dram_ctrl.cc revision 10209:ac71c857e1e1
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 */
44
45#include "base/bitfield.hh"
46#include "base/trace.hh"
47#include "debug/DRAM.hh"
48#include "debug/DRAMState.hh"
49#include "debug/Drain.hh"
50#include "mem/dram_ctrl.hh"
51#include "sim/system.hh"
52
53using namespace std;
54
55DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
56    AbstractMemory(p),
57    port(name() + ".port", *this),
58    retryRdReq(false), retryWrReq(false),
59    rowHitFlag(false), busState(READ),
60    nextReqEvent(this), respondEvent(this), activateEvent(this),
61    prechargeEvent(this), refreshEvent(this), powerEvent(this),
62    drainManager(NULL),
63    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
64    deviceRowBufferSize(p->device_rowbuffer_size),
65    devicesPerRank(p->devices_per_rank),
66    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
67    rowBufferSize(devicesPerRank * deviceRowBufferSize),
68    columnsPerRowBuffer(rowBufferSize / burstSize),
69    ranksPerChannel(p->ranks_per_channel),
70    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
71    readBufferSize(p->read_buffer_size),
72    writeBufferSize(p->write_buffer_size),
73    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
74    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
75    minWritesPerSwitch(p->min_writes_per_switch),
76    writesThisTime(0), readsThisTime(0),
77    tWTR(p->tWTR), tRTW(p->tRTW), tBURST(p->tBURST),
78    tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
79    tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
80    tXAW(p->tXAW), activationLimit(p->activation_limit),
81    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
82    pageMgmt(p->page_policy),
83    maxAccessesPerRow(p->max_accesses_per_row),
84    frontendLatency(p->static_frontend_latency),
85    backendLatency(p->static_backend_latency),
86    busBusyUntil(0), refreshDueAt(0), refreshState(REF_IDLE),
87    pwrStateTrans(PWR_IDLE), pwrState(PWR_IDLE), prevArrival(0),
88    nextReqTime(0), pwrStateTick(0), numBanksActive(0)
89{
90    // create the bank states based on the dimensions of the ranks and
91    // banks
92    banks.resize(ranksPerChannel);
93    actTicks.resize(ranksPerChannel);
94    for (size_t c = 0; c < ranksPerChannel; ++c) {
95        banks[c].resize(banksPerRank);
96        actTicks[c].resize(activationLimit, 0);
97    }
98
99    // perform a basic check of the write thresholds
100    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
101        fatal("Write buffer low threshold %d must be smaller than the "
102              "high threshold %d\n", p->write_low_thresh_perc,
103              p->write_high_thresh_perc);
104
105    // determine the rows per bank by looking at the total capacity
106    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
107
108    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
109            AbstractMemory::size());
110
111    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
112            rowBufferSize, columnsPerRowBuffer);
113
114    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
115
116    if (range.interleaved()) {
117        if (channels != range.stripes())
118            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
119                  name(), range.stripes(), channels);
120
121        if (addrMapping == Enums::RoRaBaChCo) {
122            if (rowBufferSize != range.granularity()) {
123                fatal("Interleaving of %s doesn't match RoRaBaChCo "
124                      "address map\n", name());
125            }
126        } else if (addrMapping == Enums::RoRaBaCoCh) {
127            if (system()->cacheLineSize() != range.granularity()) {
128                fatal("Interleaving of %s doesn't match RoRaBaCoCh "
129                      "address map\n", name());
130            }
131        } else if (addrMapping == Enums::RoCoRaBaCh) {
132            if (system()->cacheLineSize() != range.granularity())
133                fatal("Interleaving of %s doesn't match RoCoRaBaCh "
134                      "address map\n", name());
135        }
136    }
137
138    // some basic sanity checks
139    if (tREFI <= tRP || tREFI <= tRFC) {
140        fatal("tREFI (%d) must be larger than tRP (%d) and tRFC (%d)\n",
141              tREFI, tRP, tRFC);
142    }
143}
144
145void
146DRAMCtrl::init()
147{
148    if (!port.isConnected()) {
149        fatal("DRAMCtrl %s is unconnected!\n", name());
150    } else {
151        port.sendRangeChange();
152    }
153}
154
155void
156DRAMCtrl::startup()
157{
158    // update the start tick for the precharge accounting to the
159    // current tick
160    pwrStateTick = curTick();
161
162    // shift the bus busy time sufficiently far ahead that we never
163    // have to worry about negative values when computing the time for
164    // the next request, this will add an insignificant bubble at the
165    // start of simulation
166    busBusyUntil = curTick() + tRP + tRCD + tCL;
167
168    // print the configuration of the controller
169    printParams();
170
171    // kick off the refresh, and give ourselves enough time to
172    // precharge
173    schedule(refreshEvent, curTick() + tREFI - tRP);
174}
175
176Tick
177DRAMCtrl::recvAtomic(PacketPtr pkt)
178{
179    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
180
181    // do the actual memory access and turn the packet into a response
182    access(pkt);
183
184    Tick latency = 0;
185    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
186        // this value is not supposed to be accurate, just enough to
187        // keep things going, mimic a closed page
188        latency = tRP + tRCD + tCL;
189    }
190    return latency;
191}
192
193bool
194DRAMCtrl::readQueueFull(unsigned int neededEntries) const
195{
196    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
197            readBufferSize, readQueue.size() + respQueue.size(),
198            neededEntries);
199
200    return
201        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
202}
203
204bool
205DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
206{
207    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
208            writeBufferSize, writeQueue.size(), neededEntries);
209    return (writeQueue.size() + neededEntries) > writeBufferSize;
210}
211
212DRAMCtrl::DRAMPacket*
213DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
214                       bool isRead)
215{
216    // decode the address based on the address mapping scheme, with
217    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
218    // channel, respectively
219    uint8_t rank;
220    uint8_t bank;
221    uint16_t row;
222
223    // truncate the address to the access granularity
224    Addr addr = dramPktAddr / burstSize;
225
226    // we have removed the lowest order address bits that denote the
227    // position within the column
228    if (addrMapping == Enums::RoRaBaChCo) {
229        // the lowest order bits denote the column to ensure that
230        // sequential cache lines occupy the same row
231        addr = addr / columnsPerRowBuffer;
232
233        // take out the channel part of the address
234        addr = addr / channels;
235
236        // after the channel bits, get the bank bits to interleave
237        // over the banks
238        bank = addr % banksPerRank;
239        addr = addr / banksPerRank;
240
241        // after the bank, we get the rank bits which thus interleaves
242        // over the ranks
243        rank = addr % ranksPerChannel;
244        addr = addr / ranksPerChannel;
245
246        // lastly, get the row bits
247        row = addr % rowsPerBank;
248        addr = addr / rowsPerBank;
249    } else if (addrMapping == Enums::RoRaBaCoCh) {
250        // take out the channel part of the address
251        addr = addr / channels;
252
253        // next, the column
254        addr = addr / columnsPerRowBuffer;
255
256        // after the column bits, we get the bank bits to interleave
257        // over the banks
258        bank = addr % banksPerRank;
259        addr = addr / banksPerRank;
260
261        // after the bank, we get the rank bits which thus interleaves
262        // over the ranks
263        rank = addr % ranksPerChannel;
264        addr = addr / ranksPerChannel;
265
266        // lastly, get the row bits
267        row = addr % rowsPerBank;
268        addr = addr / rowsPerBank;
269    } else if (addrMapping == Enums::RoCoRaBaCh) {
270        // optimise for closed page mode and utilise maximum
271        // parallelism of the DRAM (at the cost of power)
272
273        // take out the channel part of the address, not that this has
274        // to match with how accesses are interleaved between the
275        // controllers in the address mapping
276        addr = addr / channels;
277
278        // start with the bank bits, as this provides the maximum
279        // opportunity for parallelism between requests
280        bank = addr % banksPerRank;
281        addr = addr / banksPerRank;
282
283        // next get the rank bits
284        rank = addr % ranksPerChannel;
285        addr = addr / ranksPerChannel;
286
287        // next the column bits which we do not need to keep track of
288        // and simply skip past
289        addr = addr / columnsPerRowBuffer;
290
291        // lastly, get the row bits
292        row = addr % rowsPerBank;
293        addr = addr / rowsPerBank;
294    } else
295        panic("Unknown address mapping policy chosen!");
296
297    assert(rank < ranksPerChannel);
298    assert(bank < banksPerRank);
299    assert(row < rowsPerBank);
300
301    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
302            dramPktAddr, rank, bank, row);
303
304    // create the corresponding DRAM packet with the entry time and
305    // ready time set to the current tick, the latter will be updated
306    // later
307    uint16_t bank_id = banksPerRank * rank + bank;
308    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
309                          size, banks[rank][bank]);
310}
311
312void
313DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
314{
315    // only add to the read queue here. whenever the request is
316    // eventually done, set the readyTime, and call schedule()
317    assert(!pkt->isWrite());
318
319    assert(pktCount != 0);
320
321    // if the request size is larger than burst size, the pkt is split into
322    // multiple DRAM packets
323    // Note if the pkt starting address is not aligened to burst size, the
324    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
325    // are aligned to burst size boundaries. This is to ensure we accurately
326    // check read packets against packets in write queue.
327    Addr addr = pkt->getAddr();
328    unsigned pktsServicedByWrQ = 0;
329    BurstHelper* burst_helper = NULL;
330    for (int cnt = 0; cnt < pktCount; ++cnt) {
331        unsigned size = std::min((addr | (burstSize - 1)) + 1,
332                        pkt->getAddr() + pkt->getSize()) - addr;
333        readPktSize[ceilLog2(size)]++;
334        readBursts++;
335
336        // First check write buffer to see if the data is already at
337        // the controller
338        bool foundInWrQ = false;
339        for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
340            // check if the read is subsumed in the write entry we are
341            // looking at
342            if ((*i)->addr <= addr &&
343                (addr + size) <= ((*i)->addr + (*i)->size)) {
344                foundInWrQ = true;
345                servicedByWrQ++;
346                pktsServicedByWrQ++;
347                DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
348                        "write queue\n", addr, size);
349                bytesReadWrQ += burstSize;
350                break;
351            }
352        }
353
354        // If not found in the write q, make a DRAM packet and
355        // push it onto the read queue
356        if (!foundInWrQ) {
357
358            // Make the burst helper for split packets
359            if (pktCount > 1 && burst_helper == NULL) {
360                DPRINTF(DRAM, "Read to addr %lld translates to %d "
361                        "dram requests\n", pkt->getAddr(), pktCount);
362                burst_helper = new BurstHelper(pktCount);
363            }
364
365            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
366            dram_pkt->burstHelper = burst_helper;
367
368            assert(!readQueueFull(1));
369            rdQLenPdf[readQueue.size() + respQueue.size()]++;
370
371            DPRINTF(DRAM, "Adding to read queue\n");
372
373            readQueue.push_back(dram_pkt);
374
375            // Update stats
376            avgRdQLen = readQueue.size() + respQueue.size();
377        }
378
379        // Starting address of next dram pkt (aligend to burstSize boundary)
380        addr = (addr | (burstSize - 1)) + 1;
381    }
382
383    // If all packets are serviced by write queue, we send the repsonse back
384    if (pktsServicedByWrQ == pktCount) {
385        accessAndRespond(pkt, frontendLatency);
386        return;
387    }
388
389    // Update how many split packets are serviced by write queue
390    if (burst_helper != NULL)
391        burst_helper->burstsServiced = pktsServicedByWrQ;
392
393    // If we are not already scheduled to get a request out of the
394    // queue, do so now
395    if (!nextReqEvent.scheduled()) {
396        DPRINTF(DRAM, "Request scheduled immediately\n");
397        schedule(nextReqEvent, curTick());
398    }
399}
400
401void
402DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
403{
404    // only add to the write queue here. whenever the request is
405    // eventually done, set the readyTime, and call schedule()
406    assert(pkt->isWrite());
407
408    // if the request size is larger than burst size, the pkt is split into
409    // multiple DRAM packets
410    Addr addr = pkt->getAddr();
411    for (int cnt = 0; cnt < pktCount; ++cnt) {
412        unsigned size = std::min((addr | (burstSize - 1)) + 1,
413                        pkt->getAddr() + pkt->getSize()) - addr;
414        writePktSize[ceilLog2(size)]++;
415        writeBursts++;
416
417        // see if we can merge with an existing item in the write
418        // queue and keep track of whether we have merged or not so we
419        // can stop at that point and also avoid enqueueing a new
420        // request
421        bool merged = false;
422        auto w = writeQueue.begin();
423
424        while(!merged && w != writeQueue.end()) {
425            // either of the two could be first, if they are the same
426            // it does not matter which way we go
427            if ((*w)->addr >= addr) {
428                // the existing one starts after the new one, figure
429                // out where the new one ends with respect to the
430                // existing one
431                if ((addr + size) >= ((*w)->addr + (*w)->size)) {
432                    // check if the existing one is completely
433                    // subsumed in the new one
434                    DPRINTF(DRAM, "Merging write covering existing burst\n");
435                    merged = true;
436                    // update both the address and the size
437                    (*w)->addr = addr;
438                    (*w)->size = size;
439                } else if ((addr + size) >= (*w)->addr &&
440                           ((*w)->addr + (*w)->size - addr) <= burstSize) {
441                    // the new one is just before or partially
442                    // overlapping with the existing one, and together
443                    // they fit within a burst
444                    DPRINTF(DRAM, "Merging write before existing burst\n");
445                    merged = true;
446                    // the existing queue item needs to be adjusted with
447                    // respect to both address and size
448                    (*w)->size = (*w)->addr + (*w)->size - addr;
449                    (*w)->addr = addr;
450                }
451            } else {
452                // the new one starts after the current one, figure
453                // out where the existing one ends with respect to the
454                // new one
455                if (((*w)->addr + (*w)->size) >= (addr + size)) {
456                    // check if the new one is completely subsumed in the
457                    // existing one
458                    DPRINTF(DRAM, "Merging write into existing burst\n");
459                    merged = true;
460                    // no adjustments necessary
461                } else if (((*w)->addr + (*w)->size) >= addr &&
462                           (addr + size - (*w)->addr) <= burstSize) {
463                    // the existing one is just before or partially
464                    // overlapping with the new one, and together
465                    // they fit within a burst
466                    DPRINTF(DRAM, "Merging write after existing burst\n");
467                    merged = true;
468                    // the address is right, and only the size has
469                    // to be adjusted
470                    (*w)->size = addr + size - (*w)->addr;
471                }
472            }
473            ++w;
474        }
475
476        // if the item was not merged we need to create a new write
477        // and enqueue it
478        if (!merged) {
479            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
480
481            assert(writeQueue.size() < writeBufferSize);
482            wrQLenPdf[writeQueue.size()]++;
483
484            DPRINTF(DRAM, "Adding to write queue\n");
485
486            writeQueue.push_back(dram_pkt);
487
488            // Update stats
489            avgWrQLen = writeQueue.size();
490        } else {
491            // keep track of the fact that this burst effectively
492            // disappeared as it was merged with an existing one
493            mergedWrBursts++;
494        }
495
496        // Starting address of next dram pkt (aligend to burstSize boundary)
497        addr = (addr | (burstSize - 1)) + 1;
498    }
499
500    // we do not wait for the writes to be send to the actual memory,
501    // but instead take responsibility for the consistency here and
502    // snoop the write queue for any upcoming reads
503    // @todo, if a pkt size is larger than burst size, we might need a
504    // different front end latency
505    accessAndRespond(pkt, frontendLatency);
506
507    // If we are not already scheduled to get a request out of the
508    // queue, do so now
509    if (!nextReqEvent.scheduled()) {
510        DPRINTF(DRAM, "Request scheduled immediately\n");
511        schedule(nextReqEvent, curTick());
512    }
513}
514
515void
516DRAMCtrl::printParams() const
517{
518    // Sanity check print of important parameters
519    DPRINTF(DRAM,
520            "Memory controller %s physical organization\n"      \
521            "Number of devices per rank   %d\n"                 \
522            "Device bus width (in bits)   %d\n"                 \
523            "DRAM data bus burst (bytes)  %d\n"                 \
524            "Row buffer size (bytes)      %d\n"                 \
525            "Columns per row buffer       %d\n"                 \
526            "Rows    per bank             %d\n"                 \
527            "Banks   per rank             %d\n"                 \
528            "Ranks   per channel          %d\n"                 \
529            "Total mem capacity (bytes)   %u\n",
530            name(), devicesPerRank, deviceBusWidth, burstSize, rowBufferSize,
531            columnsPerRowBuffer, rowsPerBank, banksPerRank, ranksPerChannel,
532            rowBufferSize * rowsPerBank * banksPerRank * ranksPerChannel);
533
534    string scheduler =  memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
535    string address_mapping = addrMapping == Enums::RoRaBaChCo ? "RoRaBaChCo" :
536        (addrMapping == Enums::RoRaBaCoCh ? "RoRaBaCoCh" : "RoCoRaBaCh");
537    string page_policy = pageMgmt == Enums::open ? "OPEN" :
538        (pageMgmt == Enums::open_adaptive ? "OPEN (adaptive)" :
539        (pageMgmt == Enums::close_adaptive ? "CLOSE (adaptive)" : "CLOSE"));
540
541    DPRINTF(DRAM,
542            "Memory controller %s characteristics\n"    \
543            "Read buffer size     %d\n"                 \
544            "Write buffer size    %d\n"                 \
545            "Write high thresh    %d\n"                 \
546            "Write low thresh     %d\n"                 \
547            "Scheduler            %s\n"                 \
548            "Address mapping      %s\n"                 \
549            "Page policy          %s\n",
550            name(), readBufferSize, writeBufferSize, writeHighThreshold,
551            writeLowThreshold, scheduler, address_mapping, page_policy);
552
553    DPRINTF(DRAM, "Memory controller %s timing specs\n" \
554            "tRCD      %d ticks\n"                        \
555            "tCL       %d ticks\n"                        \
556            "tRP       %d ticks\n"                        \
557            "tBURST    %d ticks\n"                        \
558            "tRFC      %d ticks\n"                        \
559            "tREFI     %d ticks\n"                        \
560            "tWTR      %d ticks\n"                        \
561            "tRTW      %d ticks\n"                        \
562            "tXAW (%d) %d ticks\n",
563            name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR,
564            tRTW, activationLimit, tXAW);
565}
566
567void
568DRAMCtrl::printQs() const {
569    DPRINTF(DRAM, "===READ QUEUE===\n\n");
570    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
571        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
572    }
573    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
574    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
575        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
576    }
577    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
578    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
579        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
580    }
581}
582
583bool
584DRAMCtrl::recvTimingReq(PacketPtr pkt)
585{
586    /// @todo temporary hack to deal with memory corruption issues until
587    /// 4-phase transactions are complete
588    for (int x = 0; x < pendingDelete.size(); x++)
589        delete pendingDelete[x];
590    pendingDelete.clear();
591
592    // This is where we enter from the outside world
593    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
594            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
595
596    // simply drop inhibited packets for now
597    if (pkt->memInhibitAsserted()) {
598        DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
599        pendingDelete.push_back(pkt);
600        return true;
601    }
602
603    // Calc avg gap between requests
604    if (prevArrival != 0) {
605        totGap += curTick() - prevArrival;
606    }
607    prevArrival = curTick();
608
609
610    // Find out how many dram packets a pkt translates to
611    // If the burst size is equal or larger than the pkt size, then a pkt
612    // translates to only one dram packet. Otherwise, a pkt translates to
613    // multiple dram packets
614    unsigned size = pkt->getSize();
615    unsigned offset = pkt->getAddr() & (burstSize - 1);
616    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
617
618    // check local buffers and do not accept if full
619    if (pkt->isRead()) {
620        assert(size != 0);
621        if (readQueueFull(dram_pkt_count)) {
622            DPRINTF(DRAM, "Read queue full, not accepting\n");
623            // remember that we have to retry this port
624            retryRdReq = true;
625            numRdRetry++;
626            return false;
627        } else {
628            addToReadQueue(pkt, dram_pkt_count);
629            readReqs++;
630            bytesReadSys += size;
631        }
632    } else if (pkt->isWrite()) {
633        assert(size != 0);
634        if (writeQueueFull(dram_pkt_count)) {
635            DPRINTF(DRAM, "Write queue full, not accepting\n");
636            // remember that we have to retry this port
637            retryWrReq = true;
638            numWrRetry++;
639            return false;
640        } else {
641            addToWriteQueue(pkt, dram_pkt_count);
642            writeReqs++;
643            bytesWrittenSys += size;
644        }
645    } else {
646        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
647        neitherReadNorWrite++;
648        accessAndRespond(pkt, 1);
649    }
650
651    return true;
652}
653
654void
655DRAMCtrl::processRespondEvent()
656{
657    DPRINTF(DRAM,
658            "processRespondEvent(): Some req has reached its readyTime\n");
659
660    DRAMPacket* dram_pkt = respQueue.front();
661
662    if (dram_pkt->burstHelper) {
663        // it is a split packet
664        dram_pkt->burstHelper->burstsServiced++;
665        if (dram_pkt->burstHelper->burstsServiced ==
666            dram_pkt->burstHelper->burstCount) {
667            // we have now serviced all children packets of a system packet
668            // so we can now respond to the requester
669            // @todo we probably want to have a different front end and back
670            // end latency for split packets
671            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
672            delete dram_pkt->burstHelper;
673            dram_pkt->burstHelper = NULL;
674        }
675    } else {
676        // it is not a split packet
677        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
678    }
679
680    delete respQueue.front();
681    respQueue.pop_front();
682
683    if (!respQueue.empty()) {
684        assert(respQueue.front()->readyTime >= curTick());
685        assert(!respondEvent.scheduled());
686        schedule(respondEvent, respQueue.front()->readyTime);
687    } else {
688        // if there is nothing left in any queue, signal a drain
689        if (writeQueue.empty() && readQueue.empty() &&
690            drainManager) {
691            drainManager->signalDrainDone();
692            drainManager = NULL;
693        }
694    }
695
696    // We have made a location in the queue available at this point,
697    // so if there is a read that was forced to wait, retry now
698    if (retryRdReq) {
699        retryRdReq = false;
700        port.sendRetry();
701    }
702}
703
704void
705DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue)
706{
707    // This method does the arbitration between requests. The chosen
708    // packet is simply moved to the head of the queue. The other
709    // methods know that this is the place to look. For example, with
710    // FCFS, this method does nothing
711    assert(!queue.empty());
712
713    if (queue.size() == 1) {
714        DPRINTF(DRAM, "Single request, nothing to do\n");
715        return;
716    }
717
718    if (memSchedPolicy == Enums::fcfs) {
719        // Do nothing, since the correct request is already head
720    } else if (memSchedPolicy == Enums::frfcfs) {
721        reorderQueue(queue);
722    } else
723        panic("No scheduling policy chosen\n");
724}
725
726void
727DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue)
728{
729    // Only determine this when needed
730    uint64_t earliest_banks = 0;
731
732    // Search for row hits first, if no row hit is found then schedule the
733    // packet to one of the earliest banks available
734    bool found_earliest_pkt = false;
735    auto selected_pkt_it = queue.begin();
736
737    for (auto i = queue.begin(); i != queue.end() ; ++i) {
738        DRAMPacket* dram_pkt = *i;
739        const Bank& bank = dram_pkt->bankRef;
740        // Check if it is a row hit
741        if (bank.openRow == dram_pkt->row) {
742            DPRINTF(DRAM, "Row buffer hit\n");
743            selected_pkt_it = i;
744            break;
745        } else if (!found_earliest_pkt) {
746            // No row hit, go for first ready
747            if (earliest_banks == 0)
748                earliest_banks = minBankFreeAt(queue);
749
750            // Bank is ready or is the first available bank
751            if (bank.freeAt <= curTick() ||
752                bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
753                // Remember the packet to be scheduled to one of the earliest
754                // banks available
755                selected_pkt_it = i;
756                found_earliest_pkt = true;
757            }
758        }
759    }
760
761    DRAMPacket* selected_pkt = *selected_pkt_it;
762    queue.erase(selected_pkt_it);
763    queue.push_front(selected_pkt);
764}
765
766void
767DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
768{
769    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
770
771    bool needsResponse = pkt->needsResponse();
772    // do the actual memory access which also turns the packet into a
773    // response
774    access(pkt);
775
776    // turn packet around to go back to requester if response expected
777    if (needsResponse) {
778        // access already turned the packet into a response
779        assert(pkt->isResponse());
780
781        // @todo someone should pay for this
782        pkt->busFirstWordDelay = pkt->busLastWordDelay = 0;
783
784        // queue the packet in the response queue to be sent out after
785        // the static latency has passed
786        port.schedTimingResp(pkt, curTick() + static_latency);
787    } else {
788        // @todo the packet is going to be deleted, and the DRAMPacket
789        // is still having a pointer to it
790        pendingDelete.push_back(pkt);
791    }
792
793    DPRINTF(DRAM, "Done\n");
794
795    return;
796}
797
798pair<Tick, Tick>
799DRAMCtrl::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
800{
801    // If a request reaches a bank at tick 'inTime', how much time
802    // *after* that does it take to finish the request, depending
803    // on bank status and page open policy. Note that this method
804    // considers only the time taken for the actual read or write
805    // to complete, NOT any additional time thereafter for tRAS or
806    // tRP.
807    Tick accLat = 0;
808    Tick bankLat = 0;
809    rowHitFlag = false;
810    Tick potentialActTick;
811
812    const Bank& bank = dram_pkt->bankRef;
813
814    if (bank.openRow == dram_pkt->row) {
815        // When we have a row-buffer hit,
816        // we don't care about tRAS having expired or not,
817        // but do care about bank being free for access
818        rowHitFlag = true;
819
820        // When a series of requests arrive to the same row,
821        // DDR systems are capable of streaming data continuously
822        // at maximum bandwidth (subject to tCCD). Here, we approximate
823        // this condition, and assume that if whenever a bank is already
824        // busy and a new request comes in, it can be completed with no
825        // penalty beyond waiting for the existing read to complete.
826        if (bank.freeAt > inTime) {
827            accLat += bank.freeAt - inTime;
828            bankLat += 0;
829        } else {
830            // CAS latency only
831            accLat += tCL;
832            bankLat += tCL;
833        }
834    } else {
835        // Row-buffer miss, need to close existing row
836        // once tRAS has expired, then open the new one,
837        // then add cas latency.
838        Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt);
839
840        if (freeTime > inTime)
841            accLat += freeTime - inTime;
842
843        // If the there is no open row, then there is no precharge
844        // delay, otherwise go with tRP
845        Tick precharge_delay = bank.openRow == Bank::NO_ROW ? 0 : tRP;
846
847        //The bank is free, and you may be able to activate
848        potentialActTick = inTime + accLat + precharge_delay;
849        if (potentialActTick < bank.actAllowedAt)
850            accLat += bank.actAllowedAt - potentialActTick;
851
852        accLat += precharge_delay + tRCD + tCL;
853        bankLat += precharge_delay + tRCD + tCL;
854    }
855
856    DPRINTF(DRAM, "Returning < %lld, %lld > from estimateLatency()\n",
857            bankLat, accLat);
858
859    return make_pair(bankLat, accLat);
860}
861
862void
863DRAMCtrl::recordActivate(Tick act_tick, uint8_t rank, uint8_t bank,
864                         uint16_t row)
865{
866    assert(0 <= rank && rank < ranksPerChannel);
867    assert(actTicks[rank].size() == activationLimit);
868
869    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
870
871    // update the open row
872    assert(banks[rank][bank].openRow == Bank::NO_ROW);
873    banks[rank][bank].openRow = row;
874
875    // start counting anew, this covers both the case when we
876    // auto-precharged, and when this access is forced to
877    // precharge
878    banks[rank][bank].bytesAccessed = 0;
879    banks[rank][bank].rowAccesses = 0;
880
881    ++numBanksActive;
882    assert(numBanksActive <= banksPerRank * ranksPerChannel);
883
884    DPRINTF(DRAM, "Activate bank at tick %lld, now got %d active\n",
885            act_tick, numBanksActive);
886
887    // start by enforcing tRRD
888    for(int i = 0; i < banksPerRank; i++) {
889        // next activate must not happen before tRRD
890        banks[rank][i].actAllowedAt = act_tick + tRRD;
891    }
892
893    // tRC should be added to activation tick of the bank currently accessed,
894    // where tRC = tRAS + tRP, this is just for a check as actAllowedAt for same
895    // bank is already captured by bank.freeAt and bank.tRASDoneAt
896    banks[rank][bank].actAllowedAt = act_tick + tRAS + tRP;
897
898    // next, we deal with tXAW, if the activation limit is disabled
899    // then we are done
900    if (actTicks[rank].empty())
901        return;
902
903    // sanity check
904    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
905        // @todo For now, stick with a warning
906        warn("Got %d activates in window %d (%d - %d) which is smaller "
907             "than %d\n", activationLimit, act_tick - actTicks[rank].back(),
908             act_tick, actTicks[rank].back(), tXAW);
909    }
910
911    // shift the times used for the book keeping, the last element
912    // (highest index) is the oldest one and hence the lowest value
913    actTicks[rank].pop_back();
914
915    // record an new activation (in the future)
916    actTicks[rank].push_front(act_tick);
917
918    // cannot activate more than X times in time window tXAW, push the
919    // next one (the X + 1'st activate) to be tXAW away from the
920    // oldest in our window of X
921    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
922        DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
923                "than %d\n", activationLimit, actTicks[rank].back() + tXAW);
924            for(int j = 0; j < banksPerRank; j++)
925                // next activate must not happen before end of window
926                banks[rank][j].actAllowedAt = actTicks[rank].back() + tXAW;
927    }
928
929    // at the point when this activate takes place, make sure we
930    // transition to the active power state
931    if (!activateEvent.scheduled())
932        schedule(activateEvent, act_tick);
933    else if (activateEvent.when() > act_tick)
934        // move it sooner in time
935        reschedule(activateEvent, act_tick);
936}
937
938void
939DRAMCtrl::processActivateEvent()
940{
941    // we should transition to the active state as soon as any bank is active
942    if (pwrState != PWR_ACT)
943        // note that at this point numBanksActive could be back at
944        // zero again due to a precharge scheduled in the future
945        schedulePowerEvent(PWR_ACT, curTick());
946}
947
948void
949DRAMCtrl::prechargeBank(Bank& bank, Tick free_at)
950{
951    // make sure the bank has an open row
952    assert(bank.openRow != Bank::NO_ROW);
953
954    // sample the bytes per activate here since we are closing
955    // the page
956    bytesPerActivate.sample(bank.bytesAccessed);
957
958    bank.openRow = Bank::NO_ROW;
959
960    bank.freeAt = free_at;
961
962    assert(numBanksActive != 0);
963    --numBanksActive;
964
965    DPRINTF(DRAM, "Precharged bank, done at tick %lld, now got %d active\n",
966            bank.freeAt, numBanksActive);
967
968    // if we look at the current number of active banks we might be
969    // tempted to think the DRAM is now idle, however this can be
970    // undone by an activate that is scheduled to happen before we
971    // would have reached the idle state, so schedule an event and
972    // rather check once we actually make it to the point in time when
973    // the (last) precharge takes place
974    if (!prechargeEvent.scheduled())
975        schedule(prechargeEvent, free_at);
976    else if (prechargeEvent.when() < free_at)
977        reschedule(prechargeEvent, free_at);
978}
979
980void
981DRAMCtrl::processPrechargeEvent()
982{
983    // if we reached zero, then special conditions apply as we track
984    // if all banks are precharged for the power models
985    if (numBanksActive == 0) {
986        // we should transition to the idle state when the last bank
987        // is precharged
988        schedulePowerEvent(PWR_IDLE, curTick());
989    }
990}
991
992void
993DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
994{
995
996    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
997            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
998
999    // estimate the bank and access latency
1000    pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());
1001    Tick bankLat = lat.first;
1002    Tick accessLat = lat.second;
1003    Tick actTick;
1004
1005    // This request was woken up at this time based on a prior call
1006    // to estimateLatency(). However, between then and now, both the
1007    // accessLatency and/or busBusyUntil may have changed. We need
1008    // to correct for that.
1009
1010    Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
1011        busBusyUntil - (curTick() + accessLat) : 0;
1012
1013    Bank& bank = dram_pkt->bankRef;
1014
1015    // Update bank state
1016    if (rowHitFlag) {
1017        bank.freeAt = curTick() + addDelay + accessLat;
1018    } else {
1019        // If there is a page open, precharge it.
1020        if (bank.openRow != Bank::NO_ROW) {
1021            prechargeBank(bank, std::max(std::max(bank.freeAt,
1022                                                  bank.tRASDoneAt),
1023                                         curTick()) + tRP);
1024        }
1025
1026        // Any precharge is already part of the latency
1027        // estimation, so update the bank free time
1028        bank.freeAt = curTick() + addDelay + accessLat;
1029
1030        // any waiting for banks account for in freeAt
1031        actTick = bank.freeAt - tCL - tRCD;
1032
1033        // If you activated a new row do to this access, the next access
1034        // will have to respect tRAS for this bank
1035        bank.tRASDoneAt = actTick + tRAS;
1036
1037        recordActivate(actTick, dram_pkt->rank, dram_pkt->bank,
1038                       dram_pkt->row);
1039    }
1040
1041    // increment the bytes accessed and the accesses per row
1042    bank.bytesAccessed += burstSize;
1043    ++bank.rowAccesses;
1044
1045    // if we reached the max, then issue with an auto-precharge
1046    bool auto_precharge = pageMgmt == Enums::close ||
1047        bank.rowAccesses == maxAccessesPerRow;
1048
1049    // if we did not hit the limit, we might still want to
1050    // auto-precharge
1051    if (!auto_precharge &&
1052        (pageMgmt == Enums::open_adaptive ||
1053         pageMgmt == Enums::close_adaptive)) {
1054        // a twist on the open and close page policies:
1055        // 1) open_adaptive page policy does not blindly keep the
1056        // page open, but close it if there are no row hits, and there
1057        // are bank conflicts in the queue
1058        // 2) close_adaptive page policy does not blindly close the
1059        // page, but closes it only if there are no row hits in the queue.
1060        // In this case, only force an auto precharge when there
1061        // are no same page hits in the queue
1062        bool got_more_hits = false;
1063        bool got_bank_conflict = false;
1064
1065        // either look at the read queue or write queue
1066        const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1067            writeQueue;
1068        auto p = queue.begin();
1069        // make sure we are not considering the packet that we are
1070        // currently dealing with (which is the head of the queue)
1071        ++p;
1072
1073        // keep on looking until we have found required condition or
1074        // reached the end
1075        while (!(got_more_hits &&
1076                 (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
1077               p != queue.end()) {
1078            bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1079                (dram_pkt->bank == (*p)->bank);
1080            bool same_row = dram_pkt->row == (*p)->row;
1081            got_more_hits |= same_rank_bank && same_row;
1082            got_bank_conflict |= same_rank_bank && !same_row;
1083            ++p;
1084        }
1085
1086        // auto pre-charge when either
1087        // 1) open_adaptive policy, we have not got any more hits, and
1088        //    have a bank conflict
1089        // 2) close_adaptive policy and we have not got any more hits
1090        auto_precharge = !got_more_hits &&
1091            (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1092    }
1093
1094    // if this access should use auto-precharge, then we are
1095    // closing the row
1096    if (auto_precharge) {
1097        prechargeBank(bank, std::max(bank.freeAt, bank.tRASDoneAt) + tRP);
1098
1099        DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1100    }
1101
1102    DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt);
1103
1104    // Update request parameters
1105    dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
1106
1107    DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \
1108                  "readytime is %lld busbusyuntil is %lld. " \
1109                  "Scheduling at readyTime\n", dram_pkt->addr,
1110                   curTick(), accessLat, dram_pkt->readyTime, busBusyUntil);
1111
1112    // Make sure requests are not overlapping on the databus
1113    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1114
1115    // Update bus state
1116    busBusyUntil = dram_pkt->readyTime;
1117
1118    DPRINTF(DRAM,"Access time is %lld\n",
1119            dram_pkt->readyTime - dram_pkt->entryTime);
1120
1121    // Update the minimum timing between the requests, this is a
1122    // conservative estimate of when we have to schedule the next
1123    // request to not introduce any unecessary bubbles. In most cases
1124    // we will wake up sooner than we have to.
1125    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1126
1127    // Update the stats and schedule the next request
1128    if (dram_pkt->isRead) {
1129        ++readsThisTime;
1130        if (rowHitFlag)
1131            readRowHits++;
1132        bytesReadDRAM += burstSize;
1133        perBankRdBursts[dram_pkt->bankId]++;
1134
1135        // Update latency stats
1136        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1137        totBankLat += bankLat;
1138        totBusLat += tBURST;
1139        totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat -
1140            tBURST;
1141    } else {
1142        ++writesThisTime;
1143        if (rowHitFlag)
1144            writeRowHits++;
1145        bytesWritten += burstSize;
1146        perBankWrBursts[dram_pkt->bankId]++;
1147    }
1148}
1149
1150void
1151DRAMCtrl::moveToRespQ()
1152{
1153    // Remove from read queue
1154    DRAMPacket* dram_pkt = readQueue.front();
1155    readQueue.pop_front();
1156
1157    // sanity check
1158    assert(dram_pkt->size <= burstSize);
1159
1160    // Insert into response queue sorted by readyTime
1161    // It will be sent back to the requestor at its
1162    // readyTime
1163    if (respQueue.empty()) {
1164        respQueue.push_front(dram_pkt);
1165        assert(!respondEvent.scheduled());
1166        assert(dram_pkt->readyTime >= curTick());
1167        schedule(respondEvent, dram_pkt->readyTime);
1168    } else {
1169        bool done = false;
1170        auto i = respQueue.begin();
1171        while (!done && i != respQueue.end()) {
1172            if ((*i)->readyTime > dram_pkt->readyTime) {
1173                respQueue.insert(i, dram_pkt);
1174                done = true;
1175            }
1176            ++i;
1177        }
1178
1179        if (!done)
1180            respQueue.push_back(dram_pkt);
1181
1182        assert(respondEvent.scheduled());
1183
1184        if (respQueue.front()->readyTime < respondEvent.when()) {
1185            assert(respQueue.front()->readyTime >= curTick());
1186            reschedule(respondEvent, respQueue.front()->readyTime);
1187        }
1188    }
1189}
1190
1191void
1192DRAMCtrl::processNextReqEvent()
1193{
1194    if (busState == READ_TO_WRITE) {
1195        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1196                "waiting\n", readsThisTime, readQueue.size());
1197
1198        // sample and reset the read-related stats as we are now
1199        // transitioning to writes, and all reads are done
1200        rdPerTurnAround.sample(readsThisTime);
1201        readsThisTime = 0;
1202
1203        // now proceed to do the actual writes
1204        busState = WRITE;
1205    } else if (busState == WRITE_TO_READ) {
1206        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1207                "waiting\n", writesThisTime, writeQueue.size());
1208
1209        wrPerTurnAround.sample(writesThisTime);
1210        writesThisTime = 0;
1211
1212        busState = READ;
1213    }
1214
1215    if (refreshState != REF_IDLE) {
1216        // if a refresh waiting for this event loop to finish, then hand
1217        // over now, and do not schedule a new nextReqEvent
1218        if (refreshState == REF_DRAIN) {
1219            DPRINTF(DRAM, "Refresh drain done, now precharging\n");
1220
1221            refreshState = REF_PRE;
1222
1223            // hand control back to the refresh event loop
1224            schedule(refreshEvent, curTick());
1225        }
1226
1227        // let the refresh finish before issuing any further requests
1228        return;
1229    }
1230
1231    // when we get here it is either a read or a write
1232    if (busState == READ) {
1233
1234        // track if we should switch or not
1235        bool switch_to_writes = false;
1236
1237        if (readQueue.empty()) {
1238            // In the case there is no read request to go next,
1239            // trigger writes if we have passed the low threshold (or
1240            // if we are draining)
1241            if (!writeQueue.empty() &&
1242                (drainManager || writeQueue.size() > writeLowThreshold)) {
1243
1244                switch_to_writes = true;
1245            } else {
1246                // check if we are drained
1247                if (respQueue.empty () && drainManager) {
1248                    drainManager->signalDrainDone();
1249                    drainManager = NULL;
1250                }
1251
1252                // nothing to do, not even any point in scheduling an
1253                // event for the next request
1254                return;
1255            }
1256        } else {
1257            // Figure out which read request goes next, and move it to the
1258            // front of the read queue
1259            chooseNext(readQueue);
1260
1261            doDRAMAccess(readQueue.front());
1262
1263            // At this point we're done dealing with the request
1264            // It will be moved to a separate response queue with a
1265            // correct readyTime, and eventually be sent back at that
1266            // time
1267            moveToRespQ();
1268
1269            // we have so many writes that we have to transition
1270            if (writeQueue.size() > writeHighThreshold) {
1271                switch_to_writes = true;
1272            }
1273        }
1274
1275        // switching to writes, either because the read queue is empty
1276        // and the writes have passed the low threshold (or we are
1277        // draining), or because the writes hit the hight threshold
1278        if (switch_to_writes) {
1279            // transition to writing
1280            busState = READ_TO_WRITE;
1281
1282            // add a bubble to the data bus, as defined by the
1283            // tRTW parameter
1284            busBusyUntil += tRTW;
1285
1286            // update the minimum timing between the requests,
1287            // this shifts us back in time far enough to do any
1288            // bank preparation
1289            nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1290        }
1291    } else {
1292        chooseNext(writeQueue);
1293        DRAMPacket* dram_pkt = writeQueue.front();
1294        // sanity check
1295        assert(dram_pkt->size <= burstSize);
1296        doDRAMAccess(dram_pkt);
1297
1298        writeQueue.pop_front();
1299        delete dram_pkt;
1300
1301        // If we emptied the write queue, or got sufficiently below the
1302        // threshold (using the minWritesPerSwitch as the hysteresis) and
1303        // are not draining, or we have reads waiting and have done enough
1304        // writes, then switch to reads.
1305        if (writeQueue.empty() ||
1306            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1307             !drainManager) ||
1308            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1309            // turn the bus back around for reads again
1310            busState = WRITE_TO_READ;
1311
1312            // note that the we switch back to reads also in the idle
1313            // case, which eventually will check for any draining and
1314            // also pause any further scheduling if there is really
1315            // nothing to do
1316
1317            // here we get a bit creative and shift the bus busy time not
1318            // just the tWTR, but also a CAS latency to capture the fact
1319            // that we are allowed to prepare a new bank, but not issue a
1320            // read command until after tWTR, in essence we capture a
1321            // bubble on the data bus that is tWTR + tCL
1322            busBusyUntil += tWTR + tCL;
1323
1324            // update the minimum timing between the requests, this shifts
1325            // us back in time far enough to do any bank preparation
1326            nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1327        }
1328    }
1329
1330    schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1331
1332    // If there is space available and we have writes waiting then let
1333    // them retry. This is done here to ensure that the retry does not
1334    // cause a nextReqEvent to be scheduled before we do so as part of
1335    // the next request processing
1336    if (retryWrReq && writeQueue.size() < writeBufferSize) {
1337        retryWrReq = false;
1338        port.sendRetry();
1339    }
1340}
1341
1342uint64_t
1343DRAMCtrl::minBankFreeAt(const deque<DRAMPacket*>& queue) const
1344{
1345    uint64_t bank_mask = 0;
1346    Tick freeAt = MaxTick;
1347
1348    // detemrine if we have queued transactions targetting the
1349    // bank in question
1350    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1351    for (auto p = queue.begin(); p != queue.end(); ++p) {
1352        got_waiting[(*p)->bankId] = true;
1353    }
1354
1355    for (int i = 0; i < ranksPerChannel; i++) {
1356        for (int j = 0; j < banksPerRank; j++) {
1357            // if we have waiting requests for the bank, and it is
1358            // amongst the first available, update the mask
1359            if (got_waiting[i * banksPerRank + j] &&
1360                banks[i][j].freeAt <= freeAt) {
1361                // reset bank mask if new minimum is found
1362                if (banks[i][j].freeAt < freeAt)
1363                    bank_mask = 0;
1364                // set the bit corresponding to the available bank
1365                uint8_t bit_index = i * ranksPerChannel + j;
1366                replaceBits(bank_mask, bit_index, bit_index, 1);
1367                freeAt = banks[i][j].freeAt;
1368            }
1369        }
1370    }
1371    return bank_mask;
1372}
1373
1374void
1375DRAMCtrl::processRefreshEvent()
1376{
1377    // when first preparing the refresh, remember when it was due
1378    if (refreshState == REF_IDLE) {
1379        // remember when the refresh is due
1380        refreshDueAt = curTick();
1381
1382        // proceed to drain
1383        refreshState = REF_DRAIN;
1384
1385        DPRINTF(DRAM, "Refresh due\n");
1386    }
1387
1388    // let any scheduled read or write go ahead, after which it will
1389    // hand control back to this event loop
1390    if (refreshState == REF_DRAIN) {
1391        if (nextReqEvent.scheduled()) {
1392            // hand control over to the request loop until it is
1393            // evaluated next
1394            DPRINTF(DRAM, "Refresh awaiting draining\n");
1395
1396            return;
1397        } else {
1398            refreshState = REF_PRE;
1399        }
1400    }
1401
1402    // at this point, ensure that all banks are precharged
1403    if (refreshState == REF_PRE) {
1404        // precharge any active bank if we are not already in the idle
1405        // state
1406        if (pwrState != PWR_IDLE) {
1407            DPRINTF(DRAM, "Precharging all\n");
1408            for (int i = 0; i < ranksPerChannel; i++) {
1409                for (int j = 0; j < banksPerRank; j++) {
1410                    if (banks[i][j].openRow != Bank::NO_ROW) {
1411                        // respect both causality and any existing bank
1412                        // constraints
1413                        Tick free_at =
1414                            std::max(std::max(banks[i][j].freeAt,
1415                                              banks[i][j].tRASDoneAt),
1416                                     curTick()) + tRP;
1417
1418                        prechargeBank(banks[i][j], free_at);
1419                    }
1420                }
1421            }
1422        } else {
1423            DPRINTF(DRAM, "All banks already precharged, starting refresh\n");
1424
1425            // go ahead and kick the power state machine into gear if
1426            // we are already idle
1427            schedulePowerEvent(PWR_REF, curTick());
1428        }
1429
1430        refreshState = REF_RUN;
1431        assert(numBanksActive == 0);
1432
1433        // wait for all banks to be precharged, at which point the
1434        // power state machine will transition to the idle state, and
1435        // automatically move to a refresh, at that point it will also
1436        // call this method to get the refresh event loop going again
1437        return;
1438    }
1439
1440    // last but not least we perform the actual refresh
1441    if (refreshState == REF_RUN) {
1442        // should never get here with any banks active
1443        assert(numBanksActive == 0);
1444        assert(pwrState == PWR_REF);
1445
1446        Tick banksFree = curTick() + tRFC;
1447
1448        for (int i = 0; i < ranksPerChannel; i++) {
1449            for (int j = 0; j < banksPerRank; j++) {
1450                banks[i][j].freeAt = banksFree;
1451            }
1452        }
1453
1454        // make sure we did not wait so long that we cannot make up
1455        // for it
1456        if (refreshDueAt + tREFI < banksFree) {
1457            fatal("Refresh was delayed so long we cannot catch up\n");
1458        }
1459
1460        // compensate for the delay in actually performing the refresh
1461        // when scheduling the next one
1462        schedule(refreshEvent, refreshDueAt + tREFI - tRP);
1463
1464        assert(!powerEvent.scheduled());
1465
1466        // move to the idle power state once the refresh is done, this
1467        // will also move the refresh state machine to the refresh
1468        // idle state
1469        schedulePowerEvent(PWR_IDLE, banksFree);
1470
1471        DPRINTF(DRAMState, "Refresh done at %llu and next refresh at %llu\n",
1472                banksFree, refreshDueAt + tREFI);
1473    }
1474}
1475
1476void
1477DRAMCtrl::schedulePowerEvent(PowerState pwr_state, Tick tick)
1478{
1479    // respect causality
1480    assert(tick >= curTick());
1481
1482    if (!powerEvent.scheduled()) {
1483        DPRINTF(DRAMState, "Scheduling power event at %llu to state %d\n",
1484                tick, pwr_state);
1485
1486        // insert the new transition
1487        pwrStateTrans = pwr_state;
1488
1489        schedule(powerEvent, tick);
1490    } else {
1491        panic("Scheduled power event at %llu to state %d, "
1492              "with scheduled event at %llu to %d\n", tick, pwr_state,
1493              powerEvent.when(), pwrStateTrans);
1494    }
1495}
1496
1497void
1498DRAMCtrl::processPowerEvent()
1499{
1500    // remember where we were, and for how long
1501    Tick duration = curTick() - pwrStateTick;
1502    PowerState prev_state = pwrState;
1503
1504    // update the accounting
1505    pwrStateTime[prev_state] += duration;
1506
1507    pwrState = pwrStateTrans;
1508    pwrStateTick = curTick();
1509
1510    if (pwrState == PWR_IDLE) {
1511        DPRINTF(DRAMState, "All banks precharged\n");
1512
1513        // if we were refreshing, make sure we start scheduling requests again
1514        if (prev_state == PWR_REF) {
1515            DPRINTF(DRAMState, "Was refreshing for %llu ticks\n", duration);
1516            assert(pwrState == PWR_IDLE);
1517
1518            // kick things into action again
1519            refreshState = REF_IDLE;
1520            assert(!nextReqEvent.scheduled());
1521            schedule(nextReqEvent, curTick());
1522        } else {
1523            assert(prev_state == PWR_ACT);
1524
1525            // if we have a pending refresh, and are now moving to
1526            // the idle state, direclty transition to a refresh
1527            if (refreshState == REF_RUN) {
1528                // there should be nothing waiting at this point
1529                assert(!powerEvent.scheduled());
1530
1531                // update the state in zero time and proceed below
1532                pwrState = PWR_REF;
1533            }
1534        }
1535    }
1536
1537    // we transition to the refresh state, let the refresh state
1538    // machine know of this state update and let it deal with the
1539    // scheduling of the next power state transition as well as the
1540    // following refresh
1541    if (pwrState == PWR_REF) {
1542        DPRINTF(DRAMState, "Refreshing\n");
1543        // kick the refresh event loop into action again, and that
1544        // in turn will schedule a transition to the idle power
1545        // state once the refresh is done
1546        assert(refreshState == REF_RUN);
1547        processRefreshEvent();
1548    }
1549}
1550
1551void
1552DRAMCtrl::regStats()
1553{
1554    using namespace Stats;
1555
1556    AbstractMemory::regStats();
1557
1558    readReqs
1559        .name(name() + ".readReqs")
1560        .desc("Number of read requests accepted");
1561
1562    writeReqs
1563        .name(name() + ".writeReqs")
1564        .desc("Number of write requests accepted");
1565
1566    readBursts
1567        .name(name() + ".readBursts")
1568        .desc("Number of DRAM read bursts, "
1569              "including those serviced by the write queue");
1570
1571    writeBursts
1572        .name(name() + ".writeBursts")
1573        .desc("Number of DRAM write bursts, "
1574              "including those merged in the write queue");
1575
1576    servicedByWrQ
1577        .name(name() + ".servicedByWrQ")
1578        .desc("Number of DRAM read bursts serviced by the write queue");
1579
1580    mergedWrBursts
1581        .name(name() + ".mergedWrBursts")
1582        .desc("Number of DRAM write bursts merged with an existing one");
1583
1584    neitherReadNorWrite
1585        .name(name() + ".neitherReadNorWriteReqs")
1586        .desc("Number of requests that are neither read nor write");
1587
1588    perBankRdBursts
1589        .init(banksPerRank * ranksPerChannel)
1590        .name(name() + ".perBankRdBursts")
1591        .desc("Per bank write bursts");
1592
1593    perBankWrBursts
1594        .init(banksPerRank * ranksPerChannel)
1595        .name(name() + ".perBankWrBursts")
1596        .desc("Per bank write bursts");
1597
1598    avgRdQLen
1599        .name(name() + ".avgRdQLen")
1600        .desc("Average read queue length when enqueuing")
1601        .precision(2);
1602
1603    avgWrQLen
1604        .name(name() + ".avgWrQLen")
1605        .desc("Average write queue length when enqueuing")
1606        .precision(2);
1607
1608    totQLat
1609        .name(name() + ".totQLat")
1610        .desc("Total ticks spent queuing");
1611
1612    totBankLat
1613        .name(name() + ".totBankLat")
1614        .desc("Total ticks spent accessing banks");
1615
1616    totBusLat
1617        .name(name() + ".totBusLat")
1618        .desc("Total ticks spent in databus transfers");
1619
1620    totMemAccLat
1621        .name(name() + ".totMemAccLat")
1622        .desc("Total ticks spent from burst creation until serviced "
1623              "by the DRAM");
1624
1625    avgQLat
1626        .name(name() + ".avgQLat")
1627        .desc("Average queueing delay per DRAM burst")
1628        .precision(2);
1629
1630    avgQLat = totQLat / (readBursts - servicedByWrQ);
1631
1632    avgBankLat
1633        .name(name() + ".avgBankLat")
1634        .desc("Average bank access latency per DRAM burst")
1635        .precision(2);
1636
1637    avgBankLat = totBankLat / (readBursts - servicedByWrQ);
1638
1639    avgBusLat
1640        .name(name() + ".avgBusLat")
1641        .desc("Average bus latency per DRAM burst")
1642        .precision(2);
1643
1644    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1645
1646    avgMemAccLat
1647        .name(name() + ".avgMemAccLat")
1648        .desc("Average memory access latency per DRAM burst")
1649        .precision(2);
1650
1651    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1652
1653    numRdRetry
1654        .name(name() + ".numRdRetry")
1655        .desc("Number of times read queue was full causing retry");
1656
1657    numWrRetry
1658        .name(name() + ".numWrRetry")
1659        .desc("Number of times write queue was full causing retry");
1660
1661    readRowHits
1662        .name(name() + ".readRowHits")
1663        .desc("Number of row buffer hits during reads");
1664
1665    writeRowHits
1666        .name(name() + ".writeRowHits")
1667        .desc("Number of row buffer hits during writes");
1668
1669    readRowHitRate
1670        .name(name() + ".readRowHitRate")
1671        .desc("Row buffer hit rate for reads")
1672        .precision(2);
1673
1674    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
1675
1676    writeRowHitRate
1677        .name(name() + ".writeRowHitRate")
1678        .desc("Row buffer hit rate for writes")
1679        .precision(2);
1680
1681    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
1682
1683    readPktSize
1684        .init(ceilLog2(burstSize) + 1)
1685        .name(name() + ".readPktSize")
1686        .desc("Read request sizes (log2)");
1687
1688     writePktSize
1689        .init(ceilLog2(burstSize) + 1)
1690        .name(name() + ".writePktSize")
1691        .desc("Write request sizes (log2)");
1692
1693     rdQLenPdf
1694        .init(readBufferSize)
1695        .name(name() + ".rdQLenPdf")
1696        .desc("What read queue length does an incoming req see");
1697
1698     wrQLenPdf
1699        .init(writeBufferSize)
1700        .name(name() + ".wrQLenPdf")
1701        .desc("What write queue length does an incoming req see");
1702
1703     bytesPerActivate
1704         .init(maxAccessesPerRow)
1705         .name(name() + ".bytesPerActivate")
1706         .desc("Bytes accessed per row activation")
1707         .flags(nozero);
1708
1709     rdPerTurnAround
1710         .init(readBufferSize)
1711         .name(name() + ".rdPerTurnAround")
1712         .desc("Reads before turning the bus around for writes")
1713         .flags(nozero);
1714
1715     wrPerTurnAround
1716         .init(writeBufferSize)
1717         .name(name() + ".wrPerTurnAround")
1718         .desc("Writes before turning the bus around for reads")
1719         .flags(nozero);
1720
1721    bytesReadDRAM
1722        .name(name() + ".bytesReadDRAM")
1723        .desc("Total number of bytes read from DRAM");
1724
1725    bytesReadWrQ
1726        .name(name() + ".bytesReadWrQ")
1727        .desc("Total number of bytes read from write queue");
1728
1729    bytesWritten
1730        .name(name() + ".bytesWritten")
1731        .desc("Total number of bytes written to DRAM");
1732
1733    bytesReadSys
1734        .name(name() + ".bytesReadSys")
1735        .desc("Total read bytes from the system interface side");
1736
1737    bytesWrittenSys
1738        .name(name() + ".bytesWrittenSys")
1739        .desc("Total written bytes from the system interface side");
1740
1741    avgRdBW
1742        .name(name() + ".avgRdBW")
1743        .desc("Average DRAM read bandwidth in MiByte/s")
1744        .precision(2);
1745
1746    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
1747
1748    avgWrBW
1749        .name(name() + ".avgWrBW")
1750        .desc("Average achieved write bandwidth in MiByte/s")
1751        .precision(2);
1752
1753    avgWrBW = (bytesWritten / 1000000) / simSeconds;
1754
1755    avgRdBWSys
1756        .name(name() + ".avgRdBWSys")
1757        .desc("Average system read bandwidth in MiByte/s")
1758        .precision(2);
1759
1760    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
1761
1762    avgWrBWSys
1763        .name(name() + ".avgWrBWSys")
1764        .desc("Average system write bandwidth in MiByte/s")
1765        .precision(2);
1766
1767    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
1768
1769    peakBW
1770        .name(name() + ".peakBW")
1771        .desc("Theoretical peak bandwidth in MiByte/s")
1772        .precision(2);
1773
1774    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
1775
1776    busUtil
1777        .name(name() + ".busUtil")
1778        .desc("Data bus utilization in percentage")
1779        .precision(2);
1780
1781    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1782
1783    totGap
1784        .name(name() + ".totGap")
1785        .desc("Total gap between requests");
1786
1787    avgGap
1788        .name(name() + ".avgGap")
1789        .desc("Average gap between requests")
1790        .precision(2);
1791
1792    avgGap = totGap / (readReqs + writeReqs);
1793
1794    // Stats for DRAM Power calculation based on Micron datasheet
1795    busUtilRead
1796        .name(name() + ".busUtilRead")
1797        .desc("Data bus utilization in percentage for reads")
1798        .precision(2);
1799
1800    busUtilRead = avgRdBW / peakBW * 100;
1801
1802    busUtilWrite
1803        .name(name() + ".busUtilWrite")
1804        .desc("Data bus utilization in percentage for writes")
1805        .precision(2);
1806
1807    busUtilWrite = avgWrBW / peakBW * 100;
1808
1809    pageHitRate
1810        .name(name() + ".pageHitRate")
1811        .desc("Row buffer hit rate, read and write combined")
1812        .precision(2);
1813
1814    pageHitRate = (writeRowHits + readRowHits) /
1815        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
1816
1817    pwrStateTime
1818        .init(5)
1819        .name(name() + ".memoryStateTime")
1820        .desc("Time in different power states");
1821    pwrStateTime.subname(0, "IDLE");
1822    pwrStateTime.subname(1, "REF");
1823    pwrStateTime.subname(2, "PRE_PDN");
1824    pwrStateTime.subname(3, "ACT");
1825    pwrStateTime.subname(4, "ACT_PDN");
1826}
1827
1828void
1829DRAMCtrl::recvFunctional(PacketPtr pkt)
1830{
1831    // rely on the abstract memory
1832    functionalAccess(pkt);
1833}
1834
1835BaseSlavePort&
1836DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
1837{
1838    if (if_name != "port") {
1839        return MemObject::getSlavePort(if_name, idx);
1840    } else {
1841        return port;
1842    }
1843}
1844
1845unsigned int
1846DRAMCtrl::drain(DrainManager *dm)
1847{
1848    unsigned int count = port.drain(dm);
1849
1850    // if there is anything in any of our internal queues, keep track
1851    // of that as well
1852    if (!(writeQueue.empty() && readQueue.empty() &&
1853          respQueue.empty())) {
1854        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
1855                " resp: %d\n", writeQueue.size(), readQueue.size(),
1856                respQueue.size());
1857        ++count;
1858        drainManager = dm;
1859
1860        // the only part that is not drained automatically over time
1861        // is the write queue, thus kick things into action if needed
1862        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
1863            schedule(nextReqEvent, curTick());
1864        }
1865    }
1866
1867    if (count)
1868        setDrainState(Drainable::Draining);
1869    else
1870        setDrainState(Drainable::Drained);
1871    return count;
1872}
1873
1874DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
1875    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1876      memory(_memory)
1877{ }
1878
1879AddrRangeList
1880DRAMCtrl::MemoryPort::getAddrRanges() const
1881{
1882    AddrRangeList ranges;
1883    ranges.push_back(memory.getAddrRange());
1884    return ranges;
1885}
1886
1887void
1888DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
1889{
1890    pkt->pushLabel(memory.name());
1891
1892    if (!queue.checkFunctional(pkt)) {
1893        // Default implementation of SimpleTimingPort::recvFunctional()
1894        // calls recvAtomic() and throws away the latency; we can save a
1895        // little here by just not calculating the latency.
1896        memory.recvFunctional(pkt);
1897    }
1898
1899    pkt->popLabel();
1900}
1901
1902Tick
1903DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
1904{
1905    return memory.recvAtomic(pkt);
1906}
1907
1908bool
1909DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
1910{
1911    // pass it to the memory controller
1912    return memory.recvTimingReq(pkt);
1913}
1914
1915DRAMCtrl*
1916DRAMCtrlParams::create()
1917{
1918    return new DRAMCtrl(this);
1919}
1920