dram_ctrl.cc revision 10245:70333502b9b5
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 */
44
45#include "base/bitfield.hh"
46#include "base/trace.hh"
47#include "debug/DRAM.hh"
48#include "debug/DRAMState.hh"
49#include "debug/Drain.hh"
50#include "mem/dram_ctrl.hh"
51#include "sim/system.hh"
52
53using namespace std;
54
55DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
56    AbstractMemory(p),
57    port(name() + ".port", *this),
58    retryRdReq(false), retryWrReq(false),
59    busState(READ),
60    nextReqEvent(this), respondEvent(this), activateEvent(this),
61    prechargeEvent(this), refreshEvent(this), powerEvent(this),
62    drainManager(NULL),
63    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
64    deviceRowBufferSize(p->device_rowbuffer_size),
65    devicesPerRank(p->devices_per_rank),
66    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
67    rowBufferSize(devicesPerRank * deviceRowBufferSize),
68    columnsPerRowBuffer(rowBufferSize / burstSize),
69    ranksPerChannel(p->ranks_per_channel),
70    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
71    readBufferSize(p->read_buffer_size),
72    writeBufferSize(p->write_buffer_size),
73    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
74    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
75    minWritesPerSwitch(p->min_writes_per_switch),
76    writesThisTime(0), readsThisTime(0),
77    tCK(p->tCK), tWTR(p->tWTR), tRTW(p->tRTW), tBURST(p->tBURST),
78    tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), tWR(p->tWR),
79    tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
80    tXAW(p->tXAW), activationLimit(p->activation_limit),
81    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
82    pageMgmt(p->page_policy),
83    maxAccessesPerRow(p->max_accesses_per_row),
84    frontendLatency(p->static_frontend_latency),
85    backendLatency(p->static_backend_latency),
86    busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE),
87    pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0),
88    nextReqTime(0), pwrStateTick(0), numBanksActive(0)
89{
90    // create the bank states based on the dimensions of the ranks and
91    // banks
92    banks.resize(ranksPerChannel);
93    actTicks.resize(ranksPerChannel);
94    for (size_t c = 0; c < ranksPerChannel; ++c) {
95        banks[c].resize(banksPerRank);
96        actTicks[c].resize(activationLimit, 0);
97    }
98
99    // perform a basic check of the write thresholds
100    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
101        fatal("Write buffer low threshold %d must be smaller than the "
102              "high threshold %d\n", p->write_low_thresh_perc,
103              p->write_high_thresh_perc);
104
105    // determine the rows per bank by looking at the total capacity
106    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
107
108    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
109            AbstractMemory::size());
110
111    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
112            rowBufferSize, columnsPerRowBuffer);
113
114    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
115
116    if (range.interleaved()) {
117        if (channels != range.stripes())
118            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
119                  name(), range.stripes(), channels);
120
121        if (addrMapping == Enums::RoRaBaChCo) {
122            if (rowBufferSize != range.granularity()) {
123                fatal("Interleaving of %s doesn't match RoRaBaChCo "
124                      "address map\n", name());
125            }
126        } else if (addrMapping == Enums::RoRaBaCoCh) {
127            if (system()->cacheLineSize() != range.granularity()) {
128                fatal("Interleaving of %s doesn't match RoRaBaCoCh "
129                      "address map\n", name());
130            }
131        } else if (addrMapping == Enums::RoCoRaBaCh) {
132            if (system()->cacheLineSize() != range.granularity())
133                fatal("Interleaving of %s doesn't match RoCoRaBaCh "
134                      "address map\n", name());
135        }
136    }
137
138    // some basic sanity checks
139    if (tREFI <= tRP || tREFI <= tRFC) {
140        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
141              tREFI, tRP, tRFC);
142    }
143}
144
145void
146DRAMCtrl::init()
147{
148    if (!port.isConnected()) {
149        fatal("DRAMCtrl %s is unconnected!\n", name());
150    } else {
151        port.sendRangeChange();
152    }
153}
154
155void
156DRAMCtrl::startup()
157{
158    // update the start tick for the precharge accounting to the
159    // current tick
160    pwrStateTick = curTick();
161
162    // shift the bus busy time sufficiently far ahead that we never
163    // have to worry about negative values when computing the time for
164    // the next request, this will add an insignificant bubble at the
165    // start of simulation
166    busBusyUntil = curTick() + tRP + tRCD + tCL;
167
168    // kick off the refresh, and give ourselves enough time to
169    // precharge
170    schedule(refreshEvent, curTick() + tREFI - tRP);
171}
172
173Tick
174DRAMCtrl::recvAtomic(PacketPtr pkt)
175{
176    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
177
178    // do the actual memory access and turn the packet into a response
179    access(pkt);
180
181    Tick latency = 0;
182    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
183        // this value is not supposed to be accurate, just enough to
184        // keep things going, mimic a closed page
185        latency = tRP + tRCD + tCL;
186    }
187    return latency;
188}
189
190bool
191DRAMCtrl::readQueueFull(unsigned int neededEntries) const
192{
193    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
194            readBufferSize, readQueue.size() + respQueue.size(),
195            neededEntries);
196
197    return
198        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
199}
200
201bool
202DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
203{
204    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
205            writeBufferSize, writeQueue.size(), neededEntries);
206    return (writeQueue.size() + neededEntries) > writeBufferSize;
207}
208
209DRAMCtrl::DRAMPacket*
210DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
211                       bool isRead)
212{
213    // decode the address based on the address mapping scheme, with
214    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
215    // channel, respectively
216    uint8_t rank;
217    uint8_t bank;
218    // use a 64-bit unsigned during the computations as the row is
219    // always the top bits, and check before creating the DRAMPacket
220    uint64_t row;
221
222    // truncate the address to the access granularity
223    Addr addr = dramPktAddr / burstSize;
224
225    // we have removed the lowest order address bits that denote the
226    // position within the column
227    if (addrMapping == Enums::RoRaBaChCo) {
228        // the lowest order bits denote the column to ensure that
229        // sequential cache lines occupy the same row
230        addr = addr / columnsPerRowBuffer;
231
232        // take out the channel part of the address
233        addr = addr / channels;
234
235        // after the channel bits, get the bank bits to interleave
236        // over the banks
237        bank = addr % banksPerRank;
238        addr = addr / banksPerRank;
239
240        // after the bank, we get the rank bits which thus interleaves
241        // over the ranks
242        rank = addr % ranksPerChannel;
243        addr = addr / ranksPerChannel;
244
245        // lastly, get the row bits
246        row = addr % rowsPerBank;
247        addr = addr / rowsPerBank;
248    } else if (addrMapping == Enums::RoRaBaCoCh) {
249        // take out the channel part of the address
250        addr = addr / channels;
251
252        // next, the column
253        addr = addr / columnsPerRowBuffer;
254
255        // after the column bits, we get the bank bits to interleave
256        // over the banks
257        bank = addr % banksPerRank;
258        addr = addr / banksPerRank;
259
260        // after the bank, we get the rank bits which thus interleaves
261        // over the ranks
262        rank = addr % ranksPerChannel;
263        addr = addr / ranksPerChannel;
264
265        // lastly, get the row bits
266        row = addr % rowsPerBank;
267        addr = addr / rowsPerBank;
268    } else if (addrMapping == Enums::RoCoRaBaCh) {
269        // optimise for closed page mode and utilise maximum
270        // parallelism of the DRAM (at the cost of power)
271
272        // take out the channel part of the address, not that this has
273        // to match with how accesses are interleaved between the
274        // controllers in the address mapping
275        addr = addr / channels;
276
277        // start with the bank bits, as this provides the maximum
278        // opportunity for parallelism between requests
279        bank = addr % banksPerRank;
280        addr = addr / banksPerRank;
281
282        // next get the rank bits
283        rank = addr % ranksPerChannel;
284        addr = addr / ranksPerChannel;
285
286        // next the column bits which we do not need to keep track of
287        // and simply skip past
288        addr = addr / columnsPerRowBuffer;
289
290        // lastly, get the row bits
291        row = addr % rowsPerBank;
292        addr = addr / rowsPerBank;
293    } else
294        panic("Unknown address mapping policy chosen!");
295
296    assert(rank < ranksPerChannel);
297    assert(bank < banksPerRank);
298    assert(row < rowsPerBank);
299    assert(row < Bank::NO_ROW);
300
301    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
302            dramPktAddr, rank, bank, row);
303
304    // create the corresponding DRAM packet with the entry time and
305    // ready time set to the current tick, the latter will be updated
306    // later
307    uint16_t bank_id = banksPerRank * rank + bank;
308    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
309                          size, banks[rank][bank]);
310}
311
312void
313DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
314{
315    // only add to the read queue here. whenever the request is
316    // eventually done, set the readyTime, and call schedule()
317    assert(!pkt->isWrite());
318
319    assert(pktCount != 0);
320
321    // if the request size is larger than burst size, the pkt is split into
322    // multiple DRAM packets
323    // Note if the pkt starting address is not aligened to burst size, the
324    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
325    // are aligned to burst size boundaries. This is to ensure we accurately
326    // check read packets against packets in write queue.
327    Addr addr = pkt->getAddr();
328    unsigned pktsServicedByWrQ = 0;
329    BurstHelper* burst_helper = NULL;
330    for (int cnt = 0; cnt < pktCount; ++cnt) {
331        unsigned size = std::min((addr | (burstSize - 1)) + 1,
332                        pkt->getAddr() + pkt->getSize()) - addr;
333        readPktSize[ceilLog2(size)]++;
334        readBursts++;
335
336        // First check write buffer to see if the data is already at
337        // the controller
338        bool foundInWrQ = false;
339        for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
340            // check if the read is subsumed in the write entry we are
341            // looking at
342            if ((*i)->addr <= addr &&
343                (addr + size) <= ((*i)->addr + (*i)->size)) {
344                foundInWrQ = true;
345                servicedByWrQ++;
346                pktsServicedByWrQ++;
347                DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
348                        "write queue\n", addr, size);
349                bytesReadWrQ += burstSize;
350                break;
351            }
352        }
353
354        // If not found in the write q, make a DRAM packet and
355        // push it onto the read queue
356        if (!foundInWrQ) {
357
358            // Make the burst helper for split packets
359            if (pktCount > 1 && burst_helper == NULL) {
360                DPRINTF(DRAM, "Read to addr %lld translates to %d "
361                        "dram requests\n", pkt->getAddr(), pktCount);
362                burst_helper = new BurstHelper(pktCount);
363            }
364
365            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
366            dram_pkt->burstHelper = burst_helper;
367
368            assert(!readQueueFull(1));
369            rdQLenPdf[readQueue.size() + respQueue.size()]++;
370
371            DPRINTF(DRAM, "Adding to read queue\n");
372
373            readQueue.push_back(dram_pkt);
374
375            // Update stats
376            avgRdQLen = readQueue.size() + respQueue.size();
377        }
378
379        // Starting address of next dram pkt (aligend to burstSize boundary)
380        addr = (addr | (burstSize - 1)) + 1;
381    }
382
383    // If all packets are serviced by write queue, we send the repsonse back
384    if (pktsServicedByWrQ == pktCount) {
385        accessAndRespond(pkt, frontendLatency);
386        return;
387    }
388
389    // Update how many split packets are serviced by write queue
390    if (burst_helper != NULL)
391        burst_helper->burstsServiced = pktsServicedByWrQ;
392
393    // If we are not already scheduled to get a request out of the
394    // queue, do so now
395    if (!nextReqEvent.scheduled()) {
396        DPRINTF(DRAM, "Request scheduled immediately\n");
397        schedule(nextReqEvent, curTick());
398    }
399}
400
401void
402DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
403{
404    // only add to the write queue here. whenever the request is
405    // eventually done, set the readyTime, and call schedule()
406    assert(pkt->isWrite());
407
408    // if the request size is larger than burst size, the pkt is split into
409    // multiple DRAM packets
410    Addr addr = pkt->getAddr();
411    for (int cnt = 0; cnt < pktCount; ++cnt) {
412        unsigned size = std::min((addr | (burstSize - 1)) + 1,
413                        pkt->getAddr() + pkt->getSize()) - addr;
414        writePktSize[ceilLog2(size)]++;
415        writeBursts++;
416
417        // see if we can merge with an existing item in the write
418        // queue and keep track of whether we have merged or not so we
419        // can stop at that point and also avoid enqueueing a new
420        // request
421        bool merged = false;
422        auto w = writeQueue.begin();
423
424        while(!merged && w != writeQueue.end()) {
425            // either of the two could be first, if they are the same
426            // it does not matter which way we go
427            if ((*w)->addr >= addr) {
428                // the existing one starts after the new one, figure
429                // out where the new one ends with respect to the
430                // existing one
431                if ((addr + size) >= ((*w)->addr + (*w)->size)) {
432                    // check if the existing one is completely
433                    // subsumed in the new one
434                    DPRINTF(DRAM, "Merging write covering existing burst\n");
435                    merged = true;
436                    // update both the address and the size
437                    (*w)->addr = addr;
438                    (*w)->size = size;
439                } else if ((addr + size) >= (*w)->addr &&
440                           ((*w)->addr + (*w)->size - addr) <= burstSize) {
441                    // the new one is just before or partially
442                    // overlapping with the existing one, and together
443                    // they fit within a burst
444                    DPRINTF(DRAM, "Merging write before existing burst\n");
445                    merged = true;
446                    // the existing queue item needs to be adjusted with
447                    // respect to both address and size
448                    (*w)->size = (*w)->addr + (*w)->size - addr;
449                    (*w)->addr = addr;
450                }
451            } else {
452                // the new one starts after the current one, figure
453                // out where the existing one ends with respect to the
454                // new one
455                if (((*w)->addr + (*w)->size) >= (addr + size)) {
456                    // check if the new one is completely subsumed in the
457                    // existing one
458                    DPRINTF(DRAM, "Merging write into existing burst\n");
459                    merged = true;
460                    // no adjustments necessary
461                } else if (((*w)->addr + (*w)->size) >= addr &&
462                           (addr + size - (*w)->addr) <= burstSize) {
463                    // the existing one is just before or partially
464                    // overlapping with the new one, and together
465                    // they fit within a burst
466                    DPRINTF(DRAM, "Merging write after existing burst\n");
467                    merged = true;
468                    // the address is right, and only the size has
469                    // to be adjusted
470                    (*w)->size = addr + size - (*w)->addr;
471                }
472            }
473            ++w;
474        }
475
476        // if the item was not merged we need to create a new write
477        // and enqueue it
478        if (!merged) {
479            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
480
481            assert(writeQueue.size() < writeBufferSize);
482            wrQLenPdf[writeQueue.size()]++;
483
484            DPRINTF(DRAM, "Adding to write queue\n");
485
486            writeQueue.push_back(dram_pkt);
487
488            // Update stats
489            avgWrQLen = writeQueue.size();
490        } else {
491            // keep track of the fact that this burst effectively
492            // disappeared as it was merged with an existing one
493            mergedWrBursts++;
494        }
495
496        // Starting address of next dram pkt (aligend to burstSize boundary)
497        addr = (addr | (burstSize - 1)) + 1;
498    }
499
500    // we do not wait for the writes to be send to the actual memory,
501    // but instead take responsibility for the consistency here and
502    // snoop the write queue for any upcoming reads
503    // @todo, if a pkt size is larger than burst size, we might need a
504    // different front end latency
505    accessAndRespond(pkt, frontendLatency);
506
507    // If we are not already scheduled to get a request out of the
508    // queue, do so now
509    if (!nextReqEvent.scheduled()) {
510        DPRINTF(DRAM, "Request scheduled immediately\n");
511        schedule(nextReqEvent, curTick());
512    }
513}
514
515void
516DRAMCtrl::printQs() const {
517    DPRINTF(DRAM, "===READ QUEUE===\n\n");
518    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
519        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
520    }
521    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
522    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
523        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
524    }
525    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
526    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
527        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
528    }
529}
530
531bool
532DRAMCtrl::recvTimingReq(PacketPtr pkt)
533{
534    /// @todo temporary hack to deal with memory corruption issues until
535    /// 4-phase transactions are complete
536    for (int x = 0; x < pendingDelete.size(); x++)
537        delete pendingDelete[x];
538    pendingDelete.clear();
539
540    // This is where we enter from the outside world
541    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
542            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
543
544    // simply drop inhibited packets for now
545    if (pkt->memInhibitAsserted()) {
546        DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
547        pendingDelete.push_back(pkt);
548        return true;
549    }
550
551    // Calc avg gap between requests
552    if (prevArrival != 0) {
553        totGap += curTick() - prevArrival;
554    }
555    prevArrival = curTick();
556
557
558    // Find out how many dram packets a pkt translates to
559    // If the burst size is equal or larger than the pkt size, then a pkt
560    // translates to only one dram packet. Otherwise, a pkt translates to
561    // multiple dram packets
562    unsigned size = pkt->getSize();
563    unsigned offset = pkt->getAddr() & (burstSize - 1);
564    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
565
566    // check local buffers and do not accept if full
567    if (pkt->isRead()) {
568        assert(size != 0);
569        if (readQueueFull(dram_pkt_count)) {
570            DPRINTF(DRAM, "Read queue full, not accepting\n");
571            // remember that we have to retry this port
572            retryRdReq = true;
573            numRdRetry++;
574            return false;
575        } else {
576            addToReadQueue(pkt, dram_pkt_count);
577            readReqs++;
578            bytesReadSys += size;
579        }
580    } else if (pkt->isWrite()) {
581        assert(size != 0);
582        if (writeQueueFull(dram_pkt_count)) {
583            DPRINTF(DRAM, "Write queue full, not accepting\n");
584            // remember that we have to retry this port
585            retryWrReq = true;
586            numWrRetry++;
587            return false;
588        } else {
589            addToWriteQueue(pkt, dram_pkt_count);
590            writeReqs++;
591            bytesWrittenSys += size;
592        }
593    } else {
594        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
595        neitherReadNorWrite++;
596        accessAndRespond(pkt, 1);
597    }
598
599    return true;
600}
601
602void
603DRAMCtrl::processRespondEvent()
604{
605    DPRINTF(DRAM,
606            "processRespondEvent(): Some req has reached its readyTime\n");
607
608    DRAMPacket* dram_pkt = respQueue.front();
609
610    if (dram_pkt->burstHelper) {
611        // it is a split packet
612        dram_pkt->burstHelper->burstsServiced++;
613        if (dram_pkt->burstHelper->burstsServiced ==
614            dram_pkt->burstHelper->burstCount) {
615            // we have now serviced all children packets of a system packet
616            // so we can now respond to the requester
617            // @todo we probably want to have a different front end and back
618            // end latency for split packets
619            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
620            delete dram_pkt->burstHelper;
621            dram_pkt->burstHelper = NULL;
622        }
623    } else {
624        // it is not a split packet
625        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
626    }
627
628    delete respQueue.front();
629    respQueue.pop_front();
630
631    if (!respQueue.empty()) {
632        assert(respQueue.front()->readyTime >= curTick());
633        assert(!respondEvent.scheduled());
634        schedule(respondEvent, respQueue.front()->readyTime);
635    } else {
636        // if there is nothing left in any queue, signal a drain
637        if (writeQueue.empty() && readQueue.empty() &&
638            drainManager) {
639            drainManager->signalDrainDone();
640            drainManager = NULL;
641        }
642    }
643
644    // We have made a location in the queue available at this point,
645    // so if there is a read that was forced to wait, retry now
646    if (retryRdReq) {
647        retryRdReq = false;
648        port.sendRetry();
649    }
650}
651
652void
653DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue)
654{
655    // This method does the arbitration between requests. The chosen
656    // packet is simply moved to the head of the queue. The other
657    // methods know that this is the place to look. For example, with
658    // FCFS, this method does nothing
659    assert(!queue.empty());
660
661    if (queue.size() == 1) {
662        DPRINTF(DRAM, "Single request, nothing to do\n");
663        return;
664    }
665
666    if (memSchedPolicy == Enums::fcfs) {
667        // Do nothing, since the correct request is already head
668    } else if (memSchedPolicy == Enums::frfcfs) {
669        reorderQueue(queue);
670    } else
671        panic("No scheduling policy chosen\n");
672}
673
674void
675DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue)
676{
677    // Only determine this when needed
678    uint64_t earliest_banks = 0;
679
680    // Search for row hits first, if no row hit is found then schedule the
681    // packet to one of the earliest banks available
682    bool found_earliest_pkt = false;
683    auto selected_pkt_it = queue.begin();
684
685    for (auto i = queue.begin(); i != queue.end() ; ++i) {
686        DRAMPacket* dram_pkt = *i;
687        const Bank& bank = dram_pkt->bankRef;
688        // Check if it is a row hit
689        if (bank.openRow == dram_pkt->row) {
690            // FCFS within the hits
691            DPRINTF(DRAM, "Row buffer hit\n");
692            selected_pkt_it = i;
693            break;
694        } else if (!found_earliest_pkt) {
695            // No row hit, go for first ready
696            if (earliest_banks == 0)
697                earliest_banks = minBankActAt(queue);
698
699            // simplistic approximation of when the bank can issue an
700            // activate, this is calculated in minBankActAt and could
701            // be cached
702            Tick act_at = bank.openRow == Bank::NO_ROW ?
703                bank.actAllowedAt :
704                std::max(bank.preAllowedAt, curTick()) + tRP;
705
706            // Bank is ready or is the first available bank
707            if (act_at <= curTick() ||
708                bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
709                // Remember the packet to be scheduled to one of the earliest
710                // banks available, FCFS amongst the earliest banks
711                selected_pkt_it = i;
712                found_earliest_pkt = true;
713            }
714        }
715    }
716
717    DRAMPacket* selected_pkt = *selected_pkt_it;
718    queue.erase(selected_pkt_it);
719    queue.push_front(selected_pkt);
720}
721
722void
723DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
724{
725    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
726
727    bool needsResponse = pkt->needsResponse();
728    // do the actual memory access which also turns the packet into a
729    // response
730    access(pkt);
731
732    // turn packet around to go back to requester if response expected
733    if (needsResponse) {
734        // access already turned the packet into a response
735        assert(pkt->isResponse());
736
737        // @todo someone should pay for this
738        pkt->busFirstWordDelay = pkt->busLastWordDelay = 0;
739
740        // queue the packet in the response queue to be sent out after
741        // the static latency has passed
742        port.schedTimingResp(pkt, curTick() + static_latency);
743    } else {
744        // @todo the packet is going to be deleted, and the DRAMPacket
745        // is still having a pointer to it
746        pendingDelete.push_back(pkt);
747    }
748
749    DPRINTF(DRAM, "Done\n");
750
751    return;
752}
753
754void
755DRAMCtrl::activateBank(Tick act_tick, uint8_t rank, uint8_t bank,
756                       uint32_t row, Bank& bank_ref)
757{
758    assert(0 <= rank && rank < ranksPerChannel);
759    assert(actTicks[rank].size() == activationLimit);
760
761    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
762
763    // update the open row
764    assert(bank_ref.openRow == Bank::NO_ROW);
765    bank_ref.openRow = row;
766
767    // start counting anew, this covers both the case when we
768    // auto-precharged, and when this access is forced to
769    // precharge
770    bank_ref.bytesAccessed = 0;
771    bank_ref.rowAccesses = 0;
772
773    ++numBanksActive;
774    assert(numBanksActive <= banksPerRank * ranksPerChannel);
775
776    DPRINTF(DRAM, "Activate bank at tick %lld, now got %d active\n",
777            act_tick, numBanksActive);
778
779    // The next access has to respect tRAS for this bank
780    bank_ref.preAllowedAt = act_tick + tRAS;
781
782    // Respect the row-to-column command delay
783    bank_ref.colAllowedAt = act_tick + tRCD;
784
785    // start by enforcing tRRD
786    for(int i = 0; i < banksPerRank; i++) {
787        // next activate to any bank in this rank must not happen
788        // before tRRD
789        banks[rank][i].actAllowedAt = std::max(act_tick + tRRD,
790                                               banks[rank][i].actAllowedAt);
791    }
792
793    // next, we deal with tXAW, if the activation limit is disabled
794    // then we are done
795    if (actTicks[rank].empty())
796        return;
797
798    // sanity check
799    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
800        panic("Got %d activates in window %d (%llu - %llu) which is smaller "
801              "than %llu\n", activationLimit, act_tick - actTicks[rank].back(),
802              act_tick, actTicks[rank].back(), tXAW);
803    }
804
805    // shift the times used for the book keeping, the last element
806    // (highest index) is the oldest one and hence the lowest value
807    actTicks[rank].pop_back();
808
809    // record an new activation (in the future)
810    actTicks[rank].push_front(act_tick);
811
812    // cannot activate more than X times in time window tXAW, push the
813    // next one (the X + 1'st activate) to be tXAW away from the
814    // oldest in our window of X
815    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
816        DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
817                "than %llu\n", activationLimit, actTicks[rank].back() + tXAW);
818            for(int j = 0; j < banksPerRank; j++)
819                // next activate must not happen before end of window
820                banks[rank][j].actAllowedAt =
821                    std::max(actTicks[rank].back() + tXAW,
822                             banks[rank][j].actAllowedAt);
823    }
824
825    // at the point when this activate takes place, make sure we
826    // transition to the active power state
827    if (!activateEvent.scheduled())
828        schedule(activateEvent, act_tick);
829    else if (activateEvent.when() > act_tick)
830        // move it sooner in time
831        reschedule(activateEvent, act_tick);
832}
833
834void
835DRAMCtrl::processActivateEvent()
836{
837    // we should transition to the active state as soon as any bank is active
838    if (pwrState != PWR_ACT)
839        // note that at this point numBanksActive could be back at
840        // zero again due to a precharge scheduled in the future
841        schedulePowerEvent(PWR_ACT, curTick());
842}
843
844void
845DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at)
846{
847    // make sure the bank has an open row
848    assert(bank.openRow != Bank::NO_ROW);
849
850    // sample the bytes per activate here since we are closing
851    // the page
852    bytesPerActivate.sample(bank.bytesAccessed);
853
854    bank.openRow = Bank::NO_ROW;
855
856    // no precharge allowed before this one
857    bank.preAllowedAt = pre_at;
858
859    Tick pre_done_at = pre_at + tRP;
860
861    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
862
863    assert(numBanksActive != 0);
864    --numBanksActive;
865
866    DPRINTF(DRAM, "Precharging bank at tick %lld, now got %d active\n",
867            pre_at, numBanksActive);
868
869    // if we look at the current number of active banks we might be
870    // tempted to think the DRAM is now idle, however this can be
871    // undone by an activate that is scheduled to happen before we
872    // would have reached the idle state, so schedule an event and
873    // rather check once we actually make it to the point in time when
874    // the (last) precharge takes place
875    if (!prechargeEvent.scheduled())
876        schedule(prechargeEvent, pre_done_at);
877    else if (prechargeEvent.when() < pre_done_at)
878        reschedule(prechargeEvent, pre_done_at);
879}
880
881void
882DRAMCtrl::processPrechargeEvent()
883{
884    // if we reached zero, then special conditions apply as we track
885    // if all banks are precharged for the power models
886    if (numBanksActive == 0) {
887        // we should transition to the idle state when the last bank
888        // is precharged
889        schedulePowerEvent(PWR_IDLE, curTick());
890    }
891}
892
893void
894DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
895{
896    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
897            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
898
899    // get the bank
900    Bank& bank = dram_pkt->bankRef;
901
902    // for the state we need to track if it is a row hit or not
903    bool row_hit = true;
904
905    // respect any constraints on the command (e.g. tRCD or tCCD)
906    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
907
908    // Determine the access latency and update the bank state
909    if (bank.openRow == dram_pkt->row) {
910        // nothing to do
911    } else {
912        row_hit = false;
913
914        // If there is a page open, precharge it.
915        if (bank.openRow != Bank::NO_ROW) {
916            prechargeBank(bank, std::max(bank.preAllowedAt, curTick()));
917        }
918
919        // next we need to account for the delay in activating the
920        // page
921        Tick act_tick = std::max(bank.actAllowedAt, curTick());
922
923        // Record the activation and deal with all the global timing
924        // constraints caused be a new activation (tRRD and tXAW)
925        activateBank(act_tick, dram_pkt->rank, dram_pkt->bank,
926                     dram_pkt->row, bank);
927
928        // issue the command as early as possible
929        cmd_at = bank.colAllowedAt;
930    }
931
932    // we need to wait until the bus is available before we can issue
933    // the command
934    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
935
936    // update the packet ready time
937    dram_pkt->readyTime = cmd_at + tCL + tBURST;
938
939    // only one burst can use the bus at any one point in time
940    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
941
942    // not strictly necessary, but update the time for the next
943    // read/write (add a max with tCCD here)
944    bank.colAllowedAt = cmd_at + tBURST;
945
946    // If this is a write, we also need to respect the write recovery
947    // time before a precharge, in the case of a read, respect the
948    // read to precharge constraint
949    bank.preAllowedAt = std::max(bank.preAllowedAt,
950                                 dram_pkt->isRead ? cmd_at + tRTP :
951                                 dram_pkt->readyTime + tWR);
952
953    // increment the bytes accessed and the accesses per row
954    bank.bytesAccessed += burstSize;
955    ++bank.rowAccesses;
956
957    // if we reached the max, then issue with an auto-precharge
958    bool auto_precharge = pageMgmt == Enums::close ||
959        bank.rowAccesses == maxAccessesPerRow;
960
961    // if we did not hit the limit, we might still want to
962    // auto-precharge
963    if (!auto_precharge &&
964        (pageMgmt == Enums::open_adaptive ||
965         pageMgmt == Enums::close_adaptive)) {
966        // a twist on the open and close page policies:
967        // 1) open_adaptive page policy does not blindly keep the
968        // page open, but close it if there are no row hits, and there
969        // are bank conflicts in the queue
970        // 2) close_adaptive page policy does not blindly close the
971        // page, but closes it only if there are no row hits in the queue.
972        // In this case, only force an auto precharge when there
973        // are no same page hits in the queue
974        bool got_more_hits = false;
975        bool got_bank_conflict = false;
976
977        // either look at the read queue or write queue
978        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
979            writeQueue;
980        auto p = queue.begin();
981        // make sure we are not considering the packet that we are
982        // currently dealing with (which is the head of the queue)
983        ++p;
984
985        // keep on looking until we have found required condition or
986        // reached the end
987        while (!(got_more_hits &&
988                 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
989               p != queue.end()) {
990            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
991                (dram_pkt->bank == (*p)->bank);
992            bool same_row = dram_pkt->row == (*p)->row;
993            got_more_hits |= same_rank_bank && same_row;
994            got_bank_conflict |= same_rank_bank && !same_row;
995            ++p;
996        }
997
998        // auto pre-charge when either
999        // 1) open_adaptive policy, we have not got any more hits, and
1000        //    have a bank conflict
1001        // 2) close_adaptive policy and we have not got any more hits
1002        auto_precharge = !got_more_hits &&
1003            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1004    }
1005
1006    // if this access should use auto-precharge, then we are
1007    // closing the row
1008    if (auto_precharge) {
1009        prechargeBank(bank, std::max(curTick(), bank.preAllowedAt));
1010
1011        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1012    }
1013
1014    // Update bus state
1015    busBusyUntil = dram_pkt->readyTime;
1016
1017    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1018            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1019
1020    // Update the minimum timing between the requests, this is a
1021    // conservative estimate of when we have to schedule the next
1022    // request to not introduce any unecessary bubbles. In most cases
1023    // we will wake up sooner than we have to.
1024    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1025
1026    // Update the stats and schedule the next request
1027    if (dram_pkt->isRead) {
1028        ++readsThisTime;
1029        if (row_hit)
1030            readRowHits++;
1031        bytesReadDRAM += burstSize;
1032        perBankRdBursts[dram_pkt->bankId]++;
1033
1034        // Update latency stats
1035        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1036        totBusLat += tBURST;
1037        totQLat += cmd_at - dram_pkt->entryTime;
1038    } else {
1039        ++writesThisTime;
1040        if (row_hit)
1041            writeRowHits++;
1042        bytesWritten += burstSize;
1043        perBankWrBursts[dram_pkt->bankId]++;
1044    }
1045}
1046
1047void
1048DRAMCtrl::processNextReqEvent()
1049{
1050    if (busState == READ_TO_WRITE) {
1051        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1052                "waiting\n", readsThisTime, readQueue.size());
1053
1054        // sample and reset the read-related stats as we are now
1055        // transitioning to writes, and all reads are done
1056        rdPerTurnAround.sample(readsThisTime);
1057        readsThisTime = 0;
1058
1059        // now proceed to do the actual writes
1060        busState = WRITE;
1061    } else if (busState == WRITE_TO_READ) {
1062        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1063                "waiting\n", writesThisTime, writeQueue.size());
1064
1065        wrPerTurnAround.sample(writesThisTime);
1066        writesThisTime = 0;
1067
1068        busState = READ;
1069    }
1070
1071    if (refreshState != REF_IDLE) {
1072        // if a refresh waiting for this event loop to finish, then hand
1073        // over now, and do not schedule a new nextReqEvent
1074        if (refreshState == REF_DRAIN) {
1075            DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1076
1077            refreshState = REF_PRE;
1078
1079            // hand control back to the refresh event loop
1080            schedule(refreshEvent, curTick());
1081        }
1082
1083        // let the refresh finish before issuing any further requests
1084        return;
1085    }
1086
1087    // when we get here it is either a read or a write
1088    if (busState == READ) {
1089
1090        // track if we should switch or not
1091        bool switch_to_writes = false;
1092
1093        if (readQueue.empty()) {
1094            // In the case there is no read request to go next,
1095            // trigger writes if we have passed the low threshold (or
1096            // if we are draining)
1097            if (!writeQueue.empty() &&
1098                (drainManager || writeQueue.size() > writeLowThreshold)) {
1099
1100                switch_to_writes = true;
1101            } else {
1102                // check if we are drained
1103                if (respQueue.empty () && drainManager) {
1104                    drainManager->signalDrainDone();
1105                    drainManager = NULL;
1106                }
1107
1108                // nothing to do, not even any point in scheduling an
1109                // event for the next request
1110                return;
1111            }
1112        } else {
1113            // Figure out which read request goes next, and move it to the
1114            // front of the read queue
1115            chooseNext(readQueue);
1116
1117            DRAMPacket* dram_pkt = readQueue.front();
1118
1119            doDRAMAccess(dram_pkt);
1120
1121            // At this point we're done dealing with the request
1122            readQueue.pop_front();
1123
1124            // sanity check
1125            assert(dram_pkt->size <= burstSize);
1126            assert(dram_pkt->readyTime >= curTick());
1127
1128            // Insert into response queue. It will be sent back to the
1129            // requestor at its readyTime
1130            if (respQueue.empty()) {
1131                assert(!respondEvent.scheduled());
1132                schedule(respondEvent, dram_pkt->readyTime);
1133            } else {
1134                assert(respQueue.back()->readyTime <= dram_pkt->readyTime);
1135                assert(respondEvent.scheduled());
1136            }
1137
1138            respQueue.push_back(dram_pkt);
1139
1140            // we have so many writes that we have to transition
1141            if (writeQueue.size() > writeHighThreshold) {
1142                switch_to_writes = true;
1143            }
1144        }
1145
1146        // switching to writes, either because the read queue is empty
1147        // and the writes have passed the low threshold (or we are
1148        // draining), or because the writes hit the hight threshold
1149        if (switch_to_writes) {
1150            // transition to writing
1151            busState = READ_TO_WRITE;
1152
1153            // add a bubble to the data bus, as defined by the
1154            // tRTW parameter
1155            busBusyUntil += tRTW;
1156
1157            // update the minimum timing between the requests,
1158            // this shifts us back in time far enough to do any
1159            // bank preparation
1160            nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1161        }
1162    } else {
1163        chooseNext(writeQueue);
1164        DRAMPacket* dram_pkt = writeQueue.front();
1165        // sanity check
1166        assert(dram_pkt->size <= burstSize);
1167        doDRAMAccess(dram_pkt);
1168
1169        writeQueue.pop_front();
1170        delete dram_pkt;
1171
1172        // If we emptied the write queue, or got sufficiently below the
1173        // threshold (using the minWritesPerSwitch as the hysteresis) and
1174        // are not draining, or we have reads waiting and have done enough
1175        // writes, then switch to reads.
1176        if (writeQueue.empty() ||
1177            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1178             !drainManager) ||
1179            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1180            // turn the bus back around for reads again
1181            busState = WRITE_TO_READ;
1182
1183            // note that the we switch back to reads also in the idle
1184            // case, which eventually will check for any draining and
1185            // also pause any further scheduling if there is really
1186            // nothing to do
1187
1188            // here we get a bit creative and shift the bus busy time not
1189            // just the tWTR, but also a CAS latency to capture the fact
1190            // that we are allowed to prepare a new bank, but not issue a
1191            // read command until after tWTR, in essence we capture a
1192            // bubble on the data bus that is tWTR + tCL
1193            busBusyUntil += tWTR + tCL;
1194
1195            // update the minimum timing between the requests, this shifts
1196            // us back in time far enough to do any bank preparation
1197            nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1198        }
1199    }
1200
1201    schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1202
1203    // If there is space available and we have writes waiting then let
1204    // them retry. This is done here to ensure that the retry does not
1205    // cause a nextReqEvent to be scheduled before we do so as part of
1206    // the next request processing
1207    if (retryWrReq && writeQueue.size() < writeBufferSize) {
1208        retryWrReq = false;
1209        port.sendRetry();
1210    }
1211}
1212
1213uint64_t
1214DRAMCtrl::minBankActAt(const deque<DRAMPacket*>& queue) const
1215{
1216    uint64_t bank_mask = 0;
1217    Tick min_act_at = MaxTick;
1218
1219    // deterimne if we have queued transactions targetting a
1220    // bank in question
1221    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1222    for (auto p = queue.begin(); p != queue.end(); ++p) {
1223        got_waiting[(*p)->bankId] = true;
1224    }
1225
1226    for (int i = 0; i < ranksPerChannel; i++) {
1227        for (int j = 0; j < banksPerRank; j++) {
1228            uint8_t bank_id = i * banksPerRank + j;
1229
1230            // if we have waiting requests for the bank, and it is
1231            // amongst the first available, update the mask
1232            if (got_waiting[bank_id]) {
1233                // simplistic approximation of when the bank can issue
1234                // an activate, ignoring any rank-to-rank switching
1235                // cost
1236                Tick act_at = banks[i][j].openRow == Bank::NO_ROW ?
1237                    banks[i][j].actAllowedAt :
1238                    std::max(banks[i][j].preAllowedAt, curTick()) + tRP;
1239
1240                if (act_at <= min_act_at) {
1241                    // reset bank mask if new minimum is found
1242                    if (act_at < min_act_at)
1243                        bank_mask = 0;
1244                    // set the bit corresponding to the available bank
1245                    replaceBits(bank_mask, bank_id, bank_id, 1);
1246                    min_act_at = act_at;
1247                }
1248            }
1249        }
1250    }
1251
1252    return bank_mask;
1253}
1254
1255void
1256DRAMCtrl::processRefreshEvent()
1257{
1258    // when first preparing the refresh, remember when it was due
1259    if (refreshState == REF_IDLE) {
1260        // remember when the refresh is due
1261        refreshDueAt = curTick();
1262
1263        // proceed to drain
1264        refreshState = REF_DRAIN;
1265
1266        DPRINTF(DRAM, "Refresh due\n");
1267    }
1268
1269    // let any scheduled read or write go ahead, after which it will
1270    // hand control back to this event loop
1271    if (refreshState == REF_DRAIN) {
1272        if (nextReqEvent.scheduled()) {
1273            // hand control over to the request loop until it is
1274            // evaluated next
1275            DPRINTF(DRAM, "Refresh awaiting draining\n");
1276
1277            return;
1278        } else {
1279            refreshState = REF_PRE;
1280        }
1281    }
1282
1283    // at this point, ensure that all banks are precharged
1284    if (refreshState == REF_PRE) {
1285        // precharge any active bank if we are not already in the idle
1286        // state
1287        if (pwrState != PWR_IDLE) {
1288            // at the moment, we use a precharge all even if there is
1289            // only a single bank open
1290            DPRINTF(DRAM, "Precharging all\n");
1291
1292            // first determine when we can precharge
1293            Tick pre_at = curTick();
1294            for (int i = 0; i < ranksPerChannel; i++) {
1295                for (int j = 0; j < banksPerRank; j++) {
1296                    // respect both causality and any existing bank
1297                    // constraints, some banks could already have a
1298                    // (auto) precharge scheduled
1299                    pre_at = std::max(banks[i][j].preAllowedAt, pre_at);
1300                }
1301            }
1302
1303            // make sure all banks are precharged, and for those that
1304            // already are, update their availability
1305            Tick act_allowed_at = pre_at + tRP;
1306
1307            for (int i = 0; i < ranksPerChannel; i++) {
1308                for (int j = 0; j < banksPerRank; j++) {
1309                    if (banks[i][j].openRow != Bank::NO_ROW) {
1310                        prechargeBank(banks[i][j], pre_at);
1311                    } else {
1312                        banks[i][j].actAllowedAt =
1313                            std::max(banks[i][j].actAllowedAt, act_allowed_at);
1314                        banks[i][j].preAllowedAt =
1315                            std::max(banks[i][j].preAllowedAt, pre_at);
1316                    }
1317                }
1318            }
1319        } else {
1320            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1321
1322            // go ahead and kick the power state machine into gear if
1323            // we are already idle
1324            schedulePowerEvent(PWR_REF, curTick());
1325        }
1326
1327        refreshState = REF_RUN;
1328        assert(numBanksActive == 0);
1329
1330        // wait for all banks to be precharged, at which point the
1331        // power state machine will transition to the idle state, and
1332        // automatically move to a refresh, at that point it will also
1333        // call this method to get the refresh event loop going again
1334        return;
1335    }
1336
1337    // last but not least we perform the actual refresh
1338    if (refreshState == REF_RUN) {
1339        // should never get here with any banks active
1340        assert(numBanksActive == 0);
1341        assert(pwrState == PWR_REF);
1342
1343        Tick ref_done_at = curTick() + tRFC;
1344
1345        for (int i = 0; i < ranksPerChannel; i++) {
1346            for (int j = 0; j < banksPerRank; j++) {
1347                banks[i][j].actAllowedAt = ref_done_at;
1348            }
1349        }
1350
1351        // make sure we did not wait so long that we cannot make up
1352        // for it
1353        if (refreshDueAt + tREFI < ref_done_at) {
1354            fatal("Refresh was delayed so long we cannot catch up\n");
1355        }
1356
1357        // compensate for the delay in actually performing the refresh
1358        // when scheduling the next one
1359        schedule(refreshEvent, refreshDueAt + tREFI - tRP);
1360
1361        assert(!powerEvent.scheduled());
1362
1363        // move to the idle power state once the refresh is done, this
1364        // will also move the refresh state machine to the refresh
1365        // idle state
1366        schedulePowerEvent(PWR_IDLE, ref_done_at);
1367
1368        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1369                ref_done_at, refreshDueAt + tREFI);
1370    }
1371}
1372
1373void
1374DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
1375{
1376    // respect causality
1377    assert(tick >= curTick());
1378
1379    if (!powerEvent.scheduled()) {
1380        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1381                tick, pwr_state);
1382
1383        // insert the new transition
1384        pwrStateTrans = pwr_state;
1385
1386        schedule(powerEvent, tick);
1387    } else {
1388        panic("Scheduled power event at %llu to state %d, "
1389              "with scheduled event at %llu to %d\n", tick, pwr_state,
1390              powerEvent.when(), pwrStateTrans);
1391    }
1392}
1393
1394void
1395DRAMCtrl::processPowerEvent()
1396{
1397    // remember where we were, and for how long
1398    Tick duration = curTick() - pwrStateTick;
1399    PowerState prev_state = pwrState;
1400
1401    // update the accounting
1402    pwrStateTime[prev_state] += duration;
1403
1404    pwrState = pwrStateTrans;
1405    pwrStateTick = curTick();
1406
1407    if (pwrState == PWR_IDLE) {
1408        DPRINTF(DRAMState, "All banks precharged\n");
1409
1410        // if we were refreshing, make sure we start scheduling requests again
1411        if (prev_state == PWR_REF) {
1412            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1413            assert(pwrState == PWR_IDLE);
1414
1415            // kick things into action again
1416            refreshState = REF_IDLE;
1417            assert(!nextReqEvent.scheduled());
1418            schedule(nextReqEvent, curTick());
1419        } else {
1420            assert(prev_state == PWR_ACT);
1421
1422            // if we have a pending refresh, and are now moving to
1423            // the idle state, direclty transition to a refresh
1424            if (refreshState == REF_RUN) {
1425                // there should be nothing waiting at this point
1426                assert(!powerEvent.scheduled());
1427
1428                // update the state in zero time and proceed below
1429                pwrState = PWR_REF;
1430            }
1431        }
1432    }
1433
1434    // we transition to the refresh state, let the refresh state
1435    // machine know of this state update and let it deal with the
1436    // scheduling of the next power state transition as well as the
1437    // following refresh
1438    if (pwrState == PWR_REF) {
1439        DPRINTF(DRAMState, "Refreshing\n");
1440        // kick the refresh event loop into action again, and that
1441        // in turn will schedule a transition to the idle power
1442        // state once the refresh is done
1443        assert(refreshState == REF_RUN);
1444        processRefreshEvent();
1445    }
1446}
1447
1448void
1449DRAMCtrl::regStats()
1450{
1451    using namespace Stats;
1452
1453    AbstractMemory::regStats();
1454
1455    readReqs
1456        .name(name() + ".readReqs")
1457        .desc("Number of read requests accepted");
1458
1459    writeReqs
1460        .name(name() + ".writeReqs")
1461        .desc("Number of write requests accepted");
1462
1463    readBursts
1464        .name(name() + ".readBursts")
1465        .desc("Number of DRAM read bursts, "
1466              "including those serviced by the write queue");
1467
1468    writeBursts
1469        .name(name() + ".writeBursts")
1470        .desc("Number of DRAM write bursts, "
1471              "including those merged in the write queue");
1472
1473    servicedByWrQ
1474        .name(name() + ".servicedByWrQ")
1475        .desc("Number of DRAM read bursts serviced by the write queue");
1476
1477    mergedWrBursts
1478        .name(name() + ".mergedWrBursts")
1479        .desc("Number of DRAM write bursts merged with an existing one");
1480
1481    neitherReadNorWrite
1482        .name(name() + ".neitherReadNorWriteReqs")
1483        .desc("Number of requests that are neither read nor write");
1484
1485    perBankRdBursts
1486        .init(banksPerRank * ranksPerChannel)
1487        .name(name() + ".perBankRdBursts")
1488        .desc("Per bank write bursts");
1489
1490    perBankWrBursts
1491        .init(banksPerRank * ranksPerChannel)
1492        .name(name() + ".perBankWrBursts")
1493        .desc("Per bank write bursts");
1494
1495    avgRdQLen
1496        .name(name() + ".avgRdQLen")
1497        .desc("Average read queue length when enqueuing")
1498        .precision(2);
1499
1500    avgWrQLen
1501        .name(name() + ".avgWrQLen")
1502        .desc("Average write queue length when enqueuing")
1503        .precision(2);
1504
1505    totQLat
1506        .name(name() + ".totQLat")
1507        .desc("Total ticks spent queuing");
1508
1509    totBusLat
1510        .name(name() + ".totBusLat")
1511        .desc("Total ticks spent in databus transfers");
1512
1513    totMemAccLat
1514        .name(name() + ".totMemAccLat")
1515        .desc("Total ticks spent from burst creation until serviced "
1516              "by the DRAM");
1517
1518    avgQLat
1519        .name(name() + ".avgQLat")
1520        .desc("Average queueing delay per DRAM burst")
1521        .precision(2);
1522
1523    avgQLat = totQLat / (readBursts - servicedByWrQ);
1524
1525    avgBusLat
1526        .name(name() + ".avgBusLat")
1527        .desc("Average bus latency per DRAM burst")
1528        .precision(2);
1529
1530    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1531
1532    avgMemAccLat
1533        .name(name() + ".avgMemAccLat")
1534        .desc("Average memory access latency per DRAM burst")
1535        .precision(2);
1536
1537    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1538
1539    numRdRetry
1540        .name(name() + ".numRdRetry")
1541        .desc("Number of times read queue was full causing retry");
1542
1543    numWrRetry
1544        .name(name() + ".numWrRetry")
1545        .desc("Number of times write queue was full causing retry");
1546
1547    readRowHits
1548        .name(name() + ".readRowHits")
1549        .desc("Number of row buffer hits during reads");
1550
1551    writeRowHits
1552        .name(name() + ".writeRowHits")
1553        .desc("Number of row buffer hits during writes");
1554
1555    readRowHitRate
1556        .name(name() + ".readRowHitRate")
1557        .desc("Row buffer hit rate for reads")
1558        .precision(2);
1559
1560    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
1561
1562    writeRowHitRate
1563        .name(name() + ".writeRowHitRate")
1564        .desc("Row buffer hit rate for writes")
1565        .precision(2);
1566
1567    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
1568
1569    readPktSize
1570        .init(ceilLog2(burstSize) + 1)
1571        .name(name() + ".readPktSize")
1572        .desc("Read request sizes (log2)");
1573
1574     writePktSize
1575        .init(ceilLog2(burstSize) + 1)
1576        .name(name() + ".writePktSize")
1577        .desc("Write request sizes (log2)");
1578
1579     rdQLenPdf
1580        .init(readBufferSize)
1581        .name(name() + ".rdQLenPdf")
1582        .desc("What read queue length does an incoming req see");
1583
1584     wrQLenPdf
1585        .init(writeBufferSize)
1586        .name(name() + ".wrQLenPdf")
1587        .desc("What write queue length does an incoming req see");
1588
1589     bytesPerActivate
1590         .init(maxAccessesPerRow)
1591         .name(name() + ".bytesPerActivate")
1592         .desc("Bytes accessed per row activation")
1593         .flags(nozero);
1594
1595     rdPerTurnAround
1596         .init(readBufferSize)
1597         .name(name() + ".rdPerTurnAround")
1598         .desc("Reads before turning the bus around for writes")
1599         .flags(nozero);
1600
1601     wrPerTurnAround
1602         .init(writeBufferSize)
1603         .name(name() + ".wrPerTurnAround")
1604         .desc("Writes before turning the bus around for reads")
1605         .flags(nozero);
1606
1607    bytesReadDRAM
1608        .name(name() + ".bytesReadDRAM")
1609        .desc("Total number of bytes read from DRAM");
1610
1611    bytesReadWrQ
1612        .name(name() + ".bytesReadWrQ")
1613        .desc("Total number of bytes read from write queue");
1614
1615    bytesWritten
1616        .name(name() + ".bytesWritten")
1617        .desc("Total number of bytes written to DRAM");
1618
1619    bytesReadSys
1620        .name(name() + ".bytesReadSys")
1621        .desc("Total read bytes from the system interface side");
1622
1623    bytesWrittenSys
1624        .name(name() + ".bytesWrittenSys")
1625        .desc("Total written bytes from the system interface side");
1626
1627    avgRdBW
1628        .name(name() + ".avgRdBW")
1629        .desc("Average DRAM read bandwidth in MiByte/s")
1630        .precision(2);
1631
1632    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
1633
1634    avgWrBW
1635        .name(name() + ".avgWrBW")
1636        .desc("Average achieved write bandwidth in MiByte/s")
1637        .precision(2);
1638
1639    avgWrBW = (bytesWritten / 1000000) / simSeconds;
1640
1641    avgRdBWSys
1642        .name(name() + ".avgRdBWSys")
1643        .desc("Average system read bandwidth in MiByte/s")
1644        .precision(2);
1645
1646    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
1647
1648    avgWrBWSys
1649        .name(name() + ".avgWrBWSys")
1650        .desc("Average system write bandwidth in MiByte/s")
1651        .precision(2);
1652
1653    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
1654
1655    peakBW
1656        .name(name() + ".peakBW")
1657        .desc("Theoretical peak bandwidth in MiByte/s")
1658        .precision(2);
1659
1660    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
1661
1662    busUtil
1663        .name(name() + ".busUtil")
1664        .desc("Data bus utilization in percentage")
1665        .precision(2);
1666
1667    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1668
1669    totGap
1670        .name(name() + ".totGap")
1671        .desc("Total gap between requests");
1672
1673    avgGap
1674        .name(name() + ".avgGap")
1675        .desc("Average gap between requests")
1676        .precision(2);
1677
1678    avgGap = totGap / (readReqs + writeReqs);
1679
1680    // Stats for DRAM Power calculation based on Micron datasheet
1681    busUtilRead
1682        .name(name() + ".busUtilRead")
1683        .desc("Data bus utilization in percentage for reads")
1684        .precision(2);
1685
1686    busUtilRead = avgRdBW / peakBW * 100;
1687
1688    busUtilWrite
1689        .name(name() + ".busUtilWrite")
1690        .desc("Data bus utilization in percentage for writes")
1691        .precision(2);
1692
1693    busUtilWrite = avgWrBW / peakBW * 100;
1694
1695    pageHitRate
1696        .name(name() + ".pageHitRate")
1697        .desc("Row buffer hit rate, read and write combined")
1698        .precision(2);
1699
1700    pageHitRate = (writeRowHits + readRowHits) /
1701        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
1702
1703    pwrStateTime
1704        .init(5)
1705        .name(name() + ".memoryStateTime")
1706        .desc("Time in different power states");
1707    pwrStateTime.subname(0, "IDLE");
1708    pwrStateTime.subname(1, "REF");
1709    pwrStateTime.subname(2, "PRE_PDN");
1710    pwrStateTime.subname(3, "ACT");
1711    pwrStateTime.subname(4, "ACT_PDN");
1712}
1713
1714void
1715DRAMCtrl::recvFunctional(PacketPtr pkt)
1716{
1717    // rely on the abstract memory
1718    functionalAccess(pkt);
1719}
1720
1721BaseSlavePort&
1722DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
1723{
1724    if (if_name != "port") {
1725        return MemObject::getSlavePort(if_name, idx);
1726    } else {
1727        return port;
1728    }
1729}
1730
1731unsigned int
1732DRAMCtrl::drain(DrainManager *dm)
1733{
1734    unsigned int count = port.drain(dm);
1735
1736    // if there is anything in any of our internal queues, keep track
1737    // of that as well
1738    if (!(writeQueue.empty() && readQueue.empty() &&
1739          respQueue.empty())) {
1740        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
1741                " resp: %d\n", writeQueue.size(), readQueue.size(),
1742                respQueue.size());
1743        ++count;
1744        drainManager = dm;
1745
1746        // the only part that is not drained automatically over time
1747        // is the write queue, thus kick things into action if needed
1748        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
1749            schedule(nextReqEvent, curTick());
1750        }
1751    }
1752
1753    if (count)
1754        setDrainState(Drainable::Draining);
1755    else
1756        setDrainState(Drainable::Drained);
1757    return count;
1758}
1759
1760DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
1761    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1762      memory(_memory)
1763{ }
1764
1765AddrRangeList
1766DRAMCtrl::MemoryPort::getAddrRanges() const
1767{
1768    AddrRangeList ranges;
1769    ranges.push_back(memory.getAddrRange());
1770    return ranges;
1771}
1772
1773void
1774DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
1775{
1776    pkt->pushLabel(memory.name());
1777
1778    if (!queue.checkFunctional(pkt)) {
1779        // Default implementation of SimpleTimingPort::recvFunctional()
1780        // calls recvAtomic() and throws away the latency; we can save a
1781        // little here by just not calculating the latency.
1782        memory.recvFunctional(pkt);
1783    }
1784
1785    pkt->popLabel();
1786}
1787
1788Tick
1789DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
1790{
1791    return memory.recvAtomic(pkt);
1792}
1793
1794bool
1795DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
1796{
1797    // pass it to the memory controller
1798    return memory.recvTimingReq(pkt);
1799}
1800
1801DRAMCtrl*
1802DRAMCtrlParams::create()
1803{
1804    return new DRAMCtrl(this);
1805}
1806