dram_ctrl.cc revision 10213:2e630c6c2042
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 */
44
45#include "base/bitfield.hh"
46#include "base/trace.hh"
47#include "debug/DRAM.hh"
48#include "debug/DRAMState.hh"
49#include "debug/Drain.hh"
50#include "mem/dram_ctrl.hh"
51#include "sim/system.hh"
52
53using namespace std;
54
55DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
56    AbstractMemory(p),
57    port(name() + ".port", *this),
58    retryRdReq(false), retryWrReq(false),
59    busState(READ),
60    nextReqEvent(this), respondEvent(this), activateEvent(this),
61    prechargeEvent(this), refreshEvent(this), powerEvent(this),
62    drainManager(NULL),
63    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
64    deviceRowBufferSize(p->device_rowbuffer_size),
65    devicesPerRank(p->devices_per_rank),
66    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
67    rowBufferSize(devicesPerRank * deviceRowBufferSize),
68    columnsPerRowBuffer(rowBufferSize / burstSize),
69    ranksPerChannel(p->ranks_per_channel),
70    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
71    readBufferSize(p->read_buffer_size),
72    writeBufferSize(p->write_buffer_size),
73    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
74    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
75    minWritesPerSwitch(p->min_writes_per_switch),
76    writesThisTime(0), readsThisTime(0),
77    tWTR(p->tWTR), tRTW(p->tRTW), tBURST(p->tBURST),
78    tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS), tWR(p->tWR),
79    tRTP(p->tRTP), tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
80    tXAW(p->tXAW), activationLimit(p->activation_limit),
81    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
82    pageMgmt(p->page_policy),
83    maxAccessesPerRow(p->max_accesses_per_row),
84    frontendLatency(p->static_frontend_latency),
85    backendLatency(p->static_backend_latency),
86    busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE),
87    pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0),
88    nextReqTime(0), pwrStateTick(0), numBanksActive(0)
89{
90    // create the bank states based on the dimensions of the ranks and
91    // banks
92    banks.resize(ranksPerChannel);
93    actTicks.resize(ranksPerChannel);
94    for (size_t c = 0; c < ranksPerChannel; ++c) {
95        banks[c].resize(banksPerRank);
96        actTicks[c].resize(activationLimit, 0);
97    }
98
99    // perform a basic check of the write thresholds
100    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
101        fatal("Write buffer low threshold %d must be smaller than the "
102              "high threshold %d\n", p->write_low_thresh_perc,
103              p->write_high_thresh_perc);
104
105    // determine the rows per bank by looking at the total capacity
106    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
107
108    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
109            AbstractMemory::size());
110
111    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
112            rowBufferSize, columnsPerRowBuffer);
113
114    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
115
116    if (range.interleaved()) {
117        if (channels != range.stripes())
118            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
119                  name(), range.stripes(), channels);
120
121        if (addrMapping == Enums::RoRaBaChCo) {
122            if (rowBufferSize != range.granularity()) {
123                fatal("Interleaving of %s doesn't match RoRaBaChCo "
124                      "address map\n", name());
125            }
126        } else if (addrMapping == Enums::RoRaBaCoCh) {
127            if (system()->cacheLineSize() != range.granularity()) {
128                fatal("Interleaving of %s doesn't match RoRaBaCoCh "
129                      "address map\n", name());
130            }
131        } else if (addrMapping == Enums::RoCoRaBaCh) {
132            if (system()->cacheLineSize() != range.granularity())
133                fatal("Interleaving of %s doesn't match RoCoRaBaCh "
134                      "address map\n", name());
135        }
136    }
137
138    // some basic sanity checks
139    if (tREFI <= tRP || tREFI <= tRFC) {
140        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
141              tREFI, tRP, tRFC);
142    }
143}
144
145void
146DRAMCtrl::init()
147{
148    if (!port.isConnected()) {
149        fatal("DRAMCtrl %s is unconnected!\n", name());
150    } else {
151        port.sendRangeChange();
152    }
153}
154
155void
156DRAMCtrl::startup()
157{
158    // update the start tick for the precharge accounting to the
159    // current tick
160    pwrStateTick = curTick();
161
162    // shift the bus busy time sufficiently far ahead that we never
163    // have to worry about negative values when computing the time for
164    // the next request, this will add an insignificant bubble at the
165    // start of simulation
166    busBusyUntil = curTick() + tRP + tRCD + tCL;
167
168    // kick off the refresh, and give ourselves enough time to
169    // precharge
170    schedule(refreshEvent, curTick() + tREFI - tRP);
171}
172
173Tick
174DRAMCtrl::recvAtomic(PacketPtr pkt)
175{
176    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
177
178    // do the actual memory access and turn the packet into a response
179    access(pkt);
180
181    Tick latency = 0;
182    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
183        // this value is not supposed to be accurate, just enough to
184        // keep things going, mimic a closed page
185        latency = tRP + tRCD + tCL;
186    }
187    return latency;
188}
189
190bool
191DRAMCtrl::readQueueFull(unsigned int neededEntries) const
192{
193    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
194            readBufferSize, readQueue.size() + respQueue.size(),
195            neededEntries);
196
197    return
198        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
199}
200
201bool
202DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
203{
204    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
205            writeBufferSize, writeQueue.size(), neededEntries);
206    return (writeQueue.size() + neededEntries) > writeBufferSize;
207}
208
209DRAMCtrl::DRAMPacket*
210DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
211                       bool isRead)
212{
213    // decode the address based on the address mapping scheme, with
214    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
215    // channel, respectively
216    uint8_t rank;
217    uint8_t bank;
218    uint16_t row;
219
220    // truncate the address to the access granularity
221    Addr addr = dramPktAddr / burstSize;
222
223    // we have removed the lowest order address bits that denote the
224    // position within the column
225    if (addrMapping == Enums::RoRaBaChCo) {
226        // the lowest order bits denote the column to ensure that
227        // sequential cache lines occupy the same row
228        addr = addr / columnsPerRowBuffer;
229
230        // take out the channel part of the address
231        addr = addr / channels;
232
233        // after the channel bits, get the bank bits to interleave
234        // over the banks
235        bank = addr % banksPerRank;
236        addr = addr / banksPerRank;
237
238        // after the bank, we get the rank bits which thus interleaves
239        // over the ranks
240        rank = addr % ranksPerChannel;
241        addr = addr / ranksPerChannel;
242
243        // lastly, get the row bits
244        row = addr % rowsPerBank;
245        addr = addr / rowsPerBank;
246    } else if (addrMapping == Enums::RoRaBaCoCh) {
247        // take out the channel part of the address
248        addr = addr / channels;
249
250        // next, the column
251        addr = addr / columnsPerRowBuffer;
252
253        // after the column bits, we get the bank bits to interleave
254        // over the banks
255        bank = addr % banksPerRank;
256        addr = addr / banksPerRank;
257
258        // after the bank, we get the rank bits which thus interleaves
259        // over the ranks
260        rank = addr % ranksPerChannel;
261        addr = addr / ranksPerChannel;
262
263        // lastly, get the row bits
264        row = addr % rowsPerBank;
265        addr = addr / rowsPerBank;
266    } else if (addrMapping == Enums::RoCoRaBaCh) {
267        // optimise for closed page mode and utilise maximum
268        // parallelism of the DRAM (at the cost of power)
269
270        // take out the channel part of the address, not that this has
271        // to match with how accesses are interleaved between the
272        // controllers in the address mapping
273        addr = addr / channels;
274
275        // start with the bank bits, as this provides the maximum
276        // opportunity for parallelism between requests
277        bank = addr % banksPerRank;
278        addr = addr / banksPerRank;
279
280        // next get the rank bits
281        rank = addr % ranksPerChannel;
282        addr = addr / ranksPerChannel;
283
284        // next the column bits which we do not need to keep track of
285        // and simply skip past
286        addr = addr / columnsPerRowBuffer;
287
288        // lastly, get the row bits
289        row = addr % rowsPerBank;
290        addr = addr / rowsPerBank;
291    } else
292        panic("Unknown address mapping policy chosen!");
293
294    assert(rank < ranksPerChannel);
295    assert(bank < banksPerRank);
296    assert(row < rowsPerBank);
297
298    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
299            dramPktAddr, rank, bank, row);
300
301    // create the corresponding DRAM packet with the entry time and
302    // ready time set to the current tick, the latter will be updated
303    // later
304    uint16_t bank_id = banksPerRank * rank + bank;
305    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
306                          size, banks[rank][bank]);
307}
308
309void
310DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
311{
312    // only add to the read queue here. whenever the request is
313    // eventually done, set the readyTime, and call schedule()
314    assert(!pkt->isWrite());
315
316    assert(pktCount != 0);
317
318    // if the request size is larger than burst size, the pkt is split into
319    // multiple DRAM packets
320    // Note if the pkt starting address is not aligened to burst size, the
321    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
322    // are aligned to burst size boundaries. This is to ensure we accurately
323    // check read packets against packets in write queue.
324    Addr addr = pkt->getAddr();
325    unsigned pktsServicedByWrQ = 0;
326    BurstHelper* burst_helper = NULL;
327    for (int cnt = 0; cnt < pktCount; ++cnt) {
328        unsigned size = std::min((addr | (burstSize - 1)) + 1,
329                        pkt->getAddr() + pkt->getSize()) - addr;
330        readPktSize[ceilLog2(size)]++;
331        readBursts++;
332
333        // First check write buffer to see if the data is already at
334        // the controller
335        bool foundInWrQ = false;
336        for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
337            // check if the read is subsumed in the write entry we are
338            // looking at
339            if ((*i)->addr <= addr &&
340                (addr + size) <= ((*i)->addr + (*i)->size)) {
341                foundInWrQ = true;
342                servicedByWrQ++;
343                pktsServicedByWrQ++;
344                DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
345                        "write queue\n", addr, size);
346                bytesReadWrQ += burstSize;
347                break;
348            }
349        }
350
351        // If not found in the write q, make a DRAM packet and
352        // push it onto the read queue
353        if (!foundInWrQ) {
354
355            // Make the burst helper for split packets
356            if (pktCount > 1 && burst_helper == NULL) {
357                DPRINTF(DRAM, "Read to addr %lld translates to %d "
358                        "dram requests\n", pkt->getAddr(), pktCount);
359                burst_helper = new BurstHelper(pktCount);
360            }
361
362            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
363            dram_pkt->burstHelper = burst_helper;
364
365            assert(!readQueueFull(1));
366            rdQLenPdf[readQueue.size() + respQueue.size()]++;
367
368            DPRINTF(DRAM, "Adding to read queue\n");
369
370            readQueue.push_back(dram_pkt);
371
372            // Update stats
373            avgRdQLen = readQueue.size() + respQueue.size();
374        }
375
376        // Starting address of next dram pkt (aligend to burstSize boundary)
377        addr = (addr | (burstSize - 1)) + 1;
378    }
379
380    // If all packets are serviced by write queue, we send the repsonse back
381    if (pktsServicedByWrQ == pktCount) {
382        accessAndRespond(pkt, frontendLatency);
383        return;
384    }
385
386    // Update how many split packets are serviced by write queue
387    if (burst_helper != NULL)
388        burst_helper->burstsServiced = pktsServicedByWrQ;
389
390    // If we are not already scheduled to get a request out of the
391    // queue, do so now
392    if (!nextReqEvent.scheduled()) {
393        DPRINTF(DRAM, "Request scheduled immediately\n");
394        schedule(nextReqEvent, curTick());
395    }
396}
397
398void
399DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
400{
401    // only add to the write queue here. whenever the request is
402    // eventually done, set the readyTime, and call schedule()
403    assert(pkt->isWrite());
404
405    // if the request size is larger than burst size, the pkt is split into
406    // multiple DRAM packets
407    Addr addr = pkt->getAddr();
408    for (int cnt = 0; cnt < pktCount; ++cnt) {
409        unsigned size = std::min((addr | (burstSize - 1)) + 1,
410                        pkt->getAddr() + pkt->getSize()) - addr;
411        writePktSize[ceilLog2(size)]++;
412        writeBursts++;
413
414        // see if we can merge with an existing item in the write
415        // queue and keep track of whether we have merged or not so we
416        // can stop at that point and also avoid enqueueing a new
417        // request
418        bool merged = false;
419        auto w = writeQueue.begin();
420
421        while(!merged && w != writeQueue.end()) {
422            // either of the two could be first, if they are the same
423            // it does not matter which way we go
424            if ((*w)->addr >= addr) {
425                // the existing one starts after the new one, figure
426                // out where the new one ends with respect to the
427                // existing one
428                if ((addr + size) >= ((*w)->addr + (*w)->size)) {
429                    // check if the existing one is completely
430                    // subsumed in the new one
431                    DPRINTF(DRAM, "Merging write covering existing burst\n");
432                    merged = true;
433                    // update both the address and the size
434                    (*w)->addr = addr;
435                    (*w)->size = size;
436                } else if ((addr + size) >= (*w)->addr &&
437                           ((*w)->addr + (*w)->size - addr) <= burstSize) {
438                    // the new one is just before or partially
439                    // overlapping with the existing one, and together
440                    // they fit within a burst
441                    DPRINTF(DRAM, "Merging write before existing burst\n");
442                    merged = true;
443                    // the existing queue item needs to be adjusted with
444                    // respect to both address and size
445                    (*w)->size = (*w)->addr + (*w)->size - addr;
446                    (*w)->addr = addr;
447                }
448            } else {
449                // the new one starts after the current one, figure
450                // out where the existing one ends with respect to the
451                // new one
452                if (((*w)->addr + (*w)->size) >= (addr + size)) {
453                    // check if the new one is completely subsumed in the
454                    // existing one
455                    DPRINTF(DRAM, "Merging write into existing burst\n");
456                    merged = true;
457                    // no adjustments necessary
458                } else if (((*w)->addr + (*w)->size) >= addr &&
459                           (addr + size - (*w)->addr) <= burstSize) {
460                    // the existing one is just before or partially
461                    // overlapping with the new one, and together
462                    // they fit within a burst
463                    DPRINTF(DRAM, "Merging write after existing burst\n");
464                    merged = true;
465                    // the address is right, and only the size has
466                    // to be adjusted
467                    (*w)->size = addr + size - (*w)->addr;
468                }
469            }
470            ++w;
471        }
472
473        // if the item was not merged we need to create a new write
474        // and enqueue it
475        if (!merged) {
476            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
477
478            assert(writeQueue.size() < writeBufferSize);
479            wrQLenPdf[writeQueue.size()]++;
480
481            DPRINTF(DRAM, "Adding to write queue\n");
482
483            writeQueue.push_back(dram_pkt);
484
485            // Update stats
486            avgWrQLen = writeQueue.size();
487        } else {
488            // keep track of the fact that this burst effectively
489            // disappeared as it was merged with an existing one
490            mergedWrBursts++;
491        }
492
493        // Starting address of next dram pkt (aligend to burstSize boundary)
494        addr = (addr | (burstSize - 1)) + 1;
495    }
496
497    // we do not wait for the writes to be send to the actual memory,
498    // but instead take responsibility for the consistency here and
499    // snoop the write queue for any upcoming reads
500    // @todo, if a pkt size is larger than burst size, we might need a
501    // different front end latency
502    accessAndRespond(pkt, frontendLatency);
503
504    // If we are not already scheduled to get a request out of the
505    // queue, do so now
506    if (!nextReqEvent.scheduled()) {
507        DPRINTF(DRAM, "Request scheduled immediately\n");
508        schedule(nextReqEvent, curTick());
509    }
510}
511
512void
513DRAMCtrl::printQs() const {
514    DPRINTF(DRAM, "===READ QUEUE===\n\n");
515    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
516        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
517    }
518    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
519    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
520        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
521    }
522    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
523    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
524        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
525    }
526}
527
528bool
529DRAMCtrl::recvTimingReq(PacketPtr pkt)
530{
531    /// @todo temporary hack to deal with memory corruption issues until
532    /// 4-phase transactions are complete
533    for (int x = 0; x < pendingDelete.size(); x++)
534        delete pendingDelete[x];
535    pendingDelete.clear();
536
537    // This is where we enter from the outside world
538    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
539            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
540
541    // simply drop inhibited packets for now
542    if (pkt->memInhibitAsserted()) {
543        DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
544        pendingDelete.push_back(pkt);
545        return true;
546    }
547
548    // Calc avg gap between requests
549    if (prevArrival != 0) {
550        totGap += curTick() - prevArrival;
551    }
552    prevArrival = curTick();
553
554
555    // Find out how many dram packets a pkt translates to
556    // If the burst size is equal or larger than the pkt size, then a pkt
557    // translates to only one dram packet. Otherwise, a pkt translates to
558    // multiple dram packets
559    unsigned size = pkt->getSize();
560    unsigned offset = pkt->getAddr() & (burstSize - 1);
561    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
562
563    // check local buffers and do not accept if full
564    if (pkt->isRead()) {
565        assert(size != 0);
566        if (readQueueFull(dram_pkt_count)) {
567            DPRINTF(DRAM, "Read queue full, not accepting\n");
568            // remember that we have to retry this port
569            retryRdReq = true;
570            numRdRetry++;
571            return false;
572        } else {
573            addToReadQueue(pkt, dram_pkt_count);
574            readReqs++;
575            bytesReadSys += size;
576        }
577    } else if (pkt->isWrite()) {
578        assert(size != 0);
579        if (writeQueueFull(dram_pkt_count)) {
580            DPRINTF(DRAM, "Write queue full, not accepting\n");
581            // remember that we have to retry this port
582            retryWrReq = true;
583            numWrRetry++;
584            return false;
585        } else {
586            addToWriteQueue(pkt, dram_pkt_count);
587            writeReqs++;
588            bytesWrittenSys += size;
589        }
590    } else {
591        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
592        neitherReadNorWrite++;
593        accessAndRespond(pkt, 1);
594    }
595
596    return true;
597}
598
599void
600DRAMCtrl::processRespondEvent()
601{
602    DPRINTF(DRAM,
603            "processRespondEvent(): Some req has reached its readyTime\n");
604
605    DRAMPacket* dram_pkt = respQueue.front();
606
607    if (dram_pkt->burstHelper) {
608        // it is a split packet
609        dram_pkt->burstHelper->burstsServiced++;
610        if (dram_pkt->burstHelper->burstsServiced ==
611            dram_pkt->burstHelper->burstCount) {
612            // we have now serviced all children packets of a system packet
613            // so we can now respond to the requester
614            // @todo we probably want to have a different front end and back
615            // end latency for split packets
616            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
617            delete dram_pkt->burstHelper;
618            dram_pkt->burstHelper = NULL;
619        }
620    } else {
621        // it is not a split packet
622        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
623    }
624
625    delete respQueue.front();
626    respQueue.pop_front();
627
628    if (!respQueue.empty()) {
629        assert(respQueue.front()->readyTime >= curTick());
630        assert(!respondEvent.scheduled());
631        schedule(respondEvent, respQueue.front()->readyTime);
632    } else {
633        // if there is nothing left in any queue, signal a drain
634        if (writeQueue.empty() && readQueue.empty() &&
635            drainManager) {
636            drainManager->signalDrainDone();
637            drainManager = NULL;
638        }
639    }
640
641    // We have made a location in the queue available at this point,
642    // so if there is a read that was forced to wait, retry now
643    if (retryRdReq) {
644        retryRdReq = false;
645        port.sendRetry();
646    }
647}
648
649void
650DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue)
651{
652    // This method does the arbitration between requests. The chosen
653    // packet is simply moved to the head of the queue. The other
654    // methods know that this is the place to look. For example, with
655    // FCFS, this method does nothing
656    assert(!queue.empty());
657
658    if (queue.size() == 1) {
659        DPRINTF(DRAM, "Single request, nothing to do\n");
660        return;
661    }
662
663    if (memSchedPolicy == Enums::fcfs) {
664        // Do nothing, since the correct request is already head
665    } else if (memSchedPolicy == Enums::frfcfs) {
666        reorderQueue(queue);
667    } else
668        panic("No scheduling policy chosen\n");
669}
670
671void
672DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue)
673{
674    // Only determine this when needed
675    uint64_t earliest_banks = 0;
676
677    // Search for row hits first, if no row hit is found then schedule the
678    // packet to one of the earliest banks available
679    bool found_earliest_pkt = false;
680    auto selected_pkt_it = queue.begin();
681
682    for (auto i = queue.begin(); i != queue.end() ; ++i) {
683        DRAMPacket* dram_pkt = *i;
684        const Bank& bank = dram_pkt->bankRef;
685        // Check if it is a row hit
686        if (bank.openRow == dram_pkt->row) {
687            // FCFS within the hits
688            DPRINTF(DRAM, "Row buffer hit\n");
689            selected_pkt_it = i;
690            break;
691        } else if (!found_earliest_pkt) {
692            // No row hit, go for first ready
693            if (earliest_banks == 0)
694                earliest_banks = minBankActAt(queue);
695
696            // simplistic approximation of when the bank can issue an
697            // activate, this is calculated in minBankActAt and could
698            // be cached
699            Tick act_at = bank.openRow == Bank::NO_ROW ?
700                bank.actAllowedAt :
701                std::max(bank.preAllowedAt, curTick()) + tRP;
702
703            // Bank is ready or is the first available bank
704            if (act_at <= curTick() ||
705                bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
706                // Remember the packet to be scheduled to one of the earliest
707                // banks available, FCFS amongst the earliest banks
708                selected_pkt_it = i;
709                found_earliest_pkt = true;
710            }
711        }
712    }
713
714    DRAMPacket* selected_pkt = *selected_pkt_it;
715    queue.erase(selected_pkt_it);
716    queue.push_front(selected_pkt);
717}
718
719void
720DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
721{
722    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
723
724    bool needsResponse = pkt->needsResponse();
725    // do the actual memory access which also turns the packet into a
726    // response
727    access(pkt);
728
729    // turn packet around to go back to requester if response expected
730    if (needsResponse) {
731        // access already turned the packet into a response
732        assert(pkt->isResponse());
733
734        // @todo someone should pay for this
735        pkt->busFirstWordDelay = pkt->busLastWordDelay = 0;
736
737        // queue the packet in the response queue to be sent out after
738        // the static latency has passed
739        port.schedTimingResp(pkt, curTick() + static_latency);
740    } else {
741        // @todo the packet is going to be deleted, and the DRAMPacket
742        // is still having a pointer to it
743        pendingDelete.push_back(pkt);
744    }
745
746    DPRINTF(DRAM, "Done\n");
747
748    return;
749}
750
751void
752DRAMCtrl::activateBank(Tick act_tick, uint8_t rank, uint8_t bank,
753                       uint16_t row, Bank& bank_ref)
754{
755    assert(0 <= rank && rank < ranksPerChannel);
756    assert(actTicks[rank].size() == activationLimit);
757
758    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
759
760    // update the open row
761    assert(bank_ref.openRow == Bank::NO_ROW);
762    bank_ref.openRow = row;
763
764    // start counting anew, this covers both the case when we
765    // auto-precharged, and when this access is forced to
766    // precharge
767    bank_ref.bytesAccessed = 0;
768    bank_ref.rowAccesses = 0;
769
770    ++numBanksActive;
771    assert(numBanksActive <= banksPerRank * ranksPerChannel);
772
773    DPRINTF(DRAM, "Activate bank at tick %lld, now got %d active\n",
774            act_tick, numBanksActive);
775
776    // The next access has to respect tRAS for this bank
777    bank_ref.preAllowedAt = act_tick + tRAS;
778
779    // Respect the row-to-column command delay
780    bank_ref.colAllowedAt = act_tick + tRCD;
781
782    // start by enforcing tRRD
783    for(int i = 0; i < banksPerRank; i++) {
784        // next activate to any bank in this rank must not happen
785        // before tRRD
786        banks[rank][i].actAllowedAt = std::max(act_tick + tRRD,
787                                               banks[rank][i].actAllowedAt);
788    }
789
790    // next, we deal with tXAW, if the activation limit is disabled
791    // then we are done
792    if (actTicks[rank].empty())
793        return;
794
795    // sanity check
796    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
797        panic("Got %d activates in window %d (%llu - %llu) which is smaller "
798              "than %llu\n", activationLimit, act_tick - actTicks[rank].back(),
799              act_tick, actTicks[rank].back(), tXAW);
800    }
801
802    // shift the times used for the book keeping, the last element
803    // (highest index) is the oldest one and hence the lowest value
804    actTicks[rank].pop_back();
805
806    // record an new activation (in the future)
807    actTicks[rank].push_front(act_tick);
808
809    // cannot activate more than X times in time window tXAW, push the
810    // next one (the X + 1'st activate) to be tXAW away from the
811    // oldest in our window of X
812    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
813        DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
814                "than %llu\n", activationLimit, actTicks[rank].back() + tXAW);
815            for(int j = 0; j < banksPerRank; j++)
816                // next activate must not happen before end of window
817                banks[rank][j].actAllowedAt =
818                    std::max(actTicks[rank].back() + tXAW,
819                             banks[rank][j].actAllowedAt);
820    }
821
822    // at the point when this activate takes place, make sure we
823    // transition to the active power state
824    if (!activateEvent.scheduled())
825        schedule(activateEvent, act_tick);
826    else if (activateEvent.when() > act_tick)
827        // move it sooner in time
828        reschedule(activateEvent, act_tick);
829}
830
831void
832DRAMCtrl::processActivateEvent()
833{
834    // we should transition to the active state as soon as any bank is active
835    if (pwrState != PWR_ACT)
836        // note that at this point numBanksActive could be back at
837        // zero again due to a precharge scheduled in the future
838        schedulePowerEvent(PWR_ACT, curTick());
839}
840
841void
842DRAMCtrl::prechargeBank(Bank& bank, Tick pre_at)
843{
844    // make sure the bank has an open row
845    assert(bank.openRow != Bank::NO_ROW);
846
847    // sample the bytes per activate here since we are closing
848    // the page
849    bytesPerActivate.sample(bank.bytesAccessed);
850
851    bank.openRow = Bank::NO_ROW;
852
853    Tick pre_done_at = pre_at + tRP;
854
855    bank.actAllowedAt = std::max(bank.actAllowedAt, pre_done_at);
856
857    assert(numBanksActive != 0);
858    --numBanksActive;
859
860    DPRINTF(DRAM, "Precharging bank at tick %lld, now got %d active\n",
861            pre_at, numBanksActive);
862
863    // if we look at the current number of active banks we might be
864    // tempted to think the DRAM is now idle, however this can be
865    // undone by an activate that is scheduled to happen before we
866    // would have reached the idle state, so schedule an event and
867    // rather check once we actually make it to the point in time when
868    // the (last) precharge takes place
869    if (!prechargeEvent.scheduled())
870        schedule(prechargeEvent, pre_done_at);
871    else if (prechargeEvent.when() < pre_done_at)
872        reschedule(prechargeEvent, pre_done_at);
873}
874
875void
876DRAMCtrl::processPrechargeEvent()
877{
878    // if we reached zero, then special conditions apply as we track
879    // if all banks are precharged for the power models
880    if (numBanksActive == 0) {
881        // we should transition to the idle state when the last bank
882        // is precharged
883        schedulePowerEvent(PWR_IDLE, curTick());
884    }
885}
886
887void
888DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
889{
890    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
891            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
892
893    // get the bank
894    Bank& bank = dram_pkt->bankRef;
895
896    // for the state we need to track if it is a row hit or not
897    bool row_hit = true;
898
899    // respect any constraints on the command (e.g. tRCD or tCCD)
900    Tick cmd_at = std::max(bank.colAllowedAt, curTick());
901
902    // Determine the access latency and update the bank state
903    if (bank.openRow == dram_pkt->row) {
904        // nothing to do
905    } else {
906        row_hit = false;
907
908        // If there is a page open, precharge it.
909        if (bank.openRow != Bank::NO_ROW) {
910            prechargeBank(bank, std::max(bank.preAllowedAt, curTick()));
911        }
912
913        // next we need to account for the delay in activating the
914        // page
915        Tick act_tick = std::max(bank.actAllowedAt, curTick());
916
917        // Record the activation and deal with all the global timing
918        // constraints caused be a new activation (tRRD and tXAW)
919        activateBank(act_tick, dram_pkt->rank, dram_pkt->bank,
920                     dram_pkt->row, bank);
921
922        // issue the command as early as possible
923        cmd_at = bank.colAllowedAt;
924    }
925
926    // we need to wait until the bus is available before we can issue
927    // the command
928    cmd_at = std::max(cmd_at, busBusyUntil - tCL);
929
930    // update the packet ready time
931    dram_pkt->readyTime = cmd_at + tCL + tBURST;
932
933    // only one burst can use the bus at any one point in time
934    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
935
936    // not strictly necessary, but update the time for the next
937    // read/write (add a max with tCCD here)
938    bank.colAllowedAt = cmd_at + tBURST;
939
940    // If this is a write, we also need to respect the write recovery
941    // time before a precharge, in the case of a read, respect the
942    // read to precharge constraint
943    bank.preAllowedAt = std::max(bank.preAllowedAt,
944                                 dram_pkt->isRead ? cmd_at + tRTP :
945                                 dram_pkt->readyTime + tWR);
946
947    // increment the bytes accessed and the accesses per row
948    bank.bytesAccessed += burstSize;
949    ++bank.rowAccesses;
950
951    // if we reached the max, then issue with an auto-precharge
952    bool auto_precharge = pageMgmt == Enums::close ||
953        bank.rowAccesses == maxAccessesPerRow;
954
955    // if we did not hit the limit, we might still want to
956    // auto-precharge
957    if (!auto_precharge &&
958        (pageMgmt == Enums::open_adaptive ||
959         pageMgmt == Enums::close_adaptive)) {
960        // a twist on the open and close page policies:
961        // 1) open_adaptive page policy does not blindly keep the
962        // page open, but close it if there are no row hits, and there
963        // are bank conflicts in the queue
964        // 2) close_adaptive page policy does not blindly close the
965        // page, but closes it only if there are no row hits in the queue.
966        // In this case, only force an auto precharge when there
967        // are no same page hits in the queue
968        bool got_more_hits = false;
969        bool got_bank_conflict = false;
970
971        // either look at the read queue or write queue
972        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
973            writeQueue;
974        auto p = queue.begin();
975        // make sure we are not considering the packet that we are
976        // currently dealing with (which is the head of the queue)
977        ++p;
978
979        // keep on looking until we have found required condition or
980        // reached the end
981        while (!(got_more_hits &&
982                 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
983               p != queue.end()) {
984            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
985                (dram_pkt->bank == (*p)->bank);
986            bool same_row = dram_pkt->row == (*p)->row;
987            got_more_hits |= same_rank_bank && same_row;
988            got_bank_conflict |= same_rank_bank && !same_row;
989            ++p;
990        }
991
992        // auto pre-charge when either
993        // 1) open_adaptive policy, we have not got any more hits, and
994        //    have a bank conflict
995        // 2) close_adaptive policy and we have not got any more hits
996        auto_precharge = !got_more_hits &&
997            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
998    }
999
1000    // if this access should use auto-precharge, then we are
1001    // closing the row
1002    if (auto_precharge) {
1003        prechargeBank(bank, std::max(curTick(), bank.preAllowedAt));
1004
1005        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1006    }
1007
1008    // Update bus state
1009    busBusyUntil = dram_pkt->readyTime;
1010
1011    DPRINTF(DRAM, "Access to %lld, ready at %lld bus busy until %lld.\n",
1012            dram_pkt->addr, dram_pkt->readyTime, busBusyUntil);
1013
1014    // Update the minimum timing between the requests, this is a
1015    // conservative estimate of when we have to schedule the next
1016    // request to not introduce any unecessary bubbles. In most cases
1017    // we will wake up sooner than we have to.
1018    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1019
1020    // Update the stats and schedule the next request
1021    if (dram_pkt->isRead) {
1022        ++readsThisTime;
1023        if (row_hit)
1024            readRowHits++;
1025        bytesReadDRAM += burstSize;
1026        perBankRdBursts[dram_pkt->bankId]++;
1027
1028        // Update latency stats
1029        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1030        totBusLat += tBURST;
1031        totQLat += cmd_at - dram_pkt->entryTime;
1032    } else {
1033        ++writesThisTime;
1034        if (row_hit)
1035            writeRowHits++;
1036        bytesWritten += burstSize;
1037        perBankWrBursts[dram_pkt->bankId]++;
1038    }
1039}
1040
1041void
1042DRAMCtrl::moveToRespQ()
1043{
1044    // Remove from read queue
1045    DRAMPacket* dram_pkt = readQueue.front();
1046    readQueue.pop_front();
1047
1048    // sanity check
1049    assert(dram_pkt->size <= burstSize);
1050
1051    // Insert into response queue sorted by readyTime
1052    // It will be sent back to the requestor at its
1053    // readyTime
1054    if (respQueue.empty()) {
1055        respQueue.push_front(dram_pkt);
1056        assert(!respondEvent.scheduled());
1057        assert(dram_pkt->readyTime >= curTick());
1058        schedule(respondEvent, dram_pkt->readyTime);
1059    } else {
1060        bool done = false;
1061        auto i = respQueue.begin();
1062        while (!done && i != respQueue.end()) {
1063            if ((*i)->readyTime > dram_pkt->readyTime) {
1064                respQueue.insert(i, dram_pkt);
1065                done = true;
1066            }
1067            ++i;
1068        }
1069
1070        if (!done)
1071            respQueue.push_back(dram_pkt);
1072
1073        assert(respondEvent.scheduled());
1074
1075        if (respQueue.front()->readyTime < respondEvent.when()) {
1076            assert(respQueue.front()->readyTime >= curTick());
1077            reschedule(respondEvent, respQueue.front()->readyTime);
1078        }
1079    }
1080}
1081
1082void
1083DRAMCtrl::processNextReqEvent()
1084{
1085    if (busState == READ_TO_WRITE) {
1086        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1087                "waiting\n", readsThisTime, readQueue.size());
1088
1089        // sample and reset the read-related stats as we are now
1090        // transitioning to writes, and all reads are done
1091        rdPerTurnAround.sample(readsThisTime);
1092        readsThisTime = 0;
1093
1094        // now proceed to do the actual writes
1095        busState = WRITE;
1096    } else if (busState == WRITE_TO_READ) {
1097        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1098                "waiting\n", writesThisTime, writeQueue.size());
1099
1100        wrPerTurnAround.sample(writesThisTime);
1101        writesThisTime = 0;
1102
1103        busState = READ;
1104    }
1105
1106    if (refreshState != REF_IDLE) {
1107        // if a refresh waiting for this event loop to finish, then hand
1108        // over now, and do not schedule a new nextReqEvent
1109        if (refreshState == REF_DRAIN) {
1110            DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1111
1112            refreshState = REF_PRE;
1113
1114            // hand control back to the refresh event loop
1115            schedule(refreshEvent, curTick());
1116        }
1117
1118        // let the refresh finish before issuing any further requests
1119        return;
1120    }
1121
1122    // when we get here it is either a read or a write
1123    if (busState == READ) {
1124
1125        // track if we should switch or not
1126        bool switch_to_writes = false;
1127
1128        if (readQueue.empty()) {
1129            // In the case there is no read request to go next,
1130            // trigger writes if we have passed the low threshold (or
1131            // if we are draining)
1132            if (!writeQueue.empty() &&
1133                (drainManager || writeQueue.size() > writeLowThreshold)) {
1134
1135                switch_to_writes = true;
1136            } else {
1137                // check if we are drained
1138                if (respQueue.empty () && drainManager) {
1139                    drainManager->signalDrainDone();
1140                    drainManager = NULL;
1141                }
1142
1143                // nothing to do, not even any point in scheduling an
1144                // event for the next request
1145                return;
1146            }
1147        } else {
1148            // Figure out which read request goes next, and move it to the
1149            // front of the read queue
1150            chooseNext(readQueue);
1151
1152            doDRAMAccess(readQueue.front());
1153
1154            // At this point we're done dealing with the request
1155            // It will be moved to a separate response queue with a
1156            // correct readyTime, and eventually be sent back at that
1157            // time
1158            moveToRespQ();
1159
1160            // we have so many writes that we have to transition
1161            if (writeQueue.size() > writeHighThreshold) {
1162                switch_to_writes = true;
1163            }
1164        }
1165
1166        // switching to writes, either because the read queue is empty
1167        // and the writes have passed the low threshold (or we are
1168        // draining), or because the writes hit the hight threshold
1169        if (switch_to_writes) {
1170            // transition to writing
1171            busState = READ_TO_WRITE;
1172
1173            // add a bubble to the data bus, as defined by the
1174            // tRTW parameter
1175            busBusyUntil += tRTW;
1176
1177            // update the minimum timing between the requests,
1178            // this shifts us back in time far enough to do any
1179            // bank preparation
1180            nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1181        }
1182    } else {
1183        chooseNext(writeQueue);
1184        DRAMPacket* dram_pkt = writeQueue.front();
1185        // sanity check
1186        assert(dram_pkt->size <= burstSize);
1187        doDRAMAccess(dram_pkt);
1188
1189        writeQueue.pop_front();
1190        delete dram_pkt;
1191
1192        // If we emptied the write queue, or got sufficiently below the
1193        // threshold (using the minWritesPerSwitch as the hysteresis) and
1194        // are not draining, or we have reads waiting and have done enough
1195        // writes, then switch to reads.
1196        if (writeQueue.empty() ||
1197            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1198             !drainManager) ||
1199            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1200            // turn the bus back around for reads again
1201            busState = WRITE_TO_READ;
1202
1203            // note that the we switch back to reads also in the idle
1204            // case, which eventually will check for any draining and
1205            // also pause any further scheduling if there is really
1206            // nothing to do
1207
1208            // here we get a bit creative and shift the bus busy time not
1209            // just the tWTR, but also a CAS latency to capture the fact
1210            // that we are allowed to prepare a new bank, but not issue a
1211            // read command until after tWTR, in essence we capture a
1212            // bubble on the data bus that is tWTR + tCL
1213            busBusyUntil += tWTR + tCL;
1214
1215            // update the minimum timing between the requests, this shifts
1216            // us back in time far enough to do any bank preparation
1217            nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1218        }
1219    }
1220
1221    schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1222
1223    // If there is space available and we have writes waiting then let
1224    // them retry. This is done here to ensure that the retry does not
1225    // cause a nextReqEvent to be scheduled before we do so as part of
1226    // the next request processing
1227    if (retryWrReq && writeQueue.size() < writeBufferSize) {
1228        retryWrReq = false;
1229        port.sendRetry();
1230    }
1231}
1232
1233uint64_t
1234DRAMCtrl::minBankActAt(const deque<DRAMPacket*>& queue) const
1235{
1236    uint64_t bank_mask = 0;
1237    Tick min_act_at = MaxTick;
1238
1239    // deterimne if we have queued transactions targetting a
1240    // bank in question
1241    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1242    for (auto p = queue.begin(); p != queue.end(); ++p) {
1243        got_waiting[(*p)->bankId] = true;
1244    }
1245
1246    for (int i = 0; i < ranksPerChannel; i++) {
1247        for (int j = 0; j < banksPerRank; j++) {
1248            uint8_t bank_id = i * banksPerRank + j;
1249
1250            // if we have waiting requests for the bank, and it is
1251            // amongst the first available, update the mask
1252            if (got_waiting[bank_id]) {
1253                // simplistic approximation of when the bank can issue
1254                // an activate, ignoring any rank-to-rank switching
1255                // cost
1256                Tick act_at = banks[i][j].openRow == Bank::NO_ROW ?
1257                    banks[i][j].actAllowedAt :
1258                    std::max(banks[i][j].preAllowedAt, curTick()) + tRP;
1259
1260                if (act_at <= min_act_at) {
1261                    // reset bank mask if new minimum is found
1262                    if (act_at < min_act_at)
1263                        bank_mask = 0;
1264                    // set the bit corresponding to the available bank
1265                    replaceBits(bank_mask, bank_id, bank_id, 1);
1266                    min_act_at = act_at;
1267                }
1268            }
1269        }
1270    }
1271
1272    return bank_mask;
1273}
1274
1275void
1276DRAMCtrl::processRefreshEvent()
1277{
1278    // when first preparing the refresh, remember when it was due
1279    if (refreshState == REF_IDLE) {
1280        // remember when the refresh is due
1281        refreshDueAt = curTick();
1282
1283        // proceed to drain
1284        refreshState = REF_DRAIN;
1285
1286        DPRINTF(DRAM, "Refresh due\n");
1287    }
1288
1289    // let any scheduled read or write go ahead, after which it will
1290    // hand control back to this event loop
1291    if (refreshState == REF_DRAIN) {
1292        if (nextReqEvent.scheduled()) {
1293            // hand control over to the request loop until it is
1294            // evaluated next
1295            DPRINTF(DRAM, "Refresh awaiting draining\n");
1296
1297            return;
1298        } else {
1299            refreshState = REF_PRE;
1300        }
1301    }
1302
1303    // at this point, ensure that all banks are precharged
1304    if (refreshState == REF_PRE) {
1305        // precharge any active bank if we are not already in the idle
1306        // state
1307        if (pwrState != PWR_IDLE) {
1308            DPRINTF(DRAM, "Precharging all\n");
1309            for (int i = 0; i < ranksPerChannel; i++) {
1310                for (int j = 0; j < banksPerRank; j++) {
1311                    if (banks[i][j].openRow != Bank::NO_ROW) {
1312                        // respect both causality and any existing bank
1313                        // constraints
1314                        Tick pre_at = std::max(banks[i][j].preAllowedAt,
1315                                                curTick());
1316
1317                        prechargeBank(banks[i][j], pre_at);
1318                    }
1319                }
1320            }
1321        } else {
1322            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1323
1324            // go ahead and kick the power state machine into gear if
1325            // we are already idle
1326            schedulePowerEvent(PWR_REF, curTick());
1327        }
1328
1329        refreshState = REF_RUN;
1330        assert(numBanksActive == 0);
1331
1332        // wait for all banks to be precharged, at which point the
1333        // power state machine will transition to the idle state, and
1334        // automatically move to a refresh, at that point it will also
1335        // call this method to get the refresh event loop going again
1336        return;
1337    }
1338
1339    // last but not least we perform the actual refresh
1340    if (refreshState == REF_RUN) {
1341        // should never get here with any banks active
1342        assert(numBanksActive == 0);
1343        assert(pwrState == PWR_REF);
1344
1345        Tick ref_done_at = curTick() + tRFC;
1346
1347        for (int i = 0; i < ranksPerChannel; i++) {
1348            for (int j = 0; j < banksPerRank; j++) {
1349                banks[i][j].actAllowedAt = ref_done_at;
1350            }
1351        }
1352
1353        // make sure we did not wait so long that we cannot make up
1354        // for it
1355        if (refreshDueAt + tREFI < ref_done_at) {
1356            fatal("Refresh was delayed so long we cannot catch up\n");
1357        }
1358
1359        // compensate for the delay in actually performing the refresh
1360        // when scheduling the next one
1361        schedule(refreshEvent, refreshDueAt + tREFI - tRP);
1362
1363        assert(!powerEvent.scheduled());
1364
1365        // move to the idle power state once the refresh is done, this
1366        // will also move the refresh state machine to the refresh
1367        // idle state
1368        schedulePowerEvent(PWR_IDLE, ref_done_at);
1369
1370        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1371                ref_done_at, refreshDueAt + tREFI);
1372    }
1373}
1374
1375void
1376DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
1377{
1378    // respect causality
1379    assert(tick >= curTick());
1380
1381    if (!powerEvent.scheduled()) {
1382        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1383                tick, pwr_state);
1384
1385        // insert the new transition
1386        pwrStateTrans = pwr_state;
1387
1388        schedule(powerEvent, tick);
1389    } else {
1390        panic("Scheduled power event at %llu to state %d, "
1391              "with scheduled event at %llu to %d\n", tick, pwr_state,
1392              powerEvent.when(), pwrStateTrans);
1393    }
1394}
1395
1396void
1397DRAMCtrl::processPowerEvent()
1398{
1399    // remember where we were, and for how long
1400    Tick duration = curTick() - pwrStateTick;
1401    PowerState prev_state = pwrState;
1402
1403    // update the accounting
1404    pwrStateTime[prev_state] += duration;
1405
1406    pwrState = pwrStateTrans;
1407    pwrStateTick = curTick();
1408
1409    if (pwrState == PWR_IDLE) {
1410        DPRINTF(DRAMState, "All banks precharged\n");
1411
1412        // if we were refreshing, make sure we start scheduling requests again
1413        if (prev_state == PWR_REF) {
1414            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1415            assert(pwrState == PWR_IDLE);
1416
1417            // kick things into action again
1418            refreshState = REF_IDLE;
1419            assert(!nextReqEvent.scheduled());
1420            schedule(nextReqEvent, curTick());
1421        } else {
1422            assert(prev_state == PWR_ACT);
1423
1424            // if we have a pending refresh, and are now moving to
1425            // the idle state, direclty transition to a refresh
1426            if (refreshState == REF_RUN) {
1427                // there should be nothing waiting at this point
1428                assert(!powerEvent.scheduled());
1429
1430                // update the state in zero time and proceed below
1431                pwrState = PWR_REF;
1432            }
1433        }
1434    }
1435
1436    // we transition to the refresh state, let the refresh state
1437    // machine know of this state update and let it deal with the
1438    // scheduling of the next power state transition as well as the
1439    // following refresh
1440    if (pwrState == PWR_REF) {
1441        DPRINTF(DRAMState, "Refreshing\n");
1442        // kick the refresh event loop into action again, and that
1443        // in turn will schedule a transition to the idle power
1444        // state once the refresh is done
1445        assert(refreshState == REF_RUN);
1446        processRefreshEvent();
1447    }
1448}
1449
1450void
1451DRAMCtrl::regStats()
1452{
1453    using namespace Stats;
1454
1455    AbstractMemory::regStats();
1456
1457    readReqs
1458        .name(name() + ".readReqs")
1459        .desc("Number of read requests accepted");
1460
1461    writeReqs
1462        .name(name() + ".writeReqs")
1463        .desc("Number of write requests accepted");
1464
1465    readBursts
1466        .name(name() + ".readBursts")
1467        .desc("Number of DRAM read bursts, "
1468              "including those serviced by the write queue");
1469
1470    writeBursts
1471        .name(name() + ".writeBursts")
1472        .desc("Number of DRAM write bursts, "
1473              "including those merged in the write queue");
1474
1475    servicedByWrQ
1476        .name(name() + ".servicedByWrQ")
1477        .desc("Number of DRAM read bursts serviced by the write queue");
1478
1479    mergedWrBursts
1480        .name(name() + ".mergedWrBursts")
1481        .desc("Number of DRAM write bursts merged with an existing one");
1482
1483    neitherReadNorWrite
1484        .name(name() + ".neitherReadNorWriteReqs")
1485        .desc("Number of requests that are neither read nor write");
1486
1487    perBankRdBursts
1488        .init(banksPerRank * ranksPerChannel)
1489        .name(name() + ".perBankRdBursts")
1490        .desc("Per bank write bursts");
1491
1492    perBankWrBursts
1493        .init(banksPerRank * ranksPerChannel)
1494        .name(name() + ".perBankWrBursts")
1495        .desc("Per bank write bursts");
1496
1497    avgRdQLen
1498        .name(name() + ".avgRdQLen")
1499        .desc("Average read queue length when enqueuing")
1500        .precision(2);
1501
1502    avgWrQLen
1503        .name(name() + ".avgWrQLen")
1504        .desc("Average write queue length when enqueuing")
1505        .precision(2);
1506
1507    totQLat
1508        .name(name() + ".totQLat")
1509        .desc("Total ticks spent queuing");
1510
1511    totBusLat
1512        .name(name() + ".totBusLat")
1513        .desc("Total ticks spent in databus transfers");
1514
1515    totMemAccLat
1516        .name(name() + ".totMemAccLat")
1517        .desc("Total ticks spent from burst creation until serviced "
1518              "by the DRAM");
1519
1520    avgQLat
1521        .name(name() + ".avgQLat")
1522        .desc("Average queueing delay per DRAM burst")
1523        .precision(2);
1524
1525    avgQLat = totQLat / (readBursts - servicedByWrQ);
1526
1527    avgBusLat
1528        .name(name() + ".avgBusLat")
1529        .desc("Average bus latency per DRAM burst")
1530        .precision(2);
1531
1532    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1533
1534    avgMemAccLat
1535        .name(name() + ".avgMemAccLat")
1536        .desc("Average memory access latency per DRAM burst")
1537        .precision(2);
1538
1539    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1540
1541    numRdRetry
1542        .name(name() + ".numRdRetry")
1543        .desc("Number of times read queue was full causing retry");
1544
1545    numWrRetry
1546        .name(name() + ".numWrRetry")
1547        .desc("Number of times write queue was full causing retry");
1548
1549    readRowHits
1550        .name(name() + ".readRowHits")
1551        .desc("Number of row buffer hits during reads");
1552
1553    writeRowHits
1554        .name(name() + ".writeRowHits")
1555        .desc("Number of row buffer hits during writes");
1556
1557    readRowHitRate
1558        .name(name() + ".readRowHitRate")
1559        .desc("Row buffer hit rate for reads")
1560        .precision(2);
1561
1562    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
1563
1564    writeRowHitRate
1565        .name(name() + ".writeRowHitRate")
1566        .desc("Row buffer hit rate for writes")
1567        .precision(2);
1568
1569    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
1570
1571    readPktSize
1572        .init(ceilLog2(burstSize) + 1)
1573        .name(name() + ".readPktSize")
1574        .desc("Read request sizes (log2)");
1575
1576     writePktSize
1577        .init(ceilLog2(burstSize) + 1)
1578        .name(name() + ".writePktSize")
1579        .desc("Write request sizes (log2)");
1580
1581     rdQLenPdf
1582        .init(readBufferSize)
1583        .name(name() + ".rdQLenPdf")
1584        .desc("What read queue length does an incoming req see");
1585
1586     wrQLenPdf
1587        .init(writeBufferSize)
1588        .name(name() + ".wrQLenPdf")
1589        .desc("What write queue length does an incoming req see");
1590
1591     bytesPerActivate
1592         .init(maxAccessesPerRow)
1593         .name(name() + ".bytesPerActivate")
1594         .desc("Bytes accessed per row activation")
1595         .flags(nozero);
1596
1597     rdPerTurnAround
1598         .init(readBufferSize)
1599         .name(name() + ".rdPerTurnAround")
1600         .desc("Reads before turning the bus around for writes")
1601         .flags(nozero);
1602
1603     wrPerTurnAround
1604         .init(writeBufferSize)
1605         .name(name() + ".wrPerTurnAround")
1606         .desc("Writes before turning the bus around for reads")
1607         .flags(nozero);
1608
1609    bytesReadDRAM
1610        .name(name() + ".bytesReadDRAM")
1611        .desc("Total number of bytes read from DRAM");
1612
1613    bytesReadWrQ
1614        .name(name() + ".bytesReadWrQ")
1615        .desc("Total number of bytes read from write queue");
1616
1617    bytesWritten
1618        .name(name() + ".bytesWritten")
1619        .desc("Total number of bytes written to DRAM");
1620
1621    bytesReadSys
1622        .name(name() + ".bytesReadSys")
1623        .desc("Total read bytes from the system interface side");
1624
1625    bytesWrittenSys
1626        .name(name() + ".bytesWrittenSys")
1627        .desc("Total written bytes from the system interface side");
1628
1629    avgRdBW
1630        .name(name() + ".avgRdBW")
1631        .desc("Average DRAM read bandwidth in MiByte/s")
1632        .precision(2);
1633
1634    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
1635
1636    avgWrBW
1637        .name(name() + ".avgWrBW")
1638        .desc("Average achieved write bandwidth in MiByte/s")
1639        .precision(2);
1640
1641    avgWrBW = (bytesWritten / 1000000) / simSeconds;
1642
1643    avgRdBWSys
1644        .name(name() + ".avgRdBWSys")
1645        .desc("Average system read bandwidth in MiByte/s")
1646        .precision(2);
1647
1648    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
1649
1650    avgWrBWSys
1651        .name(name() + ".avgWrBWSys")
1652        .desc("Average system write bandwidth in MiByte/s")
1653        .precision(2);
1654
1655    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
1656
1657    peakBW
1658        .name(name() + ".peakBW")
1659        .desc("Theoretical peak bandwidth in MiByte/s")
1660        .precision(2);
1661
1662    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
1663
1664    busUtil
1665        .name(name() + ".busUtil")
1666        .desc("Data bus utilization in percentage")
1667        .precision(2);
1668
1669    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1670
1671    totGap
1672        .name(name() + ".totGap")
1673        .desc("Total gap between requests");
1674
1675    avgGap
1676        .name(name() + ".avgGap")
1677        .desc("Average gap between requests")
1678        .precision(2);
1679
1680    avgGap = totGap / (readReqs + writeReqs);
1681
1682    // Stats for DRAM Power calculation based on Micron datasheet
1683    busUtilRead
1684        .name(name() + ".busUtilRead")
1685        .desc("Data bus utilization in percentage for reads")
1686        .precision(2);
1687
1688    busUtilRead = avgRdBW / peakBW * 100;
1689
1690    busUtilWrite
1691        .name(name() + ".busUtilWrite")
1692        .desc("Data bus utilization in percentage for writes")
1693        .precision(2);
1694
1695    busUtilWrite = avgWrBW / peakBW * 100;
1696
1697    pageHitRate
1698        .name(name() + ".pageHitRate")
1699        .desc("Row buffer hit rate, read and write combined")
1700        .precision(2);
1701
1702    pageHitRate = (writeRowHits + readRowHits) /
1703        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
1704
1705    pwrStateTime
1706        .init(5)
1707        .name(name() + ".memoryStateTime")
1708        .desc("Time in different power states");
1709    pwrStateTime.subname(0, "IDLE");
1710    pwrStateTime.subname(1, "REF");
1711    pwrStateTime.subname(2, "PRE_PDN");
1712    pwrStateTime.subname(3, "ACT");
1713    pwrStateTime.subname(4, "ACT_PDN");
1714}
1715
1716void
1717DRAMCtrl::recvFunctional(PacketPtr pkt)
1718{
1719    // rely on the abstract memory
1720    functionalAccess(pkt);
1721}
1722
1723BaseSlavePort&
1724DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
1725{
1726    if (if_name != "port") {
1727        return MemObject::getSlavePort(if_name, idx);
1728    } else {
1729        return port;
1730    }
1731}
1732
1733unsigned int
1734DRAMCtrl::drain(DrainManager *dm)
1735{
1736    unsigned int count = port.drain(dm);
1737
1738    // if there is anything in any of our internal queues, keep track
1739    // of that as well
1740    if (!(writeQueue.empty() && readQueue.empty() &&
1741          respQueue.empty())) {
1742        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
1743                " resp: %d\n", writeQueue.size(), readQueue.size(),
1744                respQueue.size());
1745        ++count;
1746        drainManager = dm;
1747
1748        // the only part that is not drained automatically over time
1749        // is the write queue, thus kick things into action if needed
1750        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
1751            schedule(nextReqEvent, curTick());
1752        }
1753    }
1754
1755    if (count)
1756        setDrainState(Drainable::Draining);
1757    else
1758        setDrainState(Drainable::Drained);
1759    return count;
1760}
1761
1762DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
1763    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1764      memory(_memory)
1765{ }
1766
1767AddrRangeList
1768DRAMCtrl::MemoryPort::getAddrRanges() const
1769{
1770    AddrRangeList ranges;
1771    ranges.push_back(memory.getAddrRange());
1772    return ranges;
1773}
1774
1775void
1776DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
1777{
1778    pkt->pushLabel(memory.name());
1779
1780    if (!queue.checkFunctional(pkt)) {
1781        // Default implementation of SimpleTimingPort::recvFunctional()
1782        // calls recvAtomic() and throws away the latency; we can save a
1783        // little here by just not calculating the latency.
1784        memory.recvFunctional(pkt);
1785    }
1786
1787    pkt->popLabel();
1788}
1789
1790Tick
1791DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
1792{
1793    return memory.recvAtomic(pkt);
1794}
1795
1796bool
1797DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
1798{
1799    // pass it to the memory controller
1800    return memory.recvTimingReq(pkt);
1801}
1802
1803DRAMCtrl*
1804DRAMCtrlParams::create()
1805{
1806    return new DRAMCtrl(this);
1807}
1808