dram_ctrl.cc revision 10509:d5554f97c451
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 */
44
45#include "base/bitfield.hh"
46#include "base/trace.hh"
47#include "debug/DRAM.hh"
48#include "debug/DRAMPower.hh"
49#include "debug/DRAMState.hh"
50#include "debug/Drain.hh"
51#include "mem/dram_ctrl.hh"
52#include "sim/system.hh"
53
54using namespace std;
55using namespace Data;
56
57DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
58    AbstractMemory(p),
59    port(name() + ".port", *this),
60    retryRdReq(false), retryWrReq(false),
61    busState(READ),
62    nextReqEvent(this), respondEvent(this), activateEvent(this),
63    prechargeEvent(this), refreshEvent(this), powerEvent(this),
64    drainManager(NULL),
65    deviceSize(p->device_size),
66    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
67    deviceRowBufferSize(p->device_rowbuffer_size),
68    devicesPerRank(p->devices_per_rank),
69    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
70    rowBufferSize(devicesPerRank * deviceRowBufferSize),
71    columnsPerRowBuffer(rowBufferSize / burstSize),
72    columnsPerStripe(range.granularity() / burstSize),
73    ranksPerChannel(p->ranks_per_channel),
74    bankGroupsPerRank(p->bank_groups_per_rank),
75    bankGroupArch(p->bank_groups_per_rank > 0),
76    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
77    readBufferSize(p->read_buffer_size),
78    writeBufferSize(p->write_buffer_size),
79    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
80    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
81    minWritesPerSwitch(p->min_writes_per_switch),
82    writesThisTime(0), readsThisTime(0),
83    tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tCS(p->tCS), tBURST(p->tBURST),
84    tCCD_L(p->tCCD_L), tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
85    tWR(p->tWR), tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
86    tRRD_L(p->tRRD_L), tXAW(p->tXAW), activationLimit(p->activation_limit),
87    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
88    pageMgmt(p->page_policy),
89    maxAccessesPerRow(p->max_accesses_per_row),
90    frontendLatency(p->static_frontend_latency),
91    backendLatency(p->static_backend_latency),
92    busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE),
93    pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0),
94    nextReqTime(0), pwrStateTick(0), numBanksActive(0),
95    activeRank(0), timeStampOffset(0)
96{
97    // create the bank states based on the dimensions of the ranks and
98    // banks
99    banks.resize(ranksPerChannel);
100
101    //create list of drampower objects. For each rank 1 drampower instance.
102    for (int i = 0; i < ranksPerChannel; i++) {
103        DRAMPower drampower = DRAMPower(p, false);
104        rankPower.emplace_back(drampower);
105    }
106
107    actTicks.resize(ranksPerChannel);
108    for (size_t c = 0; c < ranksPerChannel; ++c) {
109        banks[c].resize(banksPerRank);
110        actTicks[c].resize(activationLimit, 0);
111    }
112
113    // set the bank indices
114    for (int r = 0; r < ranksPerChannel; r++) {
115        for (int b = 0; b < banksPerRank; b++) {
116            banks[r][b].rank = r;
117            banks[r][b].bank = b;
118            if (bankGroupArch) {
119                // Simply assign lower bits to bank group in order to
120                // rotate across bank groups as banks are incremented
121                // e.g. with 4 banks per bank group and 16 banks total:
122                //    banks 0,4,8,12  are in bank group 0
123                //    banks 1,5,9,13  are in bank group 1
124                //    banks 2,6,10,14 are in bank group 2
125                //    banks 3,7,11,15 are in bank group 3
126                banks[r][b].bankgr = b % bankGroupsPerRank;
127            } else {
128                // No bank groups; simply assign to bank number
129                banks[r][b].bankgr = b;
130            }
131        }
132    }
133
134    // perform a basic check of the write thresholds
135    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
136        fatal("Write buffer low threshold %d must be smaller than the "
137              "high threshold %d\n", p->write_low_thresh_perc,
138              p->write_high_thresh_perc);
139
140    // determine the rows per bank by looking at the total capacity
141    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
142
143    // determine the dram actual capacity from the DRAM config in Mbytes
144    uint64_t deviceCapacity = deviceSize / (1024 * 1024) * devicesPerRank *
145        ranksPerChannel;
146
147    // if actual DRAM size does not match memory capacity in system warn!
148    if (deviceCapacity != capacity / (1024 * 1024))
149        warn("DRAM device capacity (%d Mbytes) does not match the "
150             "address range assigned (%d Mbytes)\n", deviceCapacity,
151             capacity / (1024 * 1024));
152
153    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
154            AbstractMemory::size());
155
156    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
157            rowBufferSize, columnsPerRowBuffer);
158
159    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
160
161    // a bit of sanity checks on the interleaving
162    if (range.interleaved()) {
163        if (channels != range.stripes())
164            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
165                  name(), range.stripes(), channels);
166
167        if (addrMapping == Enums::RoRaBaChCo) {
168            if (rowBufferSize != range.granularity()) {
169                fatal("Channel interleaving of %s doesn't match RoRaBaChCo "
170                      "address map\n", name());
171            }
172        } else if (addrMapping == Enums::RoRaBaCoCh ||
173                   addrMapping == Enums::RoCoRaBaCh) {
174            // for the interleavings with channel bits in the bottom,
175            // if the system uses a channel striping granularity that
176            // is larger than the DRAM burst size, then map the
177            // sequential accesses within a stripe to a number of
178            // columns in the DRAM, effectively placing some of the
179            // lower-order column bits as the least-significant bits
180            // of the address (above the ones denoting the burst size)
181            assert(columnsPerStripe >= 1);
182
183            // channel striping has to be done at a granularity that
184            // is equal or larger to a cache line
185            if (system()->cacheLineSize() > range.granularity()) {
186                fatal("Channel interleaving of %s must be at least as large "
187                      "as the cache line size\n", name());
188            }
189
190            // ...and equal or smaller than the row-buffer size
191            if (rowBufferSize < range.granularity()) {
192                fatal("Channel interleaving of %s must be at most as large "
193                      "as the row-buffer size\n", name());
194            }
195            // this is essentially the check above, so just to be sure
196            assert(columnsPerStripe <= columnsPerRowBuffer);
197        }
198    }
199
200    // some basic sanity checks
201    if (tREFI <= tRP || tREFI <= tRFC) {
202        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
203              tREFI, tRP, tRFC);
204    }
205
206    // basic bank group architecture checks ->
207    if (bankGroupArch) {
208        // must have at least one bank per bank group
209        if (bankGroupsPerRank > banksPerRank) {
210            fatal("banks per rank (%d) must be equal to or larger than "
211                  "banks groups per rank (%d)\n",
212                  banksPerRank, bankGroupsPerRank);
213        }
214        // must have same number of banks in each bank group
215        if ((banksPerRank % bankGroupsPerRank) != 0) {
216            fatal("Banks per rank (%d) must be evenly divisible by bank groups "
217                  "per rank (%d) for equal banks per bank group\n",
218                  banksPerRank, bankGroupsPerRank);
219        }
220        // tCCD_L should be greater than minimal, back-to-back burst delay
221        if (tCCD_L <= tBURST) {
222            fatal("tCCD_L (%d) should be larger than tBURST (%d) when "
223                  "bank groups per rank (%d) is greater than 1\n",
224                  tCCD_L, tBURST, bankGroupsPerRank);
225        }
226        // tRRD_L is greater than minimal, same bank group ACT-to-ACT delay
227        if (tRRD_L <= tRRD) {
228            fatal("tRRD_L (%d) should be larger than tRRD (%d) when "
229                  "bank groups per rank (%d) is greater than 1\n",
230                  tRRD_L, tRRD, bankGroupsPerRank);
231        }
232    }
233
234}
235
236void
237DRAMCtrl::init()
238{
239    AbstractMemory::init();
240
241   if (!port.isConnected()) {
242        fatal("DRAMCtrl %s is unconnected!\n", name());
243    } else {
244        port.sendRangeChange();
245    }
246}
247
248void
249DRAMCtrl::startup()
250{
251    // timestamp offset should be in clock cycles for DRAMPower
252    timeStampOffset = divCeil(curTick(), tCK);
253    // update the start tick for the precharge accounting to the
254    // current tick
255    pwrStateTick = curTick();
256
257    // shift the bus busy time sufficiently far ahead that we never
258    // have to worry about negative values when computing the time for
259    // the next request, this will add an insignificant bubble at the
260    // start of simulation
261    busBusyUntil = curTick() + tRP + tRCD + tCL;
262
263    // kick off the refresh, and give ourselves enough time to
264    // precharge
265    schedule(refreshEvent, curTick() + tREFI - tRP);
266}
267
268Tick
269DRAMCtrl::recvAtomic(PacketPtr pkt)
270{
271    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
272
273    // do the actual memory access and turn the packet into a response
274    access(pkt);
275
276    Tick latency = 0;
277    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
278        // this value is not supposed to be accurate, just enough to
279        // keep things going, mimic a closed page
280        latency = tRP + tRCD + tCL;
281    }
282    return latency;
283}
284
285bool
286DRAMCtrl::readQueueFull(unsigned int neededEntries) const
287{
288    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
289            readBufferSize, readQueue.size() + respQueue.size(),
290            neededEntries);
291
292    return
293        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
294}
295
296bool
297DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
298{
299    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
300            writeBufferSize, writeQueue.size(), neededEntries);
301    return (writeQueue.size() + neededEntries) > writeBufferSize;
302}
303
304DRAMCtrl::DRAMPacket*
305DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
306                       bool isRead)
307{
308    // decode the address based on the address mapping scheme, with
309    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
310    // channel, respectively
311    uint8_t rank;
312    uint8_t bank;
313    // use a 64-bit unsigned during the computations as the row is
314    // always the top bits, and check before creating the DRAMPacket
315    uint64_t row;
316
317    // truncate the address to a DRAM burst, which makes it unique to
318    // a specific column, row, bank, rank and channel
319    Addr addr = dramPktAddr / burstSize;
320
321    // we have removed the lowest order address bits that denote the
322    // position within the column
323    if (addrMapping == Enums::RoRaBaChCo) {
324        // the lowest order bits denote the column to ensure that
325        // sequential cache lines occupy the same row
326        addr = addr / columnsPerRowBuffer;
327
328        // take out the channel part of the address
329        addr = addr / channels;
330
331        // after the channel bits, get the bank bits to interleave
332        // over the banks
333        bank = addr % banksPerRank;
334        addr = addr / banksPerRank;
335
336        // after the bank, we get the rank bits which thus interleaves
337        // over the ranks
338        rank = addr % ranksPerChannel;
339        addr = addr / ranksPerChannel;
340
341        // lastly, get the row bits
342        row = addr % rowsPerBank;
343        addr = addr / rowsPerBank;
344    } else if (addrMapping == Enums::RoRaBaCoCh) {
345        // take out the lower-order column bits
346        addr = addr / columnsPerStripe;
347
348        // take out the channel part of the address
349        addr = addr / channels;
350
351        // next, the higher-order column bites
352        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
353
354        // after the column bits, we get the bank bits to interleave
355        // over the banks
356        bank = addr % banksPerRank;
357        addr = addr / banksPerRank;
358
359        // after the bank, we get the rank bits which thus interleaves
360        // over the ranks
361        rank = addr % ranksPerChannel;
362        addr = addr / ranksPerChannel;
363
364        // lastly, get the row bits
365        row = addr % rowsPerBank;
366        addr = addr / rowsPerBank;
367    } else if (addrMapping == Enums::RoCoRaBaCh) {
368        // optimise for closed page mode and utilise maximum
369        // parallelism of the DRAM (at the cost of power)
370
371        // take out the lower-order column bits
372        addr = addr / columnsPerStripe;
373
374        // take out the channel part of the address, not that this has
375        // to match with how accesses are interleaved between the
376        // controllers in the address mapping
377        addr = addr / channels;
378
379        // start with the bank bits, as this provides the maximum
380        // opportunity for parallelism between requests
381        bank = addr % banksPerRank;
382        addr = addr / banksPerRank;
383
384        // next get the rank bits
385        rank = addr % ranksPerChannel;
386        addr = addr / ranksPerChannel;
387
388        // next, the higher-order column bites
389        addr = addr / (columnsPerRowBuffer / columnsPerStripe);
390
391        // lastly, get the row bits
392        row = addr % rowsPerBank;
393        addr = addr / rowsPerBank;
394    } else
395        panic("Unknown address mapping policy chosen!");
396
397    assert(rank < ranksPerChannel);
398    assert(bank < banksPerRank);
399    assert(row < rowsPerBank);
400    assert(row < Bank::NO_ROW);
401
402    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
403            dramPktAddr, rank, bank, row);
404
405    // create the corresponding DRAM packet with the entry time and
406    // ready time set to the current tick, the latter will be updated
407    // later
408    uint16_t bank_id = banksPerRank * rank + bank;
409    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
410                          size, banks[rank][bank]);
411}
412
413void
414DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
415{
416    // only add to the read queue here. whenever the request is
417    // eventually done, set the readyTime, and call schedule()
418    assert(!pkt->isWrite());
419
420    assert(pktCount != 0);
421
422    // if the request size is larger than burst size, the pkt is split into
423    // multiple DRAM packets
424    // Note if the pkt starting address is not aligened to burst size, the
425    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
426    // are aligned to burst size boundaries. This is to ensure we accurately
427    // check read packets against packets in write queue.
428    Addr addr = pkt->getAddr();
429    unsigned pktsServicedByWrQ = 0;
430    BurstHelper* burst_helper = NULL;
431    for (int cnt = 0; cnt < pktCount; ++cnt) {
432        unsigned size = std::min((addr | (burstSize - 1)) + 1,
433                        pkt->getAddr() + pkt->getSize()) - addr;
434        readPktSize[ceilLog2(size)]++;
435        readBursts++;
436
437        // First check write buffer to see if the data is already at
438        // the controller
439        bool foundInWrQ = false;
440        for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
441            // check if the read is subsumed in the write entry we are
442            // looking at
443            if ((*i)->addr <= addr &&
444                (addr + size) <= ((*i)->addr + (*i)->size)) {
445                foundInWrQ = true;
446                servicedByWrQ++;
447                pktsServicedByWrQ++;
448                DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
449                        "write queue\n", addr, size);
450                bytesReadWrQ += burstSize;
451                break;
452            }
453        }
454
455        // If not found in the write q, make a DRAM packet and
456        // push it onto the read queue
457        if (!foundInWrQ) {
458
459            // Make the burst helper for split packets
460            if (pktCount > 1 && burst_helper == NULL) {
461                DPRINTF(DRAM, "Read to addr %lld translates to %d "
462                        "dram requests\n", pkt->getAddr(), pktCount);
463                burst_helper = new BurstHelper(pktCount);
464            }
465
466            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
467            dram_pkt->burstHelper = burst_helper;
468
469            assert(!readQueueFull(1));
470            rdQLenPdf[readQueue.size() + respQueue.size()]++;
471
472            DPRINTF(DRAM, "Adding to read queue\n");
473
474            readQueue.push_back(dram_pkt);
475
476            // Update stats
477            avgRdQLen = readQueue.size() + respQueue.size();
478        }
479
480        // Starting address of next dram pkt (aligend to burstSize boundary)
481        addr = (addr | (burstSize - 1)) + 1;
482    }
483
484    // If all packets are serviced by write queue, we send the repsonse back
485    if (pktsServicedByWrQ == pktCount) {
486        accessAndRespond(pkt, frontendLatency);
487        return;
488    }
489
490    // Update how many split packets are serviced by write queue
491    if (burst_helper != NULL)
492        burst_helper->burstsServiced = pktsServicedByWrQ;
493
494    // If we are not already scheduled to get a request out of the
495    // queue, do so now
496    if (!nextReqEvent.scheduled()) {
497        DPRINTF(DRAM, "Request scheduled immediately\n");
498        schedule(nextReqEvent, curTick());
499    }
500}
501
502void
503DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
504{
505    // only add to the write queue here. whenever the request is
506    // eventually done, set the readyTime, and call schedule()
507    assert(pkt->isWrite());
508
509    // if the request size is larger than burst size, the pkt is split into
510    // multiple DRAM packets
511    Addr addr = pkt->getAddr();
512    for (int cnt = 0; cnt < pktCount; ++cnt) {
513        unsigned size = std::min((addr | (burstSize - 1)) + 1,
514                        pkt->getAddr() + pkt->getSize()) - addr;
515        writePktSize[ceilLog2(size)]++;
516        writeBursts++;
517
518        // see if we can merge with an existing item in the write
519        // queue and keep track of whether we have merged or not so we
520        // can stop at that point and also avoid enqueueing a new
521        // request
522        bool merged = false;
523        auto w = writeQueue.begin();
524
525        while(!merged && w != writeQueue.end()) {
526            // either of the two could be first, if they are the same
527            // it does not matter which way we go
528            if ((*w)->addr >= addr) {
529                // the existing one starts after the new one, figure
530                // out where the new one ends with respect to the
531                // existing one
532                if ((addr + size) >= ((*w)->addr + (*w)->size)) {
533                    // check if the existing one is completely
534                    // subsumed in the new one
535                    DPRINTF(DRAM, "Merging write covering existing burst\n");
536                    merged = true;
537                    // update both the address and the size
538                    (*w)->addr = addr;
539                    (*w)->size = size;
540                } else if ((addr + size) >= (*w)->addr &&
541                           ((*w)->addr + (*w)->size - addr) <= burstSize) {
542                    // the new one is just before or partially
543                    // overlapping with the existing one, and together
544                    // they fit within a burst
545                    DPRINTF(DRAM, "Merging write before existing burst\n");
546                    merged = true;
547                    // the existing queue item needs to be adjusted with
548                    // respect to both address and size
549                    (*w)->size = (*w)->addr + (*w)->size - addr;
550                    (*w)->addr = addr;
551                }
552            } else {
553                // the new one starts after the current one, figure
554                // out where the existing one ends with respect to the
555                // new one
556                if (((*w)->addr + (*w)->size) >= (addr + size)) {
557                    // check if the new one is completely subsumed in the
558                    // existing one
559                    DPRINTF(DRAM, "Merging write into existing burst\n");
560                    merged = true;
561                    // no adjustments necessary
562                } else if (((*w)->addr + (*w)->size) >= addr &&
563                           (addr + size - (*w)->addr) <= burstSize) {
564                    // the existing one is just before or partially
565                    // overlapping with the new one, and together
566                    // they fit within a burst
567                    DPRINTF(DRAM, "Merging write after existing burst\n");
568                    merged = true;
569                    // the address is right, and only the size has
570                    // to be adjusted
571                    (*w)->size = addr + size - (*w)->addr;
572                }
573            }
574            ++w;
575        }
576
577        // if the item was not merged we need to create a new write
578        // and enqueue it
579        if (!merged) {
580            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
581
582            assert(writeQueue.size() < writeBufferSize);
583            wrQLenPdf[writeQueue.size()]++;
584
585            DPRINTF(DRAM, "Adding to write queue\n");
586
587            writeQueue.push_back(dram_pkt);
588
589            // Update stats
590            avgWrQLen = writeQueue.size();
591        } else {
592            // keep track of the fact that this burst effectively
593            // disappeared as it was merged with an existing one
594            mergedWrBursts++;
595        }
596
597        // Starting address of next dram pkt (aligend to burstSize boundary)
598        addr = (addr | (burstSize - 1)) + 1;
599    }
600
601    // we do not wait for the writes to be send to the actual memory,
602    // but instead take responsibility for the consistency here and
603    // snoop the write queue for any upcoming reads
604    // @todo, if a pkt size is larger than burst size, we might need a
605    // different front end latency
606    accessAndRespond(pkt, frontendLatency);
607
608    // If we are not already scheduled to get a request out of the
609    // queue, do so now
610    if (!nextReqEvent.scheduled()) {
611        DPRINTF(DRAM, "Request scheduled immediately\n");
612        schedule(nextReqEvent, curTick());
613    }
614}
615
616void
617DRAMCtrl::printQs() const {
618    DPRINTF(DRAM, "===READ QUEUE===\n\n");
619    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
620        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
621    }
622    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
623    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
624        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
625    }
626    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
627    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
628        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
629    }
630}
631
632bool
633DRAMCtrl::recvTimingReq(PacketPtr pkt)
634{
635    /// @todo temporary hack to deal with memory corruption issues until
636    /// 4-phase transactions are complete
637    for (int x = 0; x < pendingDelete.size(); x++)
638        delete pendingDelete[x];
639    pendingDelete.clear();
640
641    // This is where we enter from the outside world
642    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
643            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
644
645    // simply drop inhibited packets for now
646    if (pkt->memInhibitAsserted()) {
647        DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
648        pendingDelete.push_back(pkt);
649        return true;
650    }
651
652    // Calc avg gap between requests
653    if (prevArrival != 0) {
654        totGap += curTick() - prevArrival;
655    }
656    prevArrival = curTick();
657
658
659    // Find out how many dram packets a pkt translates to
660    // If the burst size is equal or larger than the pkt size, then a pkt
661    // translates to only one dram packet. Otherwise, a pkt translates to
662    // multiple dram packets
663    unsigned size = pkt->getSize();
664    unsigned offset = pkt->getAddr() & (burstSize - 1);
665    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
666
667    // check local buffers and do not accept if full
668    if (pkt->isRead()) {
669        assert(size != 0);
670        if (readQueueFull(dram_pkt_count)) {
671            DPRINTF(DRAM, "Read queue full, not accepting\n");
672            // remember that we have to retry this port
673            retryRdReq = true;
674            numRdRetry++;
675            return false;
676        } else {
677            addToReadQueue(pkt, dram_pkt_count);
678            readReqs++;
679            bytesReadSys += size;
680        }
681    } else if (pkt->isWrite()) {
682        assert(size != 0);
683        if (writeQueueFull(dram_pkt_count)) {
684            DPRINTF(DRAM, "Write queue full, not accepting\n");
685            // remember that we have to retry this port
686            retryWrReq = true;
687            numWrRetry++;
688            return false;
689        } else {
690            addToWriteQueue(pkt, dram_pkt_count);
691            writeReqs++;
692            bytesWrittenSys += size;
693        }
694    } else {
695        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
696        neitherReadNorWrite++;
697        accessAndRespond(pkt, 1);
698    }
699
700    return true;
701}
702
703void
704DRAMCtrl::processRespondEvent()
705{
706    DPRINTF(DRAM,
707            "processRespondEvent(): Some req has reached its readyTime\n");
708
709    DRAMPacket* dram_pkt = respQueue.front();
710
711    if (dram_pkt->burstHelper) {
712        // it is a split packet
713        dram_pkt->burstHelper->burstsServiced++;
714        if (dram_pkt->burstHelper->burstsServiced ==
715            dram_pkt->burstHelper->burstCount) {
716            // we have now serviced all children packets of a system packet
717            // so we can now respond to the requester
718            // @todo we probably want to have a different front end and back
719            // end latency for split packets
720            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
721            delete dram_pkt->burstHelper;
722            dram_pkt->burstHelper = NULL;
723        }
724    } else {
725        // it is not a split packet
726        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
727    }
728
729    delete respQueue.front();
730    respQueue.pop_front();
731
732    if (!respQueue.empty()) {
733        assert(respQueue.front()->readyTime >= curTick());
734        assert(!respondEvent.scheduled());
735        schedule(respondEvent, respQueue.front()->readyTime);
736    } else {
737        // if there is nothing left in any queue, signal a drain
738        if (writeQueue.empty() && readQueue.empty() &&
739            drainManager) {
740            DPRINTF(Drain, "DRAM controller done draining\n");
741            drainManager->signalDrainDone();
742            drainManager = NULL;
743        }
744    }
745
746    // We have made a location in the queue available at this point,
747    // so if there is a read that was forced to wait, retry now
748    if (retryRdReq) {
749        retryRdReq = false;
750        port.sendRetry();
751    }
752}
753
754void
755DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
756{
757    // This method does the arbitration between requests. The chosen
758    // packet is simply moved to the head of the queue. The other
759    // methods know that this is the place to look. For example, with
760    // FCFS, this method does nothing
761    assert(!queue.empty());
762
763    if (queue.size() == 1) {
764        DPRINTF(DRAM, "Single request, nothing to do\n");
765        return;
766    }
767
768    if (memSchedPolicy == Enums::fcfs) {
769        // Do nothing, since the correct request is already head
770    } else if (memSchedPolicy == Enums::frfcfs) {
771        reorderQueue(queue, switched_cmd_type);
772    } else
773        panic("No scheduling policy chosen\n");
774}
775
776void
777DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue, bool switched_cmd_type)
778{
779    // Only determine this when needed
780    uint64_t earliest_banks = 0;
781
782    // Search for row hits first, if no row hit is found then schedule the
783    // packet to one of the earliest banks available
784    bool found_earliest_pkt = false;
785    bool found_prepped_diff_rank_pkt = false;
786    auto selected_pkt_it = queue.begin();
787
788    for (auto i = queue.begin(); i != queue.end() ; ++i) {
789        DRAMPacket* dram_pkt = *i;
790        const Bank& bank = dram_pkt->bankRef;
791        // Check if it is a row hit
792        if (bank.openRow == dram_pkt->row) {
793            if (dram_pkt->rank == activeRank || switched_cmd_type) {
794                // FCFS within the hits, giving priority to commands
795                // that access the same rank as the previous burst
796                // to minimize bus turnaround delays
797                // Only give rank prioity when command type is not changing
798                DPRINTF(DRAM, "Row buffer hit\n");
799                selected_pkt_it = i;
800                break;
801            } else if (!found_prepped_diff_rank_pkt) {
802                // found row hit for command on different rank than prev burst
803                selected_pkt_it = i;
804                found_prepped_diff_rank_pkt = true;
805            }
806        } else if (!found_earliest_pkt & !found_prepped_diff_rank_pkt) {
807            // No row hit and
808            // haven't found an entry with a row hit to a new rank
809            if (earliest_banks == 0)
810                // Determine entries with earliest bank prep delay
811                // Function will give priority to commands that access the
812                // same rank as previous burst and can prep the bank seamlessly
813                earliest_banks = minBankPrep(queue, switched_cmd_type);
814
815            // FCFS - Bank is first available bank
816            if (bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
817                // Remember the packet to be scheduled to one of the earliest
818                // banks available, FCFS amongst the earliest banks
819                selected_pkt_it = i;
820                found_earliest_pkt = true;
821            }
822        }
823    }
824
825    DRAMPacket* selected_pkt = *selected_pkt_it;
826    queue.erase(selected_pkt_it);
827    queue.push_front(selected_pkt);
828}
829
830void
831DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
832{
833    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
834
835    bool needsResponse = pkt->needsResponse();
836    // do the actual memory access which also turns the packet into a
837    // response
838    access(pkt);
839
840    // turn packet around to go back to requester if response expected
841    if (needsResponse) {
842        // access already turned the packet into a response
843        assert(pkt->isResponse());
844
845        // @todo someone should pay for this
846        pkt->firstWordDelay = pkt->lastWordDelay = 0;
847
848        // queue the packet in the response queue to be sent out after
849        // the static latency has passed
850        port.schedTimingResp(pkt, curTick() + static_latency);
851    } else {
852        // @todo the packet is going to be deleted, and the DRAMPacket
853        // is still having a pointer to it
854        pendingDelete.push_back(pkt);
855    }
856
857    DPRINTF(DRAM, "Done\n");
858
859    return;
860}
861
862void
863DRAMCtrl::activateBank(Bank& bank, Tick act_tick, uint32_t row)
864{
865    // get the rank index from the bank
866    uint8_t rank = bank.rank;
867
868    assert(actTicks[rank].size() == activationLimit);
869
870    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
871
872    // update the open row
873    assert(bank.openRow == Bank::NO_ROW);
874    bank.openRow = row;
875
876    // start counting anew, this covers both the case when we
877    // auto-precharged, and when this access is forced to
878    // precharge
879    bank.bytesAccessed = 0;
880    bank.rowAccesses = 0;
881
882    ++numBanksActive;
883    assert(numBanksActive <= banksPerRank * ranksPerChannel);
884
885    DPRINTF(DRAM, "Activate bank %d, rank %d at tick %lld, now got %d active\n",
886            bank.bank, bank.rank, act_tick, numBanksActive);
887
888    rankPower[bank.rank].powerlib.doCommand(MemCommand::ACT, bank.bank,
889                                            divCeil(act_tick, tCK) -
890                                            timeStampOffset);
891
892    DPRINTF(DRAMPower, "%llu,ACT,%d,%d\n", divCeil(act_tick, tCK) -
893            timeStampOffset, bank.bank, bank.rank);
894
895    // The next access has to respect tRAS for this bank
896    bank.preAllowedAt = act_tick + tRAS;
897
898    // Respect the row-to-column command delay
899    bank.colAllowedAt = std::max(act_tick + tRCD, bank.colAllowedAt);
900
901    // start by enforcing tRRD
902    for(int i = 0; i < banksPerRank; i++) {
903        // next activate to any bank in this rank must not happen
904        // before tRRD
905        if (bankGroupArch && (bank.bankgr == banks[rank][i].bankgr)) {
906            // bank group architecture requires longer delays between
907            // ACT commands within the same bank group.  Use tRRD_L
908            // in this case
909            banks[rank][i].actAllowedAt = std::max(act_tick + tRRD_L,
910                                                   banks[rank][i].actAllowedAt);
911        } else {
912            // use shorter tRRD value when either
913            // 1) bank group architecture is not supportted
914            // 2) bank is in a different bank group
915            banks[rank][i].actAllowedAt = std::max(act_tick + tRRD,
916                                                   banks[rank][i].actAllowedAt);
917        }
918    }
919
920    // next, we deal with tXAW, if the activation limit is disabled
921    // then we directly schedule an activate power event
922    if (!actTicks[rank].empty()) {
923        // sanity check
924        if (actTicks[rank].back() &&
925           (act_tick - actTicks[rank].back()) < tXAW) {
926            panic("Got %d activates in window %d (%llu - %llu) which "
927                  "is smaller than %llu\n", activationLimit, act_tick -
928                  actTicks[rank].back(), act_tick, actTicks[rank].back(),
929                  tXAW);
930        }
931
932        // shift the times used for the book keeping, the last element
933        // (highest index) is the oldest one and hence the lowest value
934        actTicks[rank].pop_back();
935
936        // record an new activation (in the future)
937        actTicks[rank].push_front(act_tick);
938
939        // cannot activate more than X times in time window tXAW, push the
940        // next one (the X + 1'st activate) to be tXAW away from the
941        // oldest in our window of X
942        if (actTicks[rank].back() &&
943           (act_tick - actTicks[rank].back()) < tXAW) {
944            DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate "
945                    "no earlier than %llu\n", activationLimit,
946                    actTicks[rank].back() + tXAW);
947            for(int j = 0; j < banksPerRank; j++)
948                // next activate must not happen before end of window
949                banks[rank][j].actAllowedAt =
950                    std::max(actTicks[rank].back() + tXAW,
951                             banks[rank][j].actAllowedAt);
952        }
953    }
954
955    // at the point when this activate takes place, make sure we
956    // transition to the active power state
957    if (!activateEvent.scheduled())
958        schedule(activateEvent, act_tick);
959    else if (activateEvent.when() > act_tick)
960        // move it sooner in time
961        reschedule(activateEvent, act_tick);
962}
963
964void
965DRAMCtrl::processActivateEvent()
966{
967    // we should transition to the active state as soon as any bank is active
968    if (pwrState != PWR_ACT)
969        // note that at this point numBanksActive could be back at
970        // zero again due to a precharge scheduled in the future
971        schedulePowerEvent(PWR_ACT, curTick());
972}
973
974void
975DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at, bool trace)
976{
977    // make sure the bank has an open row
978    assert(bank.openRow != Bank::NO_ROW);
979
980    // sample the bytes per activate here since we are closing
981    // the page
982    bytesPerActivate.sample(bank.bytesAccessed);
983
984    bank.openRow = Bank::NO_ROW;
985
986    // no precharge allowed before this one
987    bank.preAllowedAt = pre_at;
988
989    Tick pre_done_at = pre_at + tRP;
990
991    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
992
993    assert(numBanksActive != 0);
994    --numBanksActive;
995
996    DPRINTF(DRAM, "Precharging bank %d, rank %d at tick %lld, now got "
997            "%d active\n", bank.bank, bank.rank, pre_at, numBanksActive);
998
999    if (trace) {
1000
1001        rankPower[bank.rank].powerlib.doCommand(MemCommand::PRE, bank.bank,
1002                                                divCeil(pre_at, tCK) -
1003                                                timeStampOffset);
1004        DPRINTF(DRAMPower, "%llu,PRE,%d,%d\n", divCeil(pre_at, tCK) -
1005                timeStampOffset, bank.bank, bank.rank);
1006    }
1007    // if we look at the current number of active banks we might be
1008    // tempted to think the DRAM is now idle, however this can be
1009    // undone by an activate that is scheduled to happen before we
1010    // would have reached the idle state, so schedule an event and
1011    // rather check once we actually make it to the point in time when
1012    // the (last) precharge takes place
1013    if (!prechargeEvent.scheduled())
1014        schedule(prechargeEvent, pre_done_at);
1015    else if (prechargeEvent.when() < pre_done_at)
1016        reschedule(prechargeEvent, pre_done_at);
1017}
1018
1019void
1020DRAMCtrl::processPrechargeEvent()
1021{
1022    // if we reached zero, then special conditions apply as we track
1023    // if all banks are precharged for the power models
1024    if (numBanksActive == 0) {
1025        // we should transition to the idle state when the last bank
1026        // is precharged
1027        schedulePowerEvent(PWR_IDLE, curTick());
1028    }
1029}
1030
1031void
1032DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
1033{
1034    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
1035            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
1036
1037    // get the bank
1038    Bank& bank = dram_pkt->bankRef;
1039
1040    // for the state we need to track if it is a row hit or not
1041    bool row_hit = true;
1042
1043    // respect any constraints on the command (e.g. tRCD or tCCD)
1044    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
1045
1046    // Determine the access latency and update the bank state
1047    if (bank.openRow == dram_pkt->row) {
1048        // nothing to do
1049    } else {
1050        row_hit = false;
1051
1052        // If there is a page open, precharge it.
1053        if (bank.openRow != Bank::NO_ROW) {
1054            prechargeBank(bank, std::max(bank.preAllowedAt, curTick()));
1055        }
1056
1057        // next we need to account for the delay in activating the
1058        // page
1059        Tick act_tick = std::max(bank.actAllowedAt, curTick());
1060
1061        // Record the activation and deal with all the global timing
1062        // constraints caused be a new activation (tRRD and tXAW)
1063        activateBank(bank, act_tick, dram_pkt->row);
1064
1065        // issue the command as early as possible
1066        cmd_at = bank.colAllowedAt;
1067    }
1068
1069    // we need to wait until the bus is available before we can issue
1070    // the command
1071    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
1072
1073    // update the packet ready time
1074    dram_pkt->readyTime = cmd_at + tCL + tBURST;
1075
1076    // only one burst can use the bus at any one point in time
1077    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1078
1079    // update the time for the next read/write burst for each
1080    // bank (add a max with tCCD/tCCD_L here)
1081    Tick cmd_dly;
1082    for(int j = 0; j < ranksPerChannel; j++) {
1083        for(int i = 0; i < banksPerRank; i++) {
1084            // next burst to same bank group in this rank must not happen
1085            // before tCCD_L.  Different bank group timing requirement is
1086            // tBURST; Add tCS for different ranks
1087            if (dram_pkt->rank == j) {
1088                if (bankGroupArch && (bank.bankgr == banks[j][i].bankgr)) {
1089                    // bank group architecture requires longer delays between
1090                    // RD/WR burst commands to the same bank group.
1091                    // Use tCCD_L in this case
1092                    cmd_dly = tCCD_L;
1093                } else {
1094                    // use tBURST (equivalent to tCCD_S), the shorter
1095                    // cas-to-cas delay value, when either:
1096                    // 1) bank group architecture is not supportted
1097                    // 2) bank is in a different bank group
1098                    cmd_dly = tBURST;
1099                }
1100            } else {
1101                // different rank is by default in a different bank group
1102                // use tBURST (equivalent to tCCD_S), which is the shorter
1103                // cas-to-cas delay in this case
1104                // Add tCS to account for rank-to-rank bus delay requirements
1105                cmd_dly = tBURST + tCS;
1106            }
1107            banks[j][i].colAllowedAt = std::max(cmd_at + cmd_dly,
1108                                                banks[j][i].colAllowedAt);
1109        }
1110    }
1111
1112    // Save rank of current access
1113    activeRank = dram_pkt->rank;
1114
1115    // If this is a write, we also need to respect the write recovery
1116    // time before a precharge, in the case of a read, respect the
1117    // read to precharge constraint
1118    bank.preAllowedAt = std::max(bank.preAllowedAt,
1119                                 dram_pkt->isRead ? cmd_at + tRTP :
1120                                 dram_pkt->readyTime + tWR);
1121
1122    // increment the bytes accessed and the accesses per row
1123    bank.bytesAccessed += burstSize;
1124    ++bank.rowAccesses;
1125
1126    // if we reached the max, then issue with an auto-precharge
1127    bool auto_precharge = pageMgmt == Enums::close ||
1128        bank.rowAccesses == maxAccessesPerRow;
1129
1130    // if we did not hit the limit, we might still want to
1131    // auto-precharge
1132    if (!auto_precharge &&
1133        (pageMgmt == Enums::open_adaptive ||
1134         pageMgmt == Enums::close_adaptive)) {
1135        // a twist on the open and close page policies:
1136        // 1) open_adaptive page policy does not blindly keep the
1137        // page open, but close it if there are no row hits, and there
1138        // are bank conflicts in the queue
1139        // 2) close_adaptive page policy does not blindly close the
1140        // page, but closes it only if there are no row hits in the queue.
1141        // In this case, only force an auto precharge when there
1142        // are no same page hits in the queue
1143        bool got_more_hits = false;
1144        bool got_bank_conflict = false;
1145
1146        // either look at the read queue or write queue
1147        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1148            writeQueue;
1149        auto p = queue.begin();
1150        // make sure we are not considering the packet that we are
1151        // currently dealing with (which is the head of the queue)
1152        ++p;
1153
1154        // keep on looking until we have found required condition or
1155        // reached the end
1156        while (!(got_more_hits &&
1157                 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
1158               p != queue.end()) {
1159            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1160                (dram_pkt->bank == (*p)->bank);
1161            bool same_row = dram_pkt->row == (*p)->row;
1162            got_more_hits |= same_rank_bank && same_row;
1163            got_bank_conflict |= same_rank_bank && !same_row;
1164            ++p;
1165        }
1166
1167        // auto pre-charge when either
1168        // 1) open_adaptive policy, we have not got any more hits, and
1169        //    have a bank conflict
1170        // 2) close_adaptive policy and we have not got any more hits
1171        auto_precharge = !got_more_hits &&
1172            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1173    }
1174
1175    // DRAMPower trace command to be written
1176    std::string mem_cmd = dram_pkt->isRead ? "RD" : "WR";
1177
1178    // MemCommand required for DRAMPower library
1179    MemCommand::cmds command = (mem_cmd == "RD") ? MemCommand::RD :
1180                                                   MemCommand::WR;
1181
1182    // if this access should use auto-precharge, then we are
1183    // closing the row
1184    if (auto_precharge) {
1185        // if auto-precharge push a PRE command at the correct tick to the
1186        // list used by DRAMPower library to calculate power
1187        prechargeBank(bank, std::max(curTick(), bank.preAllowedAt));
1188
1189        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1190    }
1191
1192    // Update bus state
1193    busBusyUntil = dram_pkt->readyTime;
1194
1195    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1196            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1197
1198    rankPower[dram_pkt->rank].powerlib.doCommand(command, dram_pkt->bank,
1199                                                 divCeil(cmd_at, tCK) -
1200                                                 timeStampOffset);
1201
1202    DPRINTF(DRAMPower, "%llu,%s,%d,%d\n", divCeil(cmd_at, tCK) -
1203            timeStampOffset, mem_cmd, dram_pkt->bank, dram_pkt->rank);
1204
1205    // Update the minimum timing between the requests, this is a
1206    // conservative estimate of when we have to schedule the next
1207    // request to not introduce any unecessary bubbles. In most cases
1208    // we will wake up sooner than we have to.
1209    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1210
1211    // Update the stats and schedule the next request
1212    if (dram_pkt->isRead) {
1213        ++readsThisTime;
1214        if (row_hit)
1215            readRowHits++;
1216        bytesReadDRAM += burstSize;
1217        perBankRdBursts[dram_pkt->bankId]++;
1218
1219        // Update latency stats
1220        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1221        totBusLat += tBURST;
1222        totQLat += cmd_at - dram_pkt->entryTime;
1223    } else {
1224        ++writesThisTime;
1225        if (row_hit)
1226            writeRowHits++;
1227        bytesWritten += burstSize;
1228        perBankWrBursts[dram_pkt->bankId]++;
1229    }
1230}
1231
1232void
1233DRAMCtrl::processNextReqEvent()
1234{
1235    // pre-emptively set to false.  Overwrite if in READ_TO_WRITE
1236    // or WRITE_TO_READ state
1237    bool switched_cmd_type = false;
1238    if (busState == READ_TO_WRITE) {
1239        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1240                "waiting\n", readsThisTime, readQueue.size());
1241
1242        // sample and reset the read-related stats as we are now
1243        // transitioning to writes, and all reads are done
1244        rdPerTurnAround.sample(readsThisTime);
1245        readsThisTime = 0;
1246
1247        // now proceed to do the actual writes
1248        busState = WRITE;
1249        switched_cmd_type = true;
1250    } else if (busState == WRITE_TO_READ) {
1251        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1252                "waiting\n", writesThisTime, writeQueue.size());
1253
1254        wrPerTurnAround.sample(writesThisTime);
1255        writesThisTime = 0;
1256
1257        busState = READ;
1258        switched_cmd_type = true;
1259    }
1260
1261    if (refreshState != REF_IDLE) {
1262        // if a refresh waiting for this event loop to finish, then hand
1263        // over now, and do not schedule a new nextReqEvent
1264        if (refreshState == REF_DRAIN) {
1265            DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1266
1267            refreshState = REF_PRE;
1268
1269            // hand control back to the refresh event loop
1270            schedule(refreshEvent, curTick());
1271        }
1272
1273        // let the refresh finish before issuing any further requests
1274        return;
1275    }
1276
1277    // when we get here it is either a read or a write
1278    if (busState == READ) {
1279
1280        // track if we should switch or not
1281        bool switch_to_writes = false;
1282
1283        if (readQueue.empty()) {
1284            // In the case there is no read request to go next,
1285            // trigger writes if we have passed the low threshold (or
1286            // if we are draining)
1287            if (!writeQueue.empty() &&
1288                (drainManager || writeQueue.size() > writeLowThreshold)) {
1289
1290                switch_to_writes = true;
1291            } else {
1292                // check if we are drained
1293                if (respQueue.empty () && drainManager) {
1294                    DPRINTF(Drain, "DRAM controller done draining\n");
1295                    drainManager->signalDrainDone();
1296                    drainManager = NULL;
1297                }
1298
1299                // nothing to do, not even any point in scheduling an
1300                // event for the next request
1301                return;
1302            }
1303        } else {
1304            // Figure out which read request goes next, and move it to the
1305            // front of the read queue
1306            chooseNext(readQueue, switched_cmd_type);
1307
1308            DRAMPacket* dram_pkt = readQueue.front();
1309
1310            // here we get a bit creative and shift the bus busy time not
1311            // just the tWTR, but also a CAS latency to capture the fact
1312            // that we are allowed to prepare a new bank, but not issue a
1313            // read command until after tWTR, in essence we capture a
1314            // bubble on the data bus that is tWTR + tCL
1315            if (switched_cmd_type && dram_pkt->rank == activeRank) {
1316                busBusyUntil += tWTR + tCL;
1317            }
1318
1319            doDRAMAccess(dram_pkt);
1320
1321            // At this point we're done dealing with the request
1322            readQueue.pop_front();
1323
1324            // sanity check
1325            assert(dram_pkt->size <= burstSize);
1326            assert(dram_pkt->readyTime >= curTick());
1327
1328            // Insert into response queue. It will be sent back to the
1329            // requestor at its readyTime
1330            if (respQueue.empty()) {
1331                assert(!respondEvent.scheduled());
1332                schedule(respondEvent, dram_pkt->readyTime);
1333            } else {
1334                assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1335                assert(respondEvent.scheduled());
1336            }
1337
1338            respQueue.push_back(dram_pkt);
1339
1340            // we have so many writes that we have to transition
1341            if (writeQueue.size() > writeHighThreshold) {
1342                switch_to_writes = true;
1343            }
1344        }
1345
1346        // switching to writes, either because the read queue is empty
1347        // and the writes have passed the low threshold (or we are
1348        // draining), or because the writes hit the hight threshold
1349        if (switch_to_writes) {
1350            // transition to writing
1351            busState = READ_TO_WRITE;
1352        }
1353    } else {
1354        chooseNext(writeQueue, switched_cmd_type);
1355        DRAMPacket* dram_pkt = writeQueue.front();
1356        // sanity check
1357        assert(dram_pkt->size <= burstSize);
1358
1359        // add a bubble to the data bus, as defined by the
1360        // tRTW when access is to the same rank as previous burst
1361        // Different rank timing is handled with tCS, which is
1362        // applied to colAllowedAt
1363        if (switched_cmd_type && dram_pkt->rank == activeRank) {
1364            busBusyUntil += tRTW;
1365        }
1366
1367        doDRAMAccess(dram_pkt);
1368
1369        writeQueue.pop_front();
1370        delete dram_pkt;
1371
1372        // If we emptied the write queue, or got sufficiently below the
1373        // threshold (using the minWritesPerSwitch as the hysteresis) and
1374        // are not draining, or we have reads waiting and have done enough
1375        // writes, then switch to reads.
1376        if (writeQueue.empty() ||
1377            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1378             !drainManager) ||
1379            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1380            // turn the bus back around for reads again
1381            busState = WRITE_TO_READ;
1382
1383            // note that the we switch back to reads also in the idle
1384            // case, which eventually will check for any draining and
1385            // also pause any further scheduling if there is really
1386            // nothing to do
1387        }
1388    }
1389
1390    schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1391
1392    // If there is space available and we have writes waiting then let
1393    // them retry. This is done here to ensure that the retry does not
1394    // cause a nextReqEvent to be scheduled before we do so as part of
1395    // the next request processing
1396    if (retryWrReq && writeQueue.size() < writeBufferSize) {
1397        retryWrReq = false;
1398        port.sendRetry();
1399    }
1400}
1401
1402uint64_t
1403DRAMCtrl::minBankPrep(const deque<DRAMPacket*>& queue,
1404                      bool switched_cmd_type) const
1405{
1406    uint64_t bank_mask = 0;
1407    Tick min_act_at = MaxTick;
1408
1409    uint64_t bank_mask_same_rank = 0;
1410    Tick min_act_at_same_rank = MaxTick;
1411
1412    // Give precedence to commands that access same rank as previous command
1413    bool same_rank_match = false;
1414
1415    // determine if we have queued transactions targetting the
1416    // bank in question
1417    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1418    for (auto p = queue.begin(); p != queue.end(); ++p) {
1419        got_waiting[(*p)->bankId] = true;
1420    }
1421
1422    for (int i = 0; i < ranksPerChannel; i++) {
1423        for (int j = 0; j < banksPerRank; j++) {
1424            uint8_t bank_id = i * banksPerRank + j;
1425
1426            // if we have waiting requests for the bank, and it is
1427            // amongst the first available, update the mask
1428            if (got_waiting[bank_id]) {
1429                // simplistic approximation of when the bank can issue
1430                // an activate, ignoring any rank-to-rank switching
1431                // cost in this calculation
1432                Tick act_at = banks[i][j].openRow == Bank::NO_ROW ?
1433                    banks[i][j].actAllowedAt :
1434                    std::max(banks[i][j].preAllowedAt, curTick()) + tRP;
1435
1436                // prioritize commands that access the
1437                // same rank as previous burst
1438                // Calculate bank mask separately for the case and
1439                // evaluate after loop iterations complete
1440                if (i == activeRank && ranksPerChannel > 1) {
1441                    if (act_at <= min_act_at_same_rank) {
1442                        // reset same rank bank mask if new minimum is found
1443                        // and previous minimum could not immediately send ACT
1444                        if (act_at < min_act_at_same_rank &&
1445                            min_act_at_same_rank > curTick())
1446                            bank_mask_same_rank = 0;
1447
1448                        // Set flag indicating that a same rank
1449                        // opportunity was found
1450                        same_rank_match = true;
1451
1452                        // set the bit corresponding to the available bank
1453                        replaceBits(bank_mask_same_rank, bank_id, bank_id, 1);
1454                        min_act_at_same_rank = act_at;
1455                    }
1456                } else {
1457                    if (act_at <= min_act_at) {
1458                        // reset bank mask if new minimum is found
1459                        // and either previous minimum could not immediately send ACT
1460                        if (act_at < min_act_at && min_act_at > curTick())
1461                            bank_mask = 0;
1462                        // set the bit corresponding to the available bank
1463                        replaceBits(bank_mask, bank_id, bank_id, 1);
1464                        min_act_at = act_at;
1465                    }
1466                }
1467            }
1468        }
1469    }
1470
1471    // Determine the earliest time when the next burst can issue based
1472    // on the current busBusyUntil delay.
1473    // Offset by tRCD to correlate with ACT timing variables
1474    Tick min_cmd_at = busBusyUntil - tCL - tRCD;
1475
1476    // Prioritize same rank accesses that can issue B2B
1477    // Only optimize for same ranks when the command type
1478    // does not change; do not want to unnecessarily incur tWTR
1479    //
1480    // Resulting FCFS prioritization Order is:
1481    // 1) Commands that access the same rank as previous burst
1482    //    and can prep the bank seamlessly.
1483    // 2) Commands (any rank) with earliest bank prep
1484    if (!switched_cmd_type && same_rank_match &&
1485        min_act_at_same_rank <= min_cmd_at) {
1486        bank_mask = bank_mask_same_rank;
1487    }
1488
1489    return bank_mask;
1490}
1491
1492void
1493DRAMCtrl::processRefreshEvent()
1494{
1495    // when first preparing the refresh, remember when it was due
1496    if (refreshState == REF_IDLE) {
1497        // remember when the refresh is due
1498        refreshDueAt = curTick();
1499
1500        // proceed to drain
1501        refreshState = REF_DRAIN;
1502
1503        DPRINTF(DRAM, "Refresh due\n");
1504    }
1505
1506    // let any scheduled read or write go ahead, after which it will
1507    // hand control back to this event loop
1508    if (refreshState == REF_DRAIN) {
1509        if (nextReqEvent.scheduled()) {
1510            // hand control over to the request loop until it is
1511            // evaluated next
1512            DPRINTF(DRAM, "Refresh awaiting draining\n");
1513
1514            return;
1515        } else {
1516            refreshState = REF_PRE;
1517        }
1518    }
1519
1520    // at this point, ensure that all banks are precharged
1521    if (refreshState == REF_PRE) {
1522        // precharge any active bank if we are not already in the idle
1523        // state
1524        if (pwrState != PWR_IDLE) {
1525            // at the moment, we use a precharge all even if there is
1526            // only a single bank open
1527            DPRINTF(DRAM, "Precharging all\n");
1528
1529            // first determine when we can precharge
1530            Tick pre_at = curTick();
1531            for (int i = 0; i < ranksPerChannel; i++) {
1532                for (int j = 0; j < banksPerRank; j++) {
1533                    // respect both causality and any existing bank
1534                    // constraints, some banks could already have a
1535                    // (auto) precharge scheduled
1536                    pre_at = std::max(banks[i][j].preAllowedAt, pre_at);
1537                }
1538            }
1539
1540            // make sure all banks are precharged, and for those that
1541            // already are, update their availability
1542            Tick act_allowed_at = pre_at + tRP;
1543
1544            for (int i = 0; i < ranksPerChannel; i++) {
1545                for (int j = 0; j < banksPerRank; j++) {
1546                    if (banks[i][j].openRow != Bank::NO_ROW) {
1547                        prechargeBank(banks[i][j], pre_at, false);
1548                    } else {
1549                        banks[i][j].actAllowedAt =
1550                            std::max(banks[i][j].actAllowedAt, act_allowed_at);
1551                        banks[i][j].preAllowedAt =
1552                            std::max(banks[i][j].preAllowedAt, pre_at);
1553                    }
1554                }
1555
1556                // at the moment this affects all ranks
1557                rankPower[i].powerlib.doCommand(MemCommand::PREA, 0,
1558                                                divCeil(pre_at, tCK) -
1559                                                timeStampOffset);
1560
1561                DPRINTF(DRAMPower, "%llu,PREA,0,%d\n", divCeil(pre_at, tCK) -
1562                        timeStampOffset, i);
1563            }
1564        } else {
1565            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1566
1567            // go ahead and kick the power state machine into gear if
1568            // we are already idle
1569            schedulePowerEvent(PWR_REF, curTick());
1570        }
1571
1572        refreshState = REF_RUN;
1573        assert(numBanksActive == 0);
1574
1575        // wait for all banks to be precharged, at which point the
1576        // power state machine will transition to the idle state, and
1577        // automatically move to a refresh, at that point it will also
1578        // call this method to get the refresh event loop going again
1579        return;
1580    }
1581
1582    // last but not least we perform the actual refresh
1583    if (refreshState == REF_RUN) {
1584        // should never get here with any banks active
1585        assert(numBanksActive == 0);
1586        assert(pwrState == PWR_REF);
1587
1588        Tick ref_done_at = curTick() + tRFC;
1589
1590        for (int i = 0; i < ranksPerChannel; i++) {
1591            for (int j = 0; j < banksPerRank; j++) {
1592                banks[i][j].actAllowedAt = ref_done_at;
1593            }
1594
1595            // at the moment this affects all ranks
1596            rankPower[i].powerlib.doCommand(MemCommand::REF, 0,
1597                                            divCeil(curTick(), tCK) -
1598                                            timeStampOffset);
1599
1600            // at the moment sort the list of commands and update the counters
1601            // for DRAMPower libray when doing a refresh
1602            sort(rankPower[i].powerlib.cmdList.begin(),
1603                 rankPower[i].powerlib.cmdList.end(), DRAMCtrl::sortTime);
1604
1605            // update the counters for DRAMPower, passing false to
1606            // indicate that this is not the last command in the
1607            // list. DRAMPower requires this information for the
1608            // correct calculation of the background energy at the end
1609            // of the simulation. Ideally we would want to call this
1610            // function with true once at the end of the
1611            // simulation. However, the discarded energy is extremly
1612            // small and does not effect the final results.
1613            rankPower[i].powerlib.updateCounters(false);
1614
1615            // call the energy function
1616            rankPower[i].powerlib.calcEnergy();
1617
1618            // Update the stats
1619            updatePowerStats(i);
1620
1621            DPRINTF(DRAMPower, "%llu,REF,0,%d\n", divCeil(curTick(), tCK) -
1622                    timeStampOffset, i);
1623        }
1624
1625        // make sure we did not wait so long that we cannot make up
1626        // for it
1627        if (refreshDueAt + tREFI < ref_done_at) {
1628            fatal("Refresh was delayed so long we cannot catch up\n");
1629        }
1630
1631        // compensate for the delay in actually performing the refresh
1632        // when scheduling the next one
1633        schedule(refreshEvent, refreshDueAt + tREFI - tRP);
1634
1635        assert(!powerEvent.scheduled());
1636
1637        // move to the idle power state once the refresh is done, this
1638        // will also move the refresh state machine to the refresh
1639        // idle state
1640        schedulePowerEvent(PWR_IDLE, ref_done_at);
1641
1642        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1643                ref_done_at, refreshDueAt + tREFI);
1644    }
1645}
1646
1647void
1648DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
1649{
1650    // respect causality
1651    assert(tick >= curTick());
1652
1653    if (!powerEvent.scheduled()) {
1654        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1655                tick, pwr_state);
1656
1657        // insert the new transition
1658        pwrStateTrans = pwr_state;
1659
1660        schedule(powerEvent, tick);
1661    } else {
1662        panic("Scheduled power event at %llu to state %d, "
1663              "with scheduled event at %llu to %d\n", tick, pwr_state,
1664              powerEvent.when(), pwrStateTrans);
1665    }
1666}
1667
1668void
1669DRAMCtrl::processPowerEvent()
1670{
1671    // remember where we were, and for how long
1672    Tick duration = curTick() - pwrStateTick;
1673    PowerState prev_state = pwrState;
1674
1675    // update the accounting
1676    pwrStateTime[prev_state] += duration;
1677
1678    pwrState = pwrStateTrans;
1679    pwrStateTick = curTick();
1680
1681    if (pwrState == PWR_IDLE) {
1682        DPRINTF(DRAMState, "All banks precharged\n");
1683
1684        // if we were refreshing, make sure we start scheduling requests again
1685        if (prev_state == PWR_REF) {
1686            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1687            assert(pwrState == PWR_IDLE);
1688
1689            // kick things into action again
1690            refreshState = REF_IDLE;
1691            assert(!nextReqEvent.scheduled());
1692            schedule(nextReqEvent, curTick());
1693        } else {
1694            assert(prev_state == PWR_ACT);
1695
1696            // if we have a pending refresh, and are now moving to
1697            // the idle state, direclty transition to a refresh
1698            if (refreshState == REF_RUN) {
1699                // there should be nothing waiting at this point
1700                assert(!powerEvent.scheduled());
1701
1702                // update the state in zero time and proceed below
1703                pwrState = PWR_REF;
1704            }
1705        }
1706    }
1707
1708    // we transition to the refresh state, let the refresh state
1709    // machine know of this state update and let it deal with the
1710    // scheduling of the next power state transition as well as the
1711    // following refresh
1712    if (pwrState == PWR_REF) {
1713        DPRINTF(DRAMState, "Refreshing\n");
1714        // kick the refresh event loop into action again, and that
1715        // in turn will schedule a transition to the idle power
1716        // state once the refresh is done
1717        assert(refreshState == REF_RUN);
1718        processRefreshEvent();
1719    }
1720}
1721
1722void
1723DRAMCtrl::updatePowerStats(uint8_t rank)
1724{
1725    // Get the energy and power from DRAMPower
1726    Data::MemoryPowerModel::Energy energy =
1727        rankPower[rank].powerlib.getEnergy();
1728    Data::MemoryPowerModel::Power power =
1729        rankPower[rank].powerlib.getPower();
1730
1731    actEnergy[rank] = energy.act_energy * devicesPerRank;
1732    preEnergy[rank] = energy.pre_energy * devicesPerRank;
1733    readEnergy[rank] = energy.read_energy * devicesPerRank;
1734    writeEnergy[rank] = energy.write_energy * devicesPerRank;
1735    refreshEnergy[rank] = energy.ref_energy * devicesPerRank;
1736    actBackEnergy[rank] = energy.act_stdby_energy * devicesPerRank;
1737    preBackEnergy[rank] = energy.pre_stdby_energy * devicesPerRank;
1738    totalEnergy[rank] = energy.total_energy * devicesPerRank;
1739    averagePower[rank] = power.average_power * devicesPerRank;
1740}
1741
1742void
1743DRAMCtrl::regStats()
1744{
1745    using namespace Stats;
1746
1747    AbstractMemory::regStats();
1748
1749    readReqs
1750        .name(name() + ".readReqs")
1751        .desc("Number of read requests accepted");
1752
1753    writeReqs
1754        .name(name() + ".writeReqs")
1755        .desc("Number of write requests accepted");
1756
1757    readBursts
1758        .name(name() + ".readBursts")
1759        .desc("Number of DRAM read bursts, "
1760              "including those serviced by the write queue");
1761
1762    writeBursts
1763        .name(name() + ".writeBursts")
1764        .desc("Number of DRAM write bursts, "
1765              "including those merged in the write queue");
1766
1767    servicedByWrQ
1768        .name(name() + ".servicedByWrQ")
1769        .desc("Number of DRAM read bursts serviced by the write queue");
1770
1771    mergedWrBursts
1772        .name(name() + ".mergedWrBursts")
1773        .desc("Number of DRAM write bursts merged with an existing one");
1774
1775    neitherReadNorWrite
1776        .name(name() + ".neitherReadNorWriteReqs")
1777        .desc("Number of requests that are neither read nor write");
1778
1779    perBankRdBursts
1780        .init(banksPerRank * ranksPerChannel)
1781        .name(name() + ".perBankRdBursts")
1782        .desc("Per bank write bursts");
1783
1784    perBankWrBursts
1785        .init(banksPerRank * ranksPerChannel)
1786        .name(name() + ".perBankWrBursts")
1787        .desc("Per bank write bursts");
1788
1789    avgRdQLen
1790        .name(name() + ".avgRdQLen")
1791        .desc("Average read queue length when enqueuing")
1792        .precision(2);
1793
1794    avgWrQLen
1795        .name(name() + ".avgWrQLen")
1796        .desc("Average write queue length when enqueuing")
1797        .precision(2);
1798
1799    totQLat
1800        .name(name() + ".totQLat")
1801        .desc("Total ticks spent queuing");
1802
1803    totBusLat
1804        .name(name() + ".totBusLat")
1805        .desc("Total ticks spent in databus transfers");
1806
1807    totMemAccLat
1808        .name(name() + ".totMemAccLat")
1809        .desc("Total ticks spent from burst creation until serviced "
1810              "by the DRAM");
1811
1812    avgQLat
1813        .name(name() + ".avgQLat")
1814        .desc("Average queueing delay per DRAM burst")
1815        .precision(2);
1816
1817    avgQLat = totQLat / (readBursts - servicedByWrQ);
1818
1819    avgBusLat
1820        .name(name() + ".avgBusLat")
1821        .desc("Average bus latency per DRAM burst")
1822        .precision(2);
1823
1824    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1825
1826    avgMemAccLat
1827        .name(name() + ".avgMemAccLat")
1828        .desc("Average memory access latency per DRAM burst")
1829        .precision(2);
1830
1831    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1832
1833    numRdRetry
1834        .name(name() + ".numRdRetry")
1835        .desc("Number of times read queue was full causing retry");
1836
1837    numWrRetry
1838        .name(name() + ".numWrRetry")
1839        .desc("Number of times write queue was full causing retry");
1840
1841    readRowHits
1842        .name(name() + ".readRowHits")
1843        .desc("Number of row buffer hits during reads");
1844
1845    writeRowHits
1846        .name(name() + ".writeRowHits")
1847        .desc("Number of row buffer hits during writes");
1848
1849    readRowHitRate
1850        .name(name() + ".readRowHitRate")
1851        .desc("Row buffer hit rate for reads")
1852        .precision(2);
1853
1854    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
1855
1856    writeRowHitRate
1857        .name(name() + ".writeRowHitRate")
1858        .desc("Row buffer hit rate for writes")
1859        .precision(2);
1860
1861    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
1862
1863    readPktSize
1864        .init(ceilLog2(burstSize) + 1)
1865        .name(name() + ".readPktSize")
1866        .desc("Read request sizes (log2)");
1867
1868     writePktSize
1869        .init(ceilLog2(burstSize) + 1)
1870        .name(name() + ".writePktSize")
1871        .desc("Write request sizes (log2)");
1872
1873     rdQLenPdf
1874        .init(readBufferSize)
1875        .name(name() + ".rdQLenPdf")
1876        .desc("What read queue length does an incoming req see");
1877
1878     wrQLenPdf
1879        .init(writeBufferSize)
1880        .name(name() + ".wrQLenPdf")
1881        .desc("What write queue length does an incoming req see");
1882
1883     bytesPerActivate
1884         .init(maxAccessesPerRow)
1885         .name(name() + ".bytesPerActivate")
1886         .desc("Bytes accessed per row activation")
1887         .flags(nozero);
1888
1889     rdPerTurnAround
1890         .init(readBufferSize)
1891         .name(name() + ".rdPerTurnAround")
1892         .desc("Reads before turning the bus around for writes")
1893         .flags(nozero);
1894
1895     wrPerTurnAround
1896         .init(writeBufferSize)
1897         .name(name() + ".wrPerTurnAround")
1898         .desc("Writes before turning the bus around for reads")
1899         .flags(nozero);
1900
1901    bytesReadDRAM
1902        .name(name() + ".bytesReadDRAM")
1903        .desc("Total number of bytes read from DRAM");
1904
1905    bytesReadWrQ
1906        .name(name() + ".bytesReadWrQ")
1907        .desc("Total number of bytes read from write queue");
1908
1909    bytesWritten
1910        .name(name() + ".bytesWritten")
1911        .desc("Total number of bytes written to DRAM");
1912
1913    bytesReadSys
1914        .name(name() + ".bytesReadSys")
1915        .desc("Total read bytes from the system interface side");
1916
1917    bytesWrittenSys
1918        .name(name() + ".bytesWrittenSys")
1919        .desc("Total written bytes from the system interface side");
1920
1921    avgRdBW
1922        .name(name() + ".avgRdBW")
1923        .desc("Average DRAM read bandwidth in MiByte/s")
1924        .precision(2);
1925
1926    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
1927
1928    avgWrBW
1929        .name(name() + ".avgWrBW")
1930        .desc("Average achieved write bandwidth in MiByte/s")
1931        .precision(2);
1932
1933    avgWrBW = (bytesWritten / 1000000) / simSeconds;
1934
1935    avgRdBWSys
1936        .name(name() + ".avgRdBWSys")
1937        .desc("Average system read bandwidth in MiByte/s")
1938        .precision(2);
1939
1940    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
1941
1942    avgWrBWSys
1943        .name(name() + ".avgWrBWSys")
1944        .desc("Average system write bandwidth in MiByte/s")
1945        .precision(2);
1946
1947    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
1948
1949    peakBW
1950        .name(name() + ".peakBW")
1951        .desc("Theoretical peak bandwidth in MiByte/s")
1952        .precision(2);
1953
1954    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
1955
1956    busUtil
1957        .name(name() + ".busUtil")
1958        .desc("Data bus utilization in percentage")
1959        .precision(2);
1960
1961    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1962
1963    totGap
1964        .name(name() + ".totGap")
1965        .desc("Total gap between requests");
1966
1967    avgGap
1968        .name(name() + ".avgGap")
1969        .desc("Average gap between requests")
1970        .precision(2);
1971
1972    avgGap = totGap / (readReqs + writeReqs);
1973
1974    // Stats for DRAM Power calculation based on Micron datasheet
1975    busUtilRead
1976        .name(name() + ".busUtilRead")
1977        .desc("Data bus utilization in percentage for reads")
1978        .precision(2);
1979
1980    busUtilRead = avgRdBW / peakBW * 100;
1981
1982    busUtilWrite
1983        .name(name() + ".busUtilWrite")
1984        .desc("Data bus utilization in percentage for writes")
1985        .precision(2);
1986
1987    busUtilWrite = avgWrBW / peakBW * 100;
1988
1989    pageHitRate
1990        .name(name() + ".pageHitRate")
1991        .desc("Row buffer hit rate, read and write combined")
1992        .precision(2);
1993
1994    pageHitRate = (writeRowHits + readRowHits) /
1995        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
1996
1997    pwrStateTime
1998        .init(5)
1999        .name(name() + ".memoryStateTime")
2000        .desc("Time in different power states");
2001    pwrStateTime.subname(0, "IDLE");
2002    pwrStateTime.subname(1, "REF");
2003    pwrStateTime.subname(2, "PRE_PDN");
2004    pwrStateTime.subname(3, "ACT");
2005    pwrStateTime.subname(4, "ACT_PDN");
2006
2007    actEnergy
2008        .init(ranksPerChannel)
2009        .name(name() + ".actEnergy")
2010        .desc("Energy for activate commands per rank (pJ)");
2011
2012    preEnergy
2013        .init(ranksPerChannel)
2014        .name(name() + ".preEnergy")
2015        .desc("Energy for precharge commands per rank (pJ)");
2016
2017    readEnergy
2018        .init(ranksPerChannel)
2019        .name(name() + ".readEnergy")
2020        .desc("Energy for read commands per rank (pJ)");
2021
2022    writeEnergy
2023        .init(ranksPerChannel)
2024        .name(name() + ".writeEnergy")
2025        .desc("Energy for write commands per rank (pJ)");
2026
2027    refreshEnergy
2028        .init(ranksPerChannel)
2029        .name(name() + ".refreshEnergy")
2030        .desc("Energy for refresh commands per rank (pJ)");
2031
2032    actBackEnergy
2033        .init(ranksPerChannel)
2034        .name(name() + ".actBackEnergy")
2035        .desc("Energy for active background per rank (pJ)");
2036
2037    preBackEnergy
2038        .init(ranksPerChannel)
2039        .name(name() + ".preBackEnergy")
2040        .desc("Energy for precharge background per rank (pJ)");
2041
2042    totalEnergy
2043        .init(ranksPerChannel)
2044        .name(name() + ".totalEnergy")
2045        .desc("Total energy per rank (pJ)");
2046
2047    averagePower
2048        .init(ranksPerChannel)
2049        .name(name() + ".averagePower")
2050        .desc("Core power per rank (mW)");
2051}
2052
2053void
2054DRAMCtrl::recvFunctional(PacketPtr pkt)
2055{
2056    // rely on the abstract memory
2057    functionalAccess(pkt);
2058}
2059
2060BaseSlavePort&
2061DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
2062{
2063    if (if_name != "port") {
2064        return MemObject::getSlavePort(if_name, idx);
2065    } else {
2066        return port;
2067    }
2068}
2069
2070unsigned int
2071DRAMCtrl::drain(DrainManager *dm)
2072{
2073    unsigned int count = port.drain(dm);
2074
2075    // if there is anything in any of our internal queues, keep track
2076    // of that as well
2077    if (!(writeQueue.empty() && readQueue.empty() &&
2078          respQueue.empty())) {
2079        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
2080                " resp: %d\n", writeQueue.size(), readQueue.size(),
2081                respQueue.size());
2082        ++count;
2083        drainManager = dm;
2084
2085        // the only part that is not drained automatically over time
2086        // is the write queue, thus kick things into action if needed
2087        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
2088            schedule(nextReqEvent, curTick());
2089        }
2090    }
2091
2092    if (count)
2093        setDrainState(Drainable::Draining);
2094    else
2095        setDrainState(Drainable::Drained);
2096    return count;
2097}
2098
2099DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
2100    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
2101      memory(_memory)
2102{ }
2103
2104AddrRangeList
2105DRAMCtrl::MemoryPort::getAddrRanges() const
2106{
2107    AddrRangeList ranges;
2108    ranges.push_back(memory.getAddrRange());
2109    return ranges;
2110}
2111
2112void
2113DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
2114{
2115    pkt->pushLabel(memory.name());
2116
2117    if (!queue.checkFunctional(pkt)) {
2118        // Default implementation of SimpleTimingPort::recvFunctional()
2119        // calls recvAtomic() and throws away the latency; we can save a
2120        // little here by just not calculating the latency.
2121        memory.recvFunctional(pkt);
2122    }
2123
2124    pkt->popLabel();
2125}
2126
2127Tick
2128DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
2129{
2130    return memory.recvAtomic(pkt);
2131}
2132
2133bool
2134DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
2135{
2136    // pass it to the memory controller
2137    return memory.recvTimingReq(pkt);
2138}
2139
2140DRAMCtrl*
2141DRAMCtrlParams::create()
2142{
2143    return new DRAMCtrl(this);
2144}
2145