity()) {
182                fatal("Channel interleaving of %s must be at most as large "
183                      "as the row-buffer size\n", name());
184            }
185            // this is essentially the check above, so just to be sure
186            assert(columnsPerStripe <= columnsPerRowBuffer);
187        }
188    }
189
190    // some basic sanity checks
191    if (tREFI <= tRP || tREFI <= tRFC) {
192        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
193              tREFI, tRP, tRFC);
194    }
195
196    // basic bank group architecture checks ->
197    if (bankGroupArch) {
198        // must have at least one bank per bank group
199        if (bankGroupsPerRank > banksPerRank) {
200            fatal("banks per rank (%d) must be equal to or larger than "
201                  "banks groups per rank (%d)\n",
202                  banksPerRank, bankGroupsPerRank);
203        }
204        // must have same number of banks in each bank group
205        if ((banksPerRank % bankGroupsPerRank) != 0) {
206            fatal("Banks per rank (%d) must be evenly divisible by bank groups "
207                  "per rank (%d) for equal banks per bank group\n",
208                  banksPerRank, bankGroupsPerRank);
209        }
210        // tCCD_L should be greater than minimal, back-to-back burst delay
211        if (tCCD_L <= tBURST) {
212            fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
213                  "bank groups per rank (%d) is greater than 1\n",
214                  tCCD_L, tBURST, bankGroupsPerRank);
215        }
216        // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
217        // some datasheets might specify it equal to tRRD
218        if (tRRD_L < tRRD) {
219            fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
220                  "bank groups per rank (%d) is greater than 1\n",
221                  tRRD_L, tRRD, bankGroupsPerRank);
222        }
223    }
224
225}
226
227void
228DRAMCtrl::init()
229{
230    AbstractMemory::init();
231
232   if (!port.isConnected()) {
233        fatal("DRAMCtrl %s is unconnected!\n", name());
234    } else {
235        port.sendRangeChange();
236    }
237}
238
239void
240DRAMCtrl::startup()
241{
242    // timestamp offset should be in clock cycles for DRAMPower
243    timeStampOffset = divCeil(curTick(), tCK);
244
245    // update the start tick for the precharge accounting to the
246    // current tick
247    for (auto r : ranks) {
248        r->startup(curTick() + tREFI - tRP);
249    }
250
251    // shift the bus busy time sufficiently far ahead that we never
252    // have to worry about negative values when computing the time for
253    // the next request, this will add an insignificant bubble at the
254    // start of simulation
255    busBusyUntil = curTick() + tRP + tRCD + tCL;
256}
257
258Tick
259DRAMCtrl::recvAtomic(PacketPtr pkt)
260{
261    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
262
263    // do the actual memory access and turn the packet into a response
264    access(pkt);
265
266    Tick latency = 0;
267    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
268        // this value is not supposed to be accurate, just enough to
269        // keep things going, mimic a closed page
270        latency = tRP + tRCD + tCL;
271    }
272    return latency;
273}
274
275bool
276DRAMCtrl::readQueueFull(unsigned int neededEntries) const
277{
278    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
279            readBufferSize, readQueue.size() + respQueue.size(),
280            neededEntries);
281
282    return
283        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
284}
285
286bool
287DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
288{
289    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
290            writeBufferSize, writeQueue.size(), neededEntries);
291    return (writeQueue.size() + neededEntries) > writeBufferSize;
292}
293
294DRAMCtrl::DRAMPacket*
295DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
296                       bool isRead)
297{
298    // decode the address based on the address mapping scheme, with
299    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
300    // channel, respectively
301    uint8_t rank;
302    uint8_t bank;
303    // use a 64-bit unsigned during the computations as the row is
304    // always the top bits, and check before creating the DRAMPacket
305    uint64_t row;
306
307    // truncate the address to a DRAM burst, which makes it unique to
308    // a specific column, row, bank, rank and channel
309    Addr addr = dramPktAddr / burstSize;
310
311    // we have removed the lowest order address bits that denote the
312    // position within the column
313    if (addrMapping == Enums::RoRaBaChCo) {
314        // the lowest order bits denote the column to ensure that
315        // sequential cache lines occupy the same row
316        addr = addr / columnsPerRowBuffer;
317
318        // take out the channel part of the address
319        addr = addr / channels;
320
321        // after the channel bits, get the bank bits to interleave
322        // over the banks
323        bank = addr % banksPerRank;
324        addr = addr / banksPerRank;
325
326        // after the bank, we get the rank bits which thus interleaves
327        // over the ranks
328        rank = addr % ranksPerChannel;
329        addr = addr / ranksPerChannel;
330
331        // lastly, get the row bits
332        row = addr % rowsPerBank;
333        addr = addr / rowsPerBank;
334    } else if (addrMapping == Enums::RoRaBaCoCh) {
335        // take out the lower-order column bits
336        addr = addr / columnsPerStripe;
337
338        // take out the channel part of the address
339        addr = addr / channels;
340
341        // next, the higher-order column bites
342        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
343
344        // after the column bits, we get the bank bits to interleave
345        // over the banks
346        bank = addr % banksPerRank;
347        addr = addr / banksPerRank;
348
349        // after the bank, we get the rank bits which thus interleaves
350        // over the ranks
351        rank = addr % ranksPerChannel;
352        addr = addr / ranksPerChannel;
353
354        // lastly, get the row bits
355        row = addr % rowsPerBank;
356        addr = addr / rowsPerBank;
357    } else if (addrMapping == Enums::RoCoRaBaCh) {
358        // optimise for closed page mode and utilise maximum
359        // parallelism of the DRAM (at the cost of power)
360
361        // take out the lower-order column bits
362        addr = addr / columnsPerStripe;
363
364        // take out the channel part of the address, not that this has
365        // to match with how accesses are interleaved between the
366        // controllers in the address mapping
367        addr = addr / channels;
368
369        // start with the bank bits, as this provides the maximum
370        // opportunity for parallelism between requests
371        bank = addr % banksPerRank;
372        addr = addr / banksPerRank;
373
374        // next get the rank bits
375        rank = addr % ranksPerChannel;
376        addr = addr / ranksPerChannel;
377
378        // next, the higher-order column bites
379        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
380
381        // lastly, get the row bits
382        row = addr % rowsPerBank;
383        addr = addr / rowsPerBank;
384    } else
385        panic("Unknown address mapping policy chosen!");
386
387    assert(rank < ranksPerChannel);
388    assert(bank < banksPerRank);
389    assert(row < rowsPerBank);
390    assert(row < Bank::NO_ROW);
391
392    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
393            dramPktAddr, rank, bank, row);
394
395    // create the corresponding DRAM packet with the entry time and
396    // ready time set to the current tick, the latter will be updated
397    // later
398    uint16_t bank_id = banksPerRank * rank + bank;
399    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
400                          size, ranks[rank]->banks[bank], *ranks[rank]);
401}
402
403void
404DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
405{
406    // only add to the read queue here. whenever the request is
407    // eventually done, set the readyTime, and call schedule()
408    assert(!pkt->isWrite());
409
410    assert(pktCount != 0);
411
412    // if the request size is larger than burst size, the pkt is split into
413    // multiple DRAM packets
414    // Note if the pkt starting address is not aligened to burst size, the
415    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
416    // are aligned to burst size boundaries. This is to ensure we accurately
417    // check read packets against packets in write queue.
418    Addr addr = pkt->getAddr();
419    unsigned pktsServicedByWrQ = 0;
420    BurstHelper* burst_helper = NULL;
421    for (int cnt = 0; cnt < pktCount; ++cnt) {
422        unsigned size = std::min((addr | (burstSize - 1)) + 1,
423                        pkt->getAddr() + pkt->getSize()) - addr;
424        readPktSize[ceilLog2(size)]++;
425        readBursts++;
426
427        // First check write buffer to see if the data is already at
428        // the controller
429        bool foundInWrQ = false;
430        for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
431            // check if the read is subsumed in the write entry we are
432            // looking at
433            if ((*i)->addr <= addr &&
434                (addr + size) <= ((*i)->addr + (*i)->size)) {
435                foundInWrQ = true;
436                servicedByWrQ++;
437                pktsServicedByWrQ++;
438                DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
439                        "write queue\n", addr, size);
440                bytesReadWrQ += burstSize;
441                break;
442            }
443        }
444
445        // If not found in the write q, make a DRAM packet and
446        // push it onto the read queue
447        if (!foundInWrQ) {
448
449            // Make the burst helper for split packets
450            if (pktCount > 1 && burst_helper == NULL) {
451                DPRINTF(DRAM, "Read to addr %lld translates to %d "
452                        "dram requests\n", pkt->getAddr(), pktCount);
453                burst_helper = new BurstHelper(pktCount);
454            }
455
456            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
457            dram_pkt->burstHelper = burst_helper;
458
459            assert(!readQueueFull(1));
460            rdQLenPdf[readQueue.size() + respQueue.size()]++;
461
462            DPRINTF(DRAM, "Adding to read queue\n");
463
464            readQueue.push_back(dram_pkt);
465
466            // Update stats
467            avgRdQLen = readQueue.size() + respQueue.size();
468        }
469
470        // Starting address of next dram pkt (aligend to burstSize boundary)
471        addr = (addr | (burstSize - 1)) + 1;
472    }
473
474    // If all packets are serviced by write queue, we send the repsonse back
475    if (pktsServicedByWrQ == pktCount) {
476        accessAndRespond(pkt, frontendLatency);
477        return;
478    }
479
480    // Update how many split packets are serviced by write queue
481    if (burst_helper != NULL)
482        burst_helper->burstsServiced = pktsServicedByWrQ;
483
484    // If we are not already scheduled to get a request out of the
485    // queue, do so now
486    if (!nextReqEvent.scheduled()) {
487        DPRINTF(DRAM, "Request scheduled immediately\n");
488        schedule(nextReqEvent, curTick());
489    }
490}
491
492void
493DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
494{
495    // only add to the write queue here. whenever the request is
496    // eventually done, set the readyTime, and call schedule()
497    assert(pkt->isWrite());
498
499    // if the request size is larger than burst size, the pkt is split into
500    // multiple DRAM packets
501    Addr addr = pkt->getAddr();
502    for (int cnt = 0; cnt < pktCount; ++cnt) {
503        unsigned size = std::min((addr | (burstSize - 1)) + 1,
504                        pkt->getAddr() + pkt->getSize()) - addr;
505        writePktSize[ceilLog2(size)]++;
506        writeBursts++;
507
508        // see if we can merge with an existing item in the write
509        // queue and keep track of whether we have merged or not so we
510        // can stop at that point and also avoid enqueueing a new
511        // request
512        bool merged = false;
513        auto w = writeQueue.begin();
514
515        while(!merged && w != writeQueue.end()) {
516            // either of the two could be first, if they are the same
517            // it does not matter which way we go
518            if ((*w)->addr >= addr) {
519                // the existing one starts after the new one, figure
520                // out where the new one ends with respect to the
521                // existing one
522                if ((addr + size) >= ((*w)->addr + (*w)->size)) {
523                    // check if the existing one is completely
524                    // subsumed in the new one
525                    DPRINTF(DRAM, "Merging write covering existing burst\n");
526                    merged = true;
527                    // update both the address and the size
528                    (*w)->addr = addr;
529                    (*w)->size = size;
530                } else if ((addr + size) >= (*w)->addr &&
531                           ((*w)->addr + (*w)->size - addr) <= burstSize) {
532                    // the new one is just before or partially
533                    // overlapping with the existing one, and together
534                    // they fit within a burst
535                    DPRINTF(DRAM, "Merging write before existing burst\n");
536                    merged = true;
537                    // the existing queue item needs to be adjusted with
538                    // respect to both address and size
539                    (*w)->size = (*w)->addr + (*w)->size - addr;
540                    (*w)->addr = addr;
541                }
542            } else {
543                // the new one starts after the current one, figure
544                // out where the existing one ends with respect to the
545                // new one
546                if (((*w)->addr + (*w)->size) >= (addr + size)) {
547                    // check if the new one is completely subsumed in the
548                    // existing one
549                    DPRINTF(DRAM, "Merging write into existing burst\n");
550                    merged = true;
551                    // no adjustments necessary
552                } else if (((*w)->addr + (*w)->size) >= addr &&
553                           (addr + size - (*w)->addr) <= burstSize) {
554                    // the existing one is just before or partially
555                    // overlapping with the new one, and together
556                    // they fit within a burst
557                    DPRINTF(DRAM, "Merging write after existing burst\n");
558                    merged = true;
559                    // the address is right, and only the size has
560                    // to be adjusted
561                    (*w)->size = addr + size - (*w)->addr;
562                }
563            }
564            ++w;
565        }
566
567        // if the item was not merged we need to create a new write
568        // and enqueue it
569        if (!merged) {
570            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
571
572            assert(writeQueue.size() < writeBufferSize);
573            wrQLenPdf[writeQueue.size()]++;
574
575            DPRINTF(DRAM, "Adding to write queue\n");
576
577            writeQueue.push_back(dram_pkt);
578
579            // Update stats
580            avgWrQLen = writeQueue.size();
581        } else {
582            // keep track of the fact that this burst effectively
583            // disappeared as it was merged with an existing one
584            mergedWrBursts++;
585        }
586
587        // Starting address of next dram pkt (aligend to burstSize boundary)
588        addr = (addr | (burstSize - 1)) + 1;
589    }
590
591    // we do not wait for the writes to be send to the actual memory,
592    // but instead take responsibility for the consistency here and
593    // snoop the write queue for any upcoming reads
594    // @todo, if a pkt size is larger than burst size, we might need a
595    // different front end latency
596    accessAndRespond(pkt, frontendLatency);
597
598    // If we are not already scheduled to get a request out of the
599    // queue, do so now
600    if (!nextReqEvent.scheduled()) {
601        DPRINTF(DRAM, "Request scheduled immediately\n");
602        schedule(nextReqEvent, curTick());
603    }
604}
605
606void
607DRAMCtrl::printQs() const {
608    DPRINTF(DRAM, "===READ QUEUE===\n\n");
609    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
610        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
611    }
612    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
613    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
614        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
615    }
616    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
617    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
618        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
619    }
620}
621
622bool
623DRAMCtrl::recvTimingReq(PacketPtr pkt)
624{
625    /// @todo temporary hack to deal with memory corruption issues until
626    /// 4-phase transactions are complete
627    for (int x = 0; x < pendingDelete.size(); x++)
628        delete pendingDelete[x];
629    pendingDelete.clear();
630
631    // This is where we enter from the outside world
632    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
633            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
634
635    // simply drop inhibited packets for now
636    if (pkt->memInhibitAsserted()) {
637        DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
638        pendingDelete.push_back(pkt);
639        return true;
640    }
641
642    // Calc avg gap between requests
643    if (prevArrival != 0) {
644        totGap += curTick() - prevArrival;
645    }
646    prevArrival = curTick();
647
648
649    // Find out how many dram packets a pkt translates to
650    // If the burst size is equal or larger than the pkt size, then a pkt
651    // translates to only one dram packet. Otherwise, a pkt translates to
652    // multiple dram packets
653    unsigned size = pkt->getSize();
654    unsigned offset = pkt->getAddr() & (burstSize - 1);
655    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
656
657    // check local buffers and do not accept if full
658    if (pkt->isRead()) {
659        assert(size != 0);
660        if (readQueueFull(dram_pkt_count)) {
661            DPRINTF(DRAM, "Read queue full, not accepting\n");
662            // remember that we have to retry this port
663            retryRdReq = true;
664            numRdRetry++;
665            return false;
666        } else {
667            addToReadQueue(pkt, dram_pkt_count);
668            readReqs++;
669            bytesReadSys += size;
670        }
671    } else if (pkt->isWrite()) {
672        assert(size != 0);
673        if (writeQueueFull(dram_pkt_count)) {
674            DPRINTF(DRAM, "Write queue full, not accepting\n");
675            // remember that we have to retry this port
676            retryWrReq = true;
677            numWrRetry++;
678            return false;
679        } else {
680            addToWriteQueue(pkt, dram_pkt_count);
681            writeReqs++;
682            bytesWrittenSys += size;
683        }
684    } else {
685        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
686        neitherReadNorWrite++;
687        accessAndRespond(pkt, 1);
688    }
689
690    return true;
691}
692
693void
694DRAMCtrl::processRespondEvent()
695{
696    DPRINTF(DRAM,
697            "processRespondEvent(): Some req has reached its readyTime\n");
698
699    DRAMPacket* dram_pkt = respQueue.front();
700
701    if (dram_pkt->burstHelper) {
702        // it is a split packet
703        dram_pkt->burstHelper->burstsServiced++;
704        if (dram_pkt->burstHelper->burstsServiced ==
705            dram_pkt->burstHelper->burstCount) {
706            // we have now serviced all children packets of a system packet
707            // so we can now respond to the requester
708            // @todo we probably want to have a different front end and back
709            // end latency for split packets
710            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
711            delete dram_pkt->burstHelper;
712            dram_pkt->burstHelper = NULL;
713        }
714    } else {
715        // it is not a split packet
716        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
717    }
718
719    delete respQueue.front();
720    respQueue.pop_front();
721
722    if (!respQueue.empty()) {
723        assert(respQueue.front()->readyTime >= curTick());
724        assert(!respondEvent.scheduled());
725        schedule(respondEvent, respQueue.front()->readyTime);
726    } else {
727        // if there is nothing left in any queue, signal a drain
728        if (writeQueue.empty() && readQueue.empty() &&
729            drainManager) {
730            DPRINTF(Drain, "DRAM controller done draining\n");
731            drainManager->signalDrainDone();
732            drainManager = NULL;
733        }
734    }
735
736    // We have made a location in the queue available at this point,
737    // so if there is a read that was forced to wait, retry now
738    if (retryRdReq) {
739        retryRdReq = false;
740        port.sendRetry();
741    }
742}
743
744bool
745DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
746{
747    // This method does the arbitration between requests. The chosen
748    // packet is simply moved to the head of the queue. The other
749    // methods know that this is the place to look. For example, with
750    // FCFS, this method does nothing
751    assert(!queue.empty());
752
753    // bool to indicate if a packet to an available rank is found
754    bool found_packet = false;
755    if (queue.size() == 1) {
756        DRAMPacket* dram_pkt = queue.front();
757        // available rank corresponds to state refresh idle
758        if (ranks[dram_pkt->rank]->isAvailable()) {
759            found_packet = true;
760            DPRINTF(DRAM, "Single request, going to a free rank\n");
761        } else {
762            DPRINTF(DRAM, "Single request, going to a busy rank\n");
763        }
764        return found_packet;
765    }
766
767    if (memSchedPolicy == Enums::fcfs) {
768        // check if there is a packet going to a free rank
769        for(auto i = queue.begin(); i != queue.end() ; ++i) {
770            DRAMPacket* dram_pkt = *i;
771            if (ranks[dram_pkt->rank]->isAvailable()) {
772                queue.erase(i);
773                queue.push_front(dram_pkt);
774                found_packet = true;
775                break;
776            }
777        }
778    } else if (memSchedPolicy == Enums::frfcfs) {
779        found_packet = reorderQueue(queue, switched_cmd_type);
780    } else
781        panic("No scheduling policy chosen\n");
782    return found_packet;
783}
784
785bool
786DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
787{
788    // Only determine this when needed
789    uint64_t earliest_banks = 0;
790
791    // Search for row hits first, if no row hit is found then schedule the
792    // packet to one of the earliest banks available
793    bool found_packet = false;
794    bool found_earliest_pkt = false;
795    bool found_prepped_diff_rank_pkt = false;
796    auto selected_pkt_it = queue.end();
797
798    for (auto i = queue.begin(); i != queue.end() ; ++i) {
799        DRAMPacket* dram_pkt = *i;
800        const Bank& bank = dram_pkt->bankRef;
801        // check if rank is busy. If this is the case jump to the next packet
802        // Check if it is a row hit
803        if (dram_pkt->rankRef.isAvailable()) {
804            if (bank.openRow == dram_pkt->row) {
805                if (dram_pkt->rank == activeRank || switched_cmd_type) {
806                    // FCFS within the hits, giving priority to commands
807                    // that access the same rank as the previous burst
808                    // to minimize bus turnaround delays
809                    // Only give rank prioity when command type is
810                    // not changing
811                    DPRINTF(DRAM, "Row buffer hit\n");
812                    selected_pkt_it = i;
813                    break;
814                } else if (!found_prepped_diff_rank_pkt) {
815                    // found row hit for command on different rank
816                    // than prev burst
817                    selected_pkt_it = i;
818                    found_prepped_diff_rank_pkt = true;
819                }
820            } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) {
821                // packet going to a rank which is currently not waiting for a
822                // refresh, No row hit and
823                // haven't found an entry with a row hit to a new rank
824                if (earliest_banks == 0)
825                    // Determine entries with earliest bank prep delay
826                    // Function will give priority to commands that access the
827                    // same rank as previous burst and can prep
828                    // the bank seamlessly
829                    earliest_banks = minBankPrep(queue, switched_cmd_type);
830
831                // FCFS - Bank is first available bank
832                if (bits(earliest_banks, dram_pkt->bankId,
833                    dram_pkt->bankId)) {
834                    // Remember the packet to be scheduled to one of
835                    // the earliest banks available, FCFS amongst the
836                    // earliest banks
837                    selected_pkt_it = i;
838                    //if the packet found is going to a rank that is currently
839                    //not busy then update the found_packet to true
840                    found_earliest_pkt = true;
841                }
842            }
843        }
844    }
845
846    if (selected_pkt_it != queue.end()) {
847        DRAMPacket* selected_pkt = *selected_pkt_it;
848        queue.erase(selected_pkt_it);
849        queue.push_front(selected_pkt);
850        found_packet = true;
851    }
852    return found_packet;
853}
854
855void
856DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
857{
858    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
859
860    bool needsResponse = pkt->needsResponse();
861    // do the actual memory access which also turns the packet into a
862    // response
863    access(pkt);
864
865    // turn packet around to go back to requester if response expected
866    if (needsResponse) {
867        // access already turned the packet into a response
868        assert(pkt->isResponse());
869
870        // @todo someone should pay for this
871        pkt->firstWordDelay = pkt->lastWordDelay = 0;
872
873        // queue the packet in the response queue to be sent out after
874        // the static latency has passed
875        port.schedTimingResp(pkt, curTick() + static_latency);
876    } else {
877        // @todo the packet is going to be deleted, and the DRAMPacket
878        // is still having a pointer to it
879        pendingDelete.push_back(pkt);
880    }
881
882    DPRINTF(DRAM, "Done\n");
883
884    return;
885}
886
887void
888DRAMCtrl::activateBank(Rank& rank_ref, Bank& bank_ref,
889                       Tick act_tick, uint32_t row)
890{
891    assert(rank_ref.actTicks.size() == activationLimit);
892
893    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
894
895    // update the open row
896    assert(bank_ref.openRow == Bank::NO_ROW);
897    bank_ref.openRow = row;
898
899    // start counting anew, this covers both the case when we
900    // auto-precharged, and when this access is forced to
901    // precharge
902    bank_ref.bytesAccessed = 0;
903    bank_ref.rowAccesses = 0;
904
905    ++rank_ref.numBanksActive;
906    assert(rank_ref.numBanksActive <= banksPerRank);
907
908    DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
909            bank_ref.bank, rank_ref.rank, act_tick,
910            ranks[rank_ref.rank]->numBanksActive);
911
912    rank_ref.power.powerlib.doCommand(MemCommand::ACT, bank_ref.bank,
913                                      divCeil(act_tick, tCK) -
914                                      timeStampOffset);
915
916    DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
917            timeStampOffset, bank_ref.bank, rank_ref.rank);
918
919    // The next access has to respect tRAS for this bank
920    bank_ref.preAllowedAt = act_tick + tRAS;
921
922    // Respect the row-to-column command delay
923    bank_ref.colAllowedAt = std::max(act_tick + tRCD, bank_ref.colAllowedAt);
924
925    // start by enforcing tRRD
926    for(int i = 0; i < banksPerRank; i++) {
927        // next activate to any bank in this rank must not happen
928        // before tRRD
929        if (bankGroupArch && (bank_ref.bankgr == rank_ref.banks[i].bankgr)) {
930            // bank group architecture requires longer delays between
931            // ACT commands within the same bank group.  Use tRRD_L
932            // in this case
933            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD_L,
934                                             rank_ref.banks[i].actAllowedAt);
935        } else {
936            // use shorter tRRD value when either
937            // 1) bank group architecture is not supportted
938            // 2) bank is in a different bank group
939            rank_ref.banks[i].actAllowedAt = std::max(act_tick + tRRD,
940                                             rank_ref.banks[i].actAllowedAt);
941        }
942    }
943
944    // next, we deal with tXAW, if the activation limit is disabled
945    // then we directly schedule an activate power event
946    if (!rank_ref.actTicks.empty()) {
947        // sanity check
948        if (rank_ref.actTicks.back() &&
949           (act_tick - rank_ref.actTicks.back()) < tXAW) {
950            panic("Got %d activates in window %d (%llu - %llu) which "
951                  "is smaller than %llu\n", activationLimit, act_tick -
952                  rank_ref.actTicks.back(), act_tick,
953                  rank_ref.actTicks.back(), tXAW);
954        }
955
956        // shift the times used for the book keeping, the last element
957        // (highest index) is the oldest one and hence the lowest value
958        rank_ref.actTicks.pop_back();
959
960        // record an new activation (in the future)
961        rank_ref.actTicks.push_front(act_tick);
962
963        // cannot activate more than X times in time window tXAW, push the
964        // next one (the X + 1'st activate) to be tXAW away from the
965        // oldest in our window of X
966        if (rank_ref.actTicks.back() &&
967           (act_tick - rank_ref.actTicks.back()) < tXAW) {
968            DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
969                    "no earlier than %llu\n", activationLimit,
970                    rank_ref.actTicks.back() + tXAW);
971            for(int j = 0; j < banksPerRank; j++)
972                // next activate must not happen before end of window
973                rank_ref.banks[j].actAllowedAt =
974                    std::max(rank_ref.actTicks.back() + tXAW,
975                             rank_ref.banks[j].actAllowedAt);
976        }
977    }
978
979    // at the point when this activate takes place, make sure we
980    // transition to the active power state
981    if (!rank_ref.activateEvent.scheduled())
982        schedule(rank_ref.activateEvent, act_tick);
983    else if (rank_ref.activateEvent.when() > act_tick)
984        // move it sooner in time
985        reschedule(rank_ref.activateEvent, act_tick);
986}
987
988void
989DRAMCtrl::prechargeBank(Rank& rank_ref, Bank& bank, Tick pre_at, bool trace)
990{
991    // make sure the bank has an open row
992    assert(bank.openRow != Bank::NO_ROW);
993
994    // sample the bytes per activate here since we are closing
995    // the page
996    bytesPerActivate.sample(bank.bytesAccessed);
997
998    bank.openRow = Bank::NO_ROW;
999
1000    // no precharge allowed before this one
1001    bank.preAllowedAt = pre_at;
1002
1003    Tick pre_done_at = pre_at + tRP;
1004
1005    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
1006
1007    assert(rank_ref.numBanksActive != 0);
1008    --rank_ref.numBanksActive;
1009
1010    DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
1011            "%d active\n", bank.bank, rank_ref.rank, pre_at,
1012            rank_ref.numBanksActive);
1013
1014    if (trace) {
1015
1016        rank_ref.power.powerlib.doCommand(MemCommand::PRE, bank.bank,
1017                                                divCeil(pre_at, tCK) -
1018                                                timeStampOffset);
1019        DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1020                timeStampOffset, bank.bank, rank_ref.rank);
1021    }
1022    // if we look at the current number of active banks we might be
1023    // tempted to think the DRAM is now idle, however this can be
1024    // undone by an activate that is scheduled to happen before we
1025    // would have reached the idle state, so schedule an event and
1026    // rather check once we actually make it to the point in time when
1027    // the (last) precharge takes place
1028    if (!rank_ref.prechargeEvent.scheduled())
1029        schedule(rank_ref.prechargeEvent, pre_done_at);
1030    else if (rank_ref.prechargeEvent.when() < pre_done_at)
1031        reschedule(rank_ref.prechargeEvent, pre_done_at);
1032}
1033
1034void
1035DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1036{
1037    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1038            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1039
1040    // get the rank
1041    Rank& rank = dram_pkt->rankRef;
1042
1043    // get the bank
1044    Bank& bank = dram_pkt->bankRef;
1045
1046    // for the state we need to track if it is a row hit or not
1047    bool row_hit = true;
1048
1049    // respect any constraints on the command (e.g. tRCD or tCCD)
1050    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1051
1052    // Determine the access latency and update the bank state
1053    if (bank.openRow == dram_pkt->row) {
1054        // nothing to do
1055    } else {
1056        row_hit = false;
1057
1058        // If there is a page open, precharge it.
1059        if (bank.openRow != Bank::NO_ROW) {
1060            prechargeBank(rank, bank, std::max(bank.preAllowedAt, curTick()));
1061        }
1062
1063        // next we need to account for the delay in activating the
1064        // page
1065        Tick act_tick = std::max(bank.actAllowedAt, curTick());
1066
1067        // Record the activation and deal with all the global timing
1068        // constraints caused be a new activation (tRRD and tXAW)
1069        activateBank(rank, bank, act_tick, dram_pkt->row);
1070
1071        // issue the command as early as possible
1072        cmd_at = bank.colAllowedAt;
1073    }
1074
1075    // we need to wait until the bus is available before we can issue
1076    // the command
1077    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1078
1079    // update the packet ready time
1080    dram_pkt->readyTime = cmd_at + tCL + tBURST;
1081
1082    // only one burst can use the bus at any one point in time
1083    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1084
1085    // update the time for the next read/write burst for each
1086    // bank (add a max with tCCD/tCCD_L here)
1087    Tick cmd_dly;
1088    for(int j = 0; j < ranksPerChannel; j++) {
1089        for(int i = 0; i < banksPerRank; i++) {
1090            // next burst to same bank group in this rank must not happen
1091            // before tCCD_L.  Different bank group timing requirement is
1092            // tBURST; Add tCS for different ranks
1093            if (dram_pkt->rank == j) {
1094                if (bankGroupArch &&
1095                   (bank.bankgr == ranks[j]->banks[i].bankgr)) {
1096                    // bank group architecture requires longer delays between
1097                    // RD/WR burst commands to the same bank group.
1098                    // Use tCCD_L in this case
1099                    cmd_dly = tCCD_L;
1100                } else {
1101                    // use tBURST (equivalent to tCCD_S), the shorter
1102                    // cas-to-cas delay value, when either:
1103                    // 1) bank group architecture is not supportted
1104                    // 2) bank is in a different bank group
1105                    cmd_dly = tBURST;
1106                }
1107            } else {
1108                // different rank is by default in a different bank group
1109                // use tBURST (equivalent to tCCD_S), which is the shorter
1110                // cas-to-cas delay in this case
1111                // Add tCS to account for rank-to-rank bus delay requirements
1112                cmd_dly = tBURST + tCS;
1113            }
1114            ranks[j]->banks[i].colAllowedAt = std::max(cmd_at + cmd_dly,
1115                                             ranks[j]->banks[i].colAllowedAt);
1116        }
1117    }
1118
1119    // Save rank of current access
1120    activeRank = dram_pkt->rank;
1121
1122    // If this is a write, we also need to respect the write recovery
1123    // time before a precharge, in the case of a read, respect the
1124    // read to precharge constraint
1125    bank.preAllowedAt = std::max(bank.preAllowedAt,
1126                                 dram_pkt->isRead ? cmd_at + tRTP :
1127                                 dram_pkt->readyTime + tWR);
1128
1129    // increment the bytes accessed and the accesses per row
1130    bank.bytesAccessed += burstSize;
1131    ++bank.rowAccesses;
1132
1133    // if we reached the max, then issue with an auto-precharge
1134    bool auto_precharge = pageMgmt == Enums::close ||
1135        bank.rowAccesses == maxAccessesPerRow;
1136
1137    // if we did not hit the limit, we might still want to
1138    // auto-precharge
1139    if (!auto_precharge &&
1140        (pageMgmt == Enums::open_adaptive ||
1141         pageMgmt == Enums::close_adaptive)) {
1142        // a twist on the open and close page policies:
1143        // 1) open_adaptive page policy does not blindly keep the
1144        // page open, but close it if there are no row hits, and there
1145        // are bank conflicts in the queue
1146        // 2) close_adaptive page policy does not blindly close the
1147        // page, but closes it only if there are no row hits in the queue.
1148        // In this case, only force an auto precharge when there
1149        // are no same page hits in the queue
1150        bool got_more_hits = false;
1151        bool got_bank_conflict = false;
1152
1153        // either look at the read queue or write queue
1154        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1155            writeQueue;
1156        auto p = queue.begin();
1157        // make sure we are not considering the packet that we are
1158        // currently dealing with (which is the head of the queue)
1159        ++p;
1160
1161        // keep on looking until we have found required condition or
1162        // reached the end
1163        while (!(got_more_hits &&
1164                 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
1165               p != queue.end()) {
1166            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1167                (dram_pkt->bank == (*p)->bank);
1168            bool same_row = dram_pkt->row == (*p)->row;
1169            got_more_hits |= same_rank_bank && same_row;
1170            got_bank_conflict |= same_rank_bank && !same_row;
1171            ++p;
1172        }
1173
1174        // auto pre-charge when either
1175        // 1) open_adaptive policy, we have not got any more hits, and
1176        //    have a bank conflict
1177        // 2) close_adaptive policy and we have not got any more hits
1178        auto_precharge = !got_more_hits &&
1179            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1180    }
1181
1182    // DRAMPower trace command to be written
1183    std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1184
1185    // MemCommand required for DRAMPower library
1186    MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1187                                                   MemCommand::WR;
1188
1189    // if this access should use auto-precharge, then we are
1190    // closing the row
1191    if (auto_precharge) {
1192        // if auto-precharge push a PRE command at the correct tick to the
1193        // list used by DRAMPower library to calculate power
1194        prechargeBank(rank, bank, std::max(curTick(), bank.preAllowedAt));
1195
1196        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1197    }
1198
1199    // Update bus state
1200    busBusyUntil = dram_pkt->readyTime;
1201
1202    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1203            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1204
1205    dram_pkt->rankRef.power.powerlib.doCommand(command, dram_pkt->bank,
1206                                                 divCeil(cmd_at, tCK) -
1207                                                 timeStampOffset);
1208
1209    DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1210            timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1211
1212    // Update the minimum timing between the requests, this is a
1213    // conservative estimate of when we have to schedule the next
1214    // request to not introduce any unecessary bubbles. In most cases
1215    // we will wake up sooner than we have to.
1216    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1217
1218    // Update the stats and schedule the next request
1219    if (dram_pkt->isRead) {
1220        ++readsThisTime;
1221        if (row_hit)
1222            readRowHits++;
1223        bytesReadDRAM += burstSize;
1224        perBankRdBursts[dram_pkt->bankId]++;
1225
1226        // Update latency stats
1227        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1228        totBusLat += tBURST;
1229        totQLat += cmd_at - dram_pkt->entryTime;
1230    } else {
1231        ++writesThisTime;
1232        if (row_hit)
1233            writeRowHits++;
1234        bytesWritten += burstSize;
1235        perBankWrBursts[dram_pkt->bankId]++;
1236    }
1237}
1238
1239void
1240DRAMCtrl::processNextReqEvent()
1241{
1242    int busyRanks = 0;
1243    for (auto r : ranks) {
1244        if (!r->isAvailable()) {
1245            // rank is busy refreshing
1246            busyRanks++;
1247
1248            // let the rank know that if it was waiting to drain, it
1249            // is now done and ready to proceed
1250            r->checkDrainDone();
1251        }
1252    }
1253
1254    if (busyRanks == ranksPerChannel) {
1255        // if all ranks are refreshing wait for them to finish
1256        // and stall this state machine without taking any further
1257        // action, and do not schedule a new nextReqEvent
1258        return;
1259    }
1260
1261    // pre-emptively set to false.  Overwrite if in READ_TO_WRITE
1262    // or WRITE_TO_READ state
1263    bool switched_cmd_type = false;
1264    if (busState == READ_TO_WRITE) {
1265        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1266                "waiting\n", readsThisTime, readQueue.size());
1267
1268        // sample and reset the read-related stats as we are now
1269        // transitioning to writes, and all reads are done
1270        rdPerTurnAround.sample(readsThisTime);
1271        readsThisTime = 0;
1272
1273        // now proceed to do the actual writes
1274        busState = WRITE;
1275        switched_cmd_type = true;
1276    } else if (busState == WRITE_TO_READ) {
1277        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1278                "waiting\n", writesThisTime, writeQueue.size());
1279
1280        wrPerTurnAround.sample(writesThisTime);
1281        writesThisTime = 0;
1282
1283        busState = READ;
1284        switched_cmd_type = true;
1285    }
1286
1287    // when we get here it is either a read or a write
1288    if (busState == READ) {
1289
1290        // track if we should switch or not
1291        bool switch_to_writes = false;
1292
1293        if (readQueue.empty()) {
1294            // In the case there is no read request to go next,
1295            // trigger writes if we have passed the low threshold (or
1296            // if we are draining)
1297            if (!writeQueue.empty() &&
1298                (drainManager || writeQueue.size() > writeLowThreshold)) {
1299
1300                switch_to_writes = true;
1301            } else {
1302                // check if we are drained
1303                if (respQueue.empty () && drainManager) {
1304                    DPRINTF(Drain, "DRAM controller done draining\n");
1305                    drainManager->signalDrainDone();
1306                    drainManager = NULL;
1307                }
1308
1309                // nothing to do, not even any point in scheduling an
1310                // event for the next request
1311                return;
1312            }
1313        } else {
1314            // bool to check if there is a read to a free rank
1315            bool found_read = false;
1316
1317            // Figure out which read request goes next, and move it to the
1318            // front of the read queue
1319            found_read = chooseNext(readQueue, switched_cmd_type);
1320
1321            // if no read to an available rank is found then return
1322            // at this point. There could be writes to the available ranks
1323            // which are above the required threshold. However, to
1324            // avoid adding more complexity to the code, return and wait
1325            // for a refresh event to kick things into action again.
1326            if (!found_read)
1327                return;
1328
1329            DRAMPacket* dram_pkt = readQueue.front();
1330            assert(dram_pkt->rankRef.isAvailable());
1331            // here we get a bit creative and shift the bus busy time not
1332            // just the tWTR, but also a CAS latency to capture the fact
1333            // that we are allowed to prepare a new bank, but not issue a
1334            // read command until after tWTR, in essence we capture a
1335            // bubble on the data bus that is tWTR + tCL
1336            if (switched_cmd_type && dram_pkt->rank == activeRank) {
1337                busBusyUntil += tWTR + tCL;
1338            }
1339
1340            doDRAMAccess(dram_pkt);
1341
1342            // At this point we're done dealing with the request
1343            readQueue.pop_front();
1344
1345            // sanity check
1346            assert(dram_pkt->size <= burstSize);
1347            assert(dram_pkt->readyTime >= curTick());
1348
1349            // Insert into response queue. It will be sent back to the
1350            // requestor at its readyTime
1351            if (respQueue.empty()) {
1352                assert(!respondEvent.scheduled());
1353                schedule(respondEvent, dram_pkt->readyTime);
1354            } else {
1355                assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1356                assert(respondEvent.scheduled());
1357            }
1358
1359            respQueue.push_back(dram_pkt);
1360
1361            // we have so many writes that we have to transition
1362            if (writeQueue.size() > writeHighThreshold) {
1363                switch_to_writes = true;
1364            }
1365        }
1366
1367        // switching to writes, either because the read queue is empty
1368        // and the writes have passed the low threshold (or we are
1369        // draining), or because the writes hit the hight threshold
1370        if (switch_to_writes) {
1371            // transition to writing
1372            busState = READ_TO_WRITE;
1373        }
1374    } else {
1375        // bool to check if write to free rank is found
1376        bool found_write = false;
1377
1378        found_write = chooseNext(writeQueue, switched_cmd_type);
1379
1380        // if no writes to an available rank are found then return.
1381        // There could be reads to the available ranks. However, to avoid
1382        // adding more complexity to the code, return at this point and wait
1383        // for a refresh event to kick things into action again.
1384        if (!found_write)
1385            return;
1386
1387        DRAMPacket* dram_pkt = writeQueue.front();
1388        assert(dram_pkt->rankRef.isAvailable());
1389        // sanity check
1390        assert(dram_pkt->size <= burstSize);
1391
1392        // add a bubble to the data bus, as defined by the
1393        // tRTW when access is to the same rank as previous burst
1394        // Different rank timing is handled with tCS, which is
1395        // applied to colAllowedAt
1396        if (switched_cmd_type && dram_pkt->rank == activeRank) {
1397            busBusyUntil += tRTW;
1398        }
1399
1400        doDRAMAccess(dram_pkt);
1401
1402        writeQueue.pop_front();
1403        delete dram_pkt;
1404
1405        // If we emptied the write queue, or got sufficiently below the
1406        // threshold (using the minWritesPerSwitch as the hysteresis) and
1407        // are not draining, or we have reads waiting and have done enough
1408        // writes, then switch to reads.
1409        if (writeQueue.empty() ||
1410            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1411             !drainManager) ||
1412            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1413            // turn the bus back around for reads again
1414            busState = WRITE_TO_READ;
1415
1416            // note that the we switch back to reads also in the idle
1417            // case, which eventually will check for any draining and
1418            // also pause any further scheduling if there is really
1419            // nothing to do
1420        }
1421    }
1422    // It is possible that a refresh to another rank kicks things back into
1423    // action before reaching this point.
1424    if (!nextReqEvent.scheduled())
1425        schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1426
1427    // If there is space available and we have writes waiting then let
1428    // them retry. This is done here to ensure that the retry does not
1429    // cause a nextReqEvent to be scheduled before we do so as part of
1430    // the next request processing
1431    if (retryWrReq && writeQueue.size() < writeBufferSize) {
1432        retryWrReq = false;
1433        port.sendRetry();
1434    }
1435}
1436
1437uint64_t
1438DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1439                      bool switched_cmd_type) const
1440{
1441    uint64_t bank_mask = 0;
1442    Tick min_act_at = MaxTick;
1443
1444    uint64_t bank_mask_same_rank = 0;
1445    Tick min_act_at_same_rank = MaxTick;
1446
1447    // Give precedence to commands that access same rank as previous command
1448    bool same_rank_match = false;
1449
1450    // determine if we have queued transactions targetting the
1451    // bank in question
1452    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1453    for (const auto& p : queue) {
1454        if(p->rankRef.isAvailable())
1455            got_waiting[p->bankId] = true;
1456    }
1457
1458    for (int i = 0; i < ranksPerChannel; i++) {
1459        for (int j = 0; j < banksPerRank; j++) {
1460            uint16_t bank_id = i * banksPerRank + j;
1461
1462            // if we have waiting requests for the bank, and it is
1463            // amongst the first available, update the mask
1464            if (got_waiting[bank_id]) {
1465                // make sure this rank is not currently refreshing.
1466                assert(ranks[i]->isAvailable());
1467                // simplistic approximation of when the bank can issue
1468                // an activate, ignoring any rank-to-rank switching
1469                // cost in this calculation
1470                Tick act_at = ranks[i]->banks[j].openRow == Bank::NO_ROW ?
1471                    ranks[i]->banks[j].actAllowedAt :
1472                    std::max(ranks[i]->banks[j].preAllowedAt, curTick()) + tRP;
1473
1474                // prioritize commands that access the
1475                // same rank as previous burst
1476                // Calculate bank mask separately for the case and
1477                // evaluate after loop iterations complete
1478                if (i == activeRank && ranksPerChannel > 1) {
1479                    if (act_at <= min_act_at_same_rank) {
1480                        // reset same rank bank mask if new minimum is found
1481                        // and previous minimum could not immediately send ACT
1482                        if (act_at < min_act_at_same_rank &&
1483                            min_act_at_same_rank > curTick())
1484                            bank_mask_same_rank = 0;
1485
1486                        // Set flag indicating that a same rank
1487                        // opportunity was found
1488                        same_rank_match = true;
1489
1490                        // set the bit corresponding to the available bank
1491                        replaceBits(bank_mask_same_rank, bank_id, bank_id, 1);
1492                        min_act_at_same_rank = act_at;
1493                    }
1494                } else {
1495                    if (act_at <= min_act_at) {
1496                        // reset bank mask if new minimum is found
1497                        // and either previous minimum could not immediately send ACT
1498                        if (act_at < min_act_at && min_act_at > curTick())
1499                            bank_mask = 0;
1500                        // set the bit corresponding to the available bank
1501                        replaceBits(bank_mask, bank_id, bank_id, 1);
1502                        min_act_at = act_at;
1503                    }
1504                }
1505            }
1506        }
1507    }
1508
1509    // Determine the earliest time when the next burst can issue based
1510    // on the current busBusyUntil delay.
1511    // Offset by tRCD to correlate with ACT timing variables
1512    Tick min_cmd_at = busBusyUntil - tCL - tRCD;
1513
1514    // if we have multiple ranks and all
1515    // waiting packets are accessing a rank which was previously active
1516    // then bank_mask_same_rank will be set to a value while bank_mask will
1517    // remain 0. In this case, the function should return the value of
1518    // bank_mask_same_rank.
1519    // else if waiting packets access a rank which was previously active and
1520    // other ranks, prioritize same rank accesses that can issue B2B
1521    // Only optimize for same ranks when the command type
1522    // does not change; do not want to unnecessarily incur tWTR
1523    //
1524    // Resulting FCFS prioritization Order is:
1525    // 1) Commands that access the same rank as previous burst
1526    //    and can prep the bank seamlessly.
1527    // 2) Commands (any rank) with earliest bank prep
1528    if ((bank_mask == 0) || (!switched_cmd_type && same_rank_match &&
1529        min_act_at_same_rank <= min_cmd_at)) {
1530        bank_mask = bank_mask_same_rank;
1531    }
1532
1533    return bank_mask;
1534}
1535
1536DRAMCtrl::Rank::Rank(DRAMCtrl& _memory, const DRAMCtrlParams* _p)
1537    : EventManager(&_memory), memory(_memory),
1538      pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), pwrStateTick(0),
1539      refreshState(REF_IDLE), refreshDueAt(0),
1540      power(_p, false), numBanksActive(0),
1541      activateEvent(*this), prechargeEvent(*this),
1542      refreshEvent(*this), powerEvent(*this)
1543{ }
1544
1545void
1546DRAMCtrl::Rank::startup(Tick ref_tick)
1547{
1548    assert(ref_tick > curTick());
1549
1550    pwrStateTick = curTick();
1551
1552    // kick off the refresh, and give ourselves enough time to
1553    // precharge
1554    schedule(refreshEvent, ref_tick);
1555}
1556
1557void
1558DRAMCtrl::Rank::checkDrainDone()
1559{
1560    // if this rank was waiting to drain it is now able to proceed to
1561    // precharge
1562    if (refreshState == REF_DRAIN) {
1563        DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1564
1565        refreshState = REF_PRE;
1566
1567        // hand control back to the refresh event loop
1568        schedule(refreshEvent, curTick());
1569    }
1570}
1571
1572void
1573DRAMCtrl::Rank::processActivateEvent()
1574{
1575    // we should transition to the active state as soon as any bank is active
1576    if (pwrState != PWR_ACT)
1577        // note that at this point numBanksActive could be back at
1578        // zero again due to a precharge scheduled in the future
1579        schedulePowerEvent(PWR_ACT, curTick());
1580}
1581
1582void
1583DRAMCtrl::Rank::processPrechargeEvent()
1584{
1585    // if we reached zero, then special conditions apply as we track
1586    // if all banks are precharged for the power models
1587    if (numBanksActive == 0) {
1588        // we should transition to the idle state when the last bank
1589        // is precharged
1590        schedulePowerEvent(PWR_IDLE, curTick());
1591    }
1592}
1593
1594void
1595DRAMCtrl::Rank::processRefreshEvent()
1596{
1597    // when first preparing the refresh, remember when it was due
1598    if (refreshState == REF_IDLE) {
1599        // remember when the refresh is due
1600        refreshDueAt = curTick();
1601
1602        // proceed to drain
1603        refreshState = REF_DRAIN;
1604
1605        DPRINTF(DRAM, "Refresh due\n");
1606    }
1607
1608    // let any scheduled read or write to the same rank go ahead,
1609    // after which it will
1610    // hand control back to this event loop
1611    if (refreshState == REF_DRAIN) {
1612        // if a request is at the moment being handled and this request is
1613        // accessing the current rank then wait for it to finish
1614        if ((rank == memory.activeRank)
1615            && (memory.nextReqEvent.scheduled())) {
1616            // hand control over to the request loop until it is
1617            // evaluated next
1618            DPRINTF(DRAM, "Refresh awaiting draining\n");
1619
1620            return;
1621        } else {
1622            refreshState = REF_PRE;
1623        }
1624    }
1625
1626    // at this point, ensure that all banks are precharged
1627    if (refreshState == REF_PRE) {
1628        // precharge any active bank if we are not already in the idle
1629        // state
1630        if (pwrState != PWR_IDLE) {
1631            // at the moment, we use a precharge all even if there is
1632            // only a single bank open
1633            DPRINTF(DRAM, "Precharging all\n");
1634
1635            // first determine when we can precharge
1636            Tick pre_at = curTick();
1637
1638            for (auto &b : banks) {
1639                // respect both causality and any existing bank
1640                // constraints, some banks could already have a
1641                // (auto) precharge scheduled
1642                pre_at = std::max(b.preAllowedAt, pre_at);
1643            }
1644
1645            // make sure all banks per rank are precharged, and for those that
1646            // already are, update their availability
1647            Tick act_allowed_at = pre_at + memory.tRP;
1648
1649            for (auto &b : banks) {
1650                if (b.openRow != Bank::NO_ROW) {
1651                    memory.prechargeBank(*this, b, pre_at, false);
1652                } else {
1653                    b.actAllowedAt = std::max(b.actAllowedAt, act_allowed_at);
1654                    b.preAllowedAt = std::max(b.preAllowedAt, pre_at);
1655                }
1656            }
1657
1658            // precharge all banks in rank
1659            power.powerlib.doCommand(MemCommand::PREA, 0,
1660                                     divCeil(pre_at, memory.tCK) -
1661                                     memory.timeStampOffset);
1662
1663            DPRINTF(DRAMPower, "%llu,PREA,0,%d\n",
1664                    divCeil(pre_at, memory.tCK) -
1665                            memory.timeStampOffset, rank);
1666        } else {
1667            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1668
1669            // go ahead and kick the power state machine into gear if
1670            // we are already idle
1671            schedulePowerEvent(PWR_REF, curTick());
1672        }
1673
1674        refreshState = REF_RUN;
1675        assert(numBanksActive == 0);
1676
1677        // wait for all banks to be precharged, at which point the
1678        // power state machine will transition to the idle state, and
1679        // automatically move to a refresh, at that point it will also
1680        // call this method to get the refresh event loop going again
1681        return;
1682    }
1683
1684    // last but not least we perform the actual refresh
1685    if (refreshState == REF_RUN) {
1686        // should never get here with any banks active
1687        assert(numBanksActive == 0);
1688        assert(pwrState == PWR_REF);
1689
1690        Tick ref_done_at = curTick() + memory.tRFC;
1691
1692        for (auto &b : banks) {
1693            b.actAllowedAt = ref_done_at;
1694        }
1695
1696        // at the moment this affects all ranks
1697        power.powerlib.doCommand(MemCommand::REF, 0,
1698                                 divCeil(curTick(), memory.tCK) -
1699                                 memory.timeStampOffset);
1700
1701        // at the moment sort the list of commands and update the counters
1702        // for DRAMPower libray when doing a refresh
1703        sort(power.powerlib.cmdList.begin(),
1704             power.powerlib.cmdList.end(), DRAMCtrl::sortTime);
1705
1706        // update the counters for DRAMPower, passing false to
1707        // indicate that this is not the last command in the
1708        // list. DRAMPower requires this information for the
1709        // correct calculation of the background energy at the end
1710        // of the simulation. Ideally we would want to call this
1711        // function with true once at the end of the
1712        // simulation. However, the discarded energy is extremly
1713        // small and does not effect the final results.
1714        power.powerlib.updateCounters(false);
1715
1716        // call the energy function
1717        power.powerlib.calcEnergy();
1718
1719        // Update the stats
1720        updatePowerStats();
1721
1722        DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), memory.tCK) -
1723                memory.timeStampOffset, rank);
1724
1725        // make sure we did not wait so long that we cannot make up
1726        // for it
1727        if (refreshDueAt + memory.tREFI < ref_done_at) {
1728            fatal("Refresh was delayed so long we cannot catch up\n");
1729        }
1730
1731        // compensate for the delay in actually performing the refresh
1732        // when scheduling the next one
1733        schedule(refreshEvent, refreshDueAt + memory.tREFI - memory.tRP);
1734
1735        assert(!powerEvent.scheduled());
1736
1737        // move to the idle power state once the refresh is done, this
1738        // will also move the refresh state machine to the refresh
1739        // idle state
1740        schedulePowerEvent(PWR_IDLE, ref_done_at);
1741
1742        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1743                ref_done_at, refreshDueAt + memory.tREFI);
1744    }
1745}
1746
1747void
1748DRAMCtrl::Rank::schedulePowerEvent(PowerState pwr_state, Tick tick)
1749{
1750    // respect causality
1751    assert(tick >= curTick());
1752
1753    if (!powerEvent.scheduled()) {
1754        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1755                tick, pwr_state);
1756
1757        // insert the new transition
1758        pwrStateTrans = pwr_state;
1759
1760        schedule(powerEvent, tick);
1761    } else {
1762        panic("Scheduled power event at %llu to state %d, "
1763              "with scheduled event at %llu to %d\n", tick, pwr_state,
1764              powerEvent.when(), pwrStateTrans);
1765    }
1766}
1767
1768void
1769DRAMCtrl::Rank::processPowerEvent()
1770{
1771    // remember where we were, and for how long
1772    Tick duration = curTick() - pwrStateTick;
1773    PowerState prev_state = pwrState;
1774
1775    // update the accounting
1776    pwrStateTime[prev_state] += duration;
1777
1778    pwrState = pwrStateTrans;
1779    pwrStateTick = curTick();
1780
1781    if (pwrState == PWR_IDLE) {
1782        DPRINTF(DRAMState, "All banks precharged\n");
1783
1784        // if we were refreshing, make sure we start scheduling requests again
1785        if (prev_state == PWR_REF) {
1786            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1787            assert(pwrState == PWR_IDLE);
1788
1789            // kick things into action again
1790            refreshState = REF_IDLE;
1791            // a request event could be already scheduled by the state
1792            // machine of the other rank
1793            if (!memory.nextReqEvent.scheduled())
1794                schedule(memory.nextReqEvent, curTick());
1795        } else {
1796            assert(prev_state == PWR_ACT);
1797
1798            // if we have a pending refresh, and are now moving to
1799            // the idle state, direclty transition to a refresh
1800            if (refreshState == REF_RUN) {
1801                // there should be nothing waiting at this point
1802                assert(!powerEvent.scheduled());
1803
1804                // update the state in zero time and proceed below
1805                pwrState = PWR_REF;
1806            }
1807        }
1808    }
1809
1810    // we transition to the refresh state, let the refresh state
1811    // machine know of this state update and let it deal with the
1812    // scheduling of the next power state transition as well as the
1813    // following refresh
1814    if (pwrState == PWR_REF) {
1815        DPRINTF(DRAMState, "Refreshing\n");
1816        // kick the refresh event loop into action again, and that
1817        // in turn will schedule a transition to the idle power
1818        // state once the refresh is done
1819        assert(refreshState == REF_RUN);
1820        processRefreshEvent();
1821    }
1822}
1823
1824void
1825DRAMCtrl::Rank::updatePowerStats()
1826{
1827    // Get the energy and power from DRAMPower
1828    Data::MemoryPowerModel::Energy energy =
1829        power.powerlib.getEnergy();
1830    Data::MemoryPowerModel::Power rank_power =
1831        power.powerlib.getPower();
1832
1833    actEnergy = energy.act_energy * memory.devicesPerRank;
1834    preEnergy = energy.pre_energy * memory.devicesPerRank;
1835    readEnergy = energy.read_energy * memory.devicesPerRank;
1836    writeEnergy = energy.write_energy * memory.devicesPerRank;
1837    refreshEnergy = energy.ref_energy * memory.devicesPerRank;
1838    actBackEnergy = energy.act_stdby_energy * memory.devicesPerRank;
1839    preBackEnergy = energy.pre_stdby_energy * memory.devicesPerRank;
1840    totalEnergy = energy.total_energy * memory.devicesPerRank;
1841    averagePower = rank_power.average_power * memory.devicesPerRank;
1842}
1843
1844void
1845DRAMCtrl::Rank::regStats()
1846{
1847    using namespace Stats;
1848
1849    pwrStateTime
1850        .init(5)
1851        .name(name() + ".memoryStateTime")
1852        .desc("Time in different power states");
1853    pwrStateTime.subname(0, "IDLE");
1854    pwrStateTime.subname(1, "REF");
1855    pwrStateTime.subname(2, "PRE_PDN");
1856    pwrStateTime.subname(3, "ACT");
1857    pwrStateTime.subname(4, "ACT_PDN");
1858
1859    actEnergy
1860        .name(name() + ".actEnergy")
1861        .desc("Energy for activate commands per rank (pJ)");
1862
1863    preEnergy
1864        .name(name() + ".preEnergy")
1865        .desc("Energy for precharge commands per rank (pJ)");
1866
1867    readEnergy
1868        .name(name() + ".readEnergy")
1869        .desc("Energy for read commands per rank (pJ)");
1870
1871    writeEnergy
1872        .name(name() + ".writeEnergy")
1873        .desc("Energy for write commands per rank (pJ)");
1874
1875    refreshEnergy
1876        .name(name() + ".refreshEnergy")
1877        .desc("Energy for refresh commands per rank (pJ)");
1878
1879    actBackEnergy
1880        .name(name() + ".actBackEnergy")
1881        .desc("Energy for active background per rank (pJ)");
1882
1883    preBackEnergy
1884        .name(name() + ".preBackEnergy")
1885        .desc("Energy for precharge background per rank (pJ)");
1886
1887    totalEnergy
1888        .name(name() + ".totalEnergy")
1889        .desc("Total energy per rank (pJ)");
1890
1891    averagePower
1892        .name(name() + ".averagePower")
1893        .desc("Core power per rank (mW)");
1894}
1895void
1896DRAMCtrl::regStats()
1897{
1898    using namespace Stats;
1899
1900    AbstractMemory::regStats();
1901
1902    for (auto r : ranks) {
1903        r->regStats();
1904    }
1905
1906    readReqs
1907        .name(name() + ".readReqs")
1908        .desc("Number of read requests accepted");
1909
1910    writeReqs
1911        .name(name() + ".writeReqs")
1912        .desc("Number of write requests accepted");
1913
1914    readBursts
1915        .name(name() + ".readBursts")
1916        .desc("Number of DRAM read bursts, "
1917              "including those serviced by the write queue");
1918
1919    writeBursts
1920        .name(name() + ".writeBursts")
1921        .desc("Number of DRAM write bursts, "
1922              "including those merged in the write queue");
1923
1924    servicedByWrQ
1925        .name(name() + ".servicedByWrQ")
1926        .desc("Number of DRAM read bursts serviced by the write queue");
1927
1928    mergedWrBursts
1929        .name(name() + ".mergedWrBursts")
1930        .desc("Number of DRAM write bursts merged with an existing one");
1931
1932    neitherReadNorWrite
1933        .name(name() + ".neitherReadNorWriteReqs")
1934        .desc("Number of requests that are neither read nor write");
1935
1936    perBankRdBursts
1937        .init(banksPerRank * ranksPerChannel)
1938        .name(name() + ".perBankRdBursts")
1939        .desc("Per bank write bursts");
1940
1941    perBankWrBursts
1942        .init(banksPerRank * ranksPerChannel)
1943        .name(name() + ".perBankWrBursts")
1944        .desc("Per bank write bursts");
1945
1946    avgRdQLen
1947        .name(name() + ".avgRdQLen")
1948        .desc("Average read queue length when enqueuing")
1949        .precision(2);
1950
1951    avgWrQLen
1952        .name(name() + ".avgWrQLen")
1953        .desc("Average write queue length when enqueuing")
1954        .precision(2);
1955
1956    totQLat
1957        .name(name() + ".totQLat")
1958        .desc("Total ticks spent queuing");
1959
1960    totBusLat
1961        .name(name() + ".totBusLat")
1962        .desc("Total ticks spent in databus transfers");
1963
1964    totMemAccLat
1965        .name(name() + ".totMemAccLat")
1966        .desc("Total ticks spent from burst creation until serviced "
1967              "by the DRAM");
1968
1969    avgQLat
1970        .name(name() + ".avgQLat")
1971        .desc("Average queueing delay per DRAM burst")
1972        .precision(2);
1973
1974    avgQLat = totQLat / (readBursts - servicedByWrQ);
1975
1976    avgBusLat
1977        .name(name() + ".avgBusLat")
1978        .desc("Average bus latency per DRAM burst")
1979        .precision(2);
1980
1981    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1982
1983    avgMemAccLat
1984        .name(name() + ".avgMemAccLat")
1985        .desc("Average memory access latency per DRAM burst")
1986        .precision(2);
1987
1988    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1989
1990    numRdRetry
1991        .name(name() + ".numRdRetry")
1992        .desc("Number of times read queue was full causing retry");
1993
1994    numWrRetry
1995        .name(name() + ".numWrRetry")
1996        .desc("Number of times write queue was full causing retry");
1997
1998    readRowHits
1999        .name(name() + ".readRowHits")
2000        .desc("Number of row buffer hits during reads");
2001
2002    writeRowHits
2003        .name(name() + ".writeRowHits")
2004        .desc("Number of row buffer hits during writes");
2005
2006    readRowHitRate
2007        .name(name() + ".readRowHitRate")
2008        .desc("Row buffer hit rate for reads")
2009        .precision(2);
2010
2011    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
2012
2013    writeRowHitRate
2014        .name(name() + ".writeRowHitRate")
2015        .desc("Row buffer hit rate for writes")
2016        .precision(2);
2017
2018    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
2019
2020    readPktSize
2021        .init(ceilLog2(burstSize) + 1)
2022        .name(name() + ".readPktSize")
2023        .desc("Read request sizes (log2)");
2024
2025     writePktSize
2026        .init(ceilLog2(burstSize) + 1)
2027        .name(name() + ".writePktSize")
2028        .desc("Write request sizes (log2)");
2029
2030     rdQLenPdf
2031        .init(readBufferSize)
2032        .name(name() + ".rdQLenPdf")
2033        .desc("What read queue length does an incoming req see");
2034
2035     wrQLenPdf
2036        .init(writeBufferSize)
2037        .name(name() + ".wrQLenPdf")
2038        .desc("What write queue length does an incoming req see");
2039
2040     bytesPerActivate
2041         .init(maxAccessesPerRow)
2042         .name(name() + ".bytesPerActivate")
2043         .desc("Bytes accessed per row activation")
2044         .flags(nozero);
2045
2046     rdPerTurnAround
2047         .init(readBufferSize)
2048         .name(name() + ".rdPerTurnAround")
2049         .desc("Reads before turning the bus around for writes")
2050         .flags(nozero);
2051
2052     wrPerTurnAround
2053         .init(writeBufferSize)
2054         .name(name() + ".wrPerTurnAround")
2055         .desc("Writes before turning the bus around for reads")
2056         .flags(nozero);
2057
2058    bytesReadDRAM
2059        .name(name() + ".bytesReadDRAM")
2060        .desc("Total number of bytes read from DRAM");
2061
2062    bytesReadWrQ
2063        .name(name() + ".bytesReadWrQ")
2064        .desc("Total number of bytes read from write queue");
2065
2066    bytesWritten
2067        .name(name() + ".bytesWritten")
2068        .desc("Total number of bytes written to DRAM");
2069
2070    bytesReadSys
2071        .name(name() + ".bytesReadSys")
2072        .desc("Total read bytes from the system interface side");
2073
2074    bytesWrittenSys
2075        .name(name() + ".bytesWrittenSys")
2076        .desc("Total written bytes from the system interface side");
2077
2078    avgRdBW
2079        .name(name() + ".avgRdBW")
2080        .desc("Average DRAM read bandwidth in MiByte/s")
2081        .precision(2);
2082
2083    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
2084
2085    avgWrBW
2086        .name(name() + ".avgWrBW")
2087        .desc("Average achieved write bandwidth in MiByte/s")
2088        .precision(2);
2089
2090    avgWrBW = (bytesWritten / 1000000) / simSeconds;
2091
2092    avgRdBWSys
2093        .name(name() + ".avgRdBWSys")
2094        .desc("Average system read bandwidth in MiByte/s")
2095        .precision(2);
2096
2097    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
2098
2099    avgWrBWSys
2100        .name(name() + ".avgWrBWSys")
2101        .desc("Average system write bandwidth in MiByte/s")
2102        .precision(2);
2103
2104    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
2105
2106    peakBW
2107        .name(name() + ".peakBW")
2108        .desc("Theoretical peak bandwidth in MiByte/s")
2109        .precision(2);
2110
2111    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
2112
2113    busUtil
2114        .name(name() + ".busUtil")
2115        .desc("Data bus utilization in percentage")
2116        .precision(2);
2117    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
2118
2119    totGap
2120        .name(name() + ".totGap")
2121        .desc("Total gap between requests");
2122
2123    avgGap
2124        .name(name() + ".avgGap")
2125        .desc("Average gap between requests")
2126        .precision(2);
2127
2128    avgGap = totGap / (readReqs + writeReqs);
2129
2130    // Stats for DRAM Power calculation based on Micron datasheet
2131    busUtilRead
2132        .name(name() + ".busUtilRead")
2133        .desc("Data bus utilization in percentage for reads")
2134        .precision(2);
2135
2136    busUtilRead = avgRdBW / peakBW * 100;
2137
2138    busUtilWrite
2139        .name(name() + ".busUtilWrite")
2140        .desc("Data bus utilization in percentage for writes")
2141        .precision(2);
2142
2143    busUtilWrite = avgWrBW / peakBW * 100;
2144
2145    pageHitRate
2146        .name(name() + ".pageHitRate")
2147        .desc("Row buffer hit rate, read and write combined")
2148        .precision(2);
2149
2150    pageHitRate = (writeRowHits + readRowHits) /
2151        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
2152}
2153
2154void
2155DRAMCtrl::recvFunctional(PacketPtr pkt)
2156{
2157    // rely on the abstract memory
2158    functionalAccess(pkt);
2159}
2160
2161BaseSlavePort&
2162DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2163{
2164    if (if_name != "port") {
2165        return MemObject::getSlavePort(if_name, idx);
2166    } else {
2167        return port;
2168    }
2169}
2170
2171unsigned int
2172DRAMCtrl::drain(DrainManager *dm)
2173{
2174    unsigned int count = port.drain(dm);
2175
2176    // if there is anything in any of our internal queues, keep track
2177    // of that as well
2178    if (!(writeQueue.empty() && readQueue.empty() &&
2179          respQueue.empty())) {
2180        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2181                " resp: %d\n", writeQueue.size(), readQueue.size(),
2182                respQueue.size());
2183        ++count;
2184        drainManager = dm;
2185
2186        // the only part that is not drained automatically over time
2187        // is the write queue, thus kick things into action if needed
2188        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2189            schedule(nextReqEvent, curTick());
2190        }
2191    }
2192
2193    if (count)
2194        setDrainState(Drainable::Draining);
2195    else
2196        setDrainState(Drainable::Drained);
2197    return count;
2198}
2199
2200DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2201    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2202      memory(_memory)
2203{ }
2204
2205AddrRangeList
2206DRAMCtrl::MemoryPort::getAddrRanges() const
2207{
2208    AddrRangeList ranges;
2209    ranges.push_back(memory.getAddrRange());
2210    return ranges;
2211}
2212
2213void
2214DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2215{
2216    pkt->pushLabel(memory.name());
2217
2218    if (!queue.checkFunctional(pkt)) {
2219        // Default implementation of SimpleTimingPort::recvFunctional()
2220        // calls recvAtomic() and throws away the latency; we can save a
2221        // little here by just not calculating the latency.
2222        memory.recvFunctional(pkt);
2223    }
2224
2225    pkt->popLabel();
2226}
2227
2228Tick
2229DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2230{
2231    return memory.recvAtomic(pkt);
2232}
2233
2234bool
2235DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2236{
2237    // pass it to the memory controller
2238    return memory.recvTimingReq(pkt);
2239}
2240
2241DRAMCtrl*
2242DRAMCtrlParams::create()
2243{
2244    return new DRAMCtrl(this);
2245}
2246