dram_ctrl.cc revision 10206:823f7fd1a82f
1/*
2 * Copyright (c) 2010-2014 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Copyright (c) 2013 Amin Farmahini-Farahani
15 * All rights reserved.
16 *
17 * Redistribution and use in source and binary forms, with or without
18 * modification, are permitted provided that the following conditions are
19 * met: redistributions of source code must retain the above copyright
20 * notice, this list of conditions and the following disclaimer;
21 * redistributions in binary form must reproduce the above copyright
22 * notice, this list of conditions and the following disclaimer in the
23 * documentation and/or other materials provided with the distribution;
24 * neither the name of the copyright holders nor the names of its
25 * contributors may be used to endorse or promote products derived from
26 * this software without specific prior written permission.
27 *
28 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
29 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
30 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
31 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
32 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
33 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
34 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
35 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
36 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
38 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 *
40 * Authors: Andreas Hansson
41 *          Ani Udipi
42 *          Neha Agarwal
43 */
44
45#include "base/bitfield.hh"
46#include "base/trace.hh"
47#include "debug/DRAM.hh"
48#include "debug/Drain.hh"
49#include "mem/dram_ctrl.hh"
50#include "sim/system.hh"
51
52using namespace std;
53
54DRAMCtrl::DRAMCtrl(const DRAMCtrlParams* p) :
55    AbstractMemory(p),
56    port(name() + ".port", *this),
57    retryRdReq(false), retryWrReq(false),
58    rowHitFlag(false), busState(READ),
59    respondEvent(this),
60    refreshEvent(this), nextReqEvent(this), drainManager(NULL),
61    deviceBusWidth(p->device_bus_width), burstLength(p->burst_length),
62    deviceRowBufferSize(p->device_rowbuffer_size),
63    devicesPerRank(p->devices_per_rank),
64    burstSize((devicesPerRank * burstLength * deviceBusWidth) / 8),
65    rowBufferSize(devicesPerRank * deviceRowBufferSize),
66    columnsPerRowBuffer(rowBufferSize / burstSize),
67    ranksPerChannel(p->ranks_per_channel),
68    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
69    readBufferSize(p->read_buffer_size),
70    writeBufferSize(p->write_buffer_size),
71    writeHighThreshold(writeBufferSize * p->write_high_thresh_perc / 100.0),
72    writeLowThreshold(writeBufferSize * p->write_low_thresh_perc / 100.0),
73    minWritesPerSwitch(p->min_writes_per_switch),
74    writesThisTime(0), readsThisTime(0),
75    tWTR(p->tWTR), tRTW(p->tRTW), tBURST(p->tBURST),
76    tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP), tRAS(p->tRAS),
77    tRFC(p->tRFC), tREFI(p->tREFI), tRRD(p->tRRD),
78    tXAW(p->tXAW), activationLimit(p->activation_limit),
79    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
80    pageMgmt(p->page_policy),
81    maxAccessesPerRow(p->max_accesses_per_row),
82    frontendLatency(p->static_frontend_latency),
83    backendLatency(p->static_backend_latency),
84    busBusyUntil(0),  prevArrival(0),
85    nextReqTime(0), startTickPrechargeAll(0), numBanksActive(0)
86{
87    // create the bank states based on the dimensions of the ranks and
88    // banks
89    banks.resize(ranksPerChannel);
90    actTicks.resize(ranksPerChannel);
91    for (size_t c = 0; c < ranksPerChannel; ++c) {
92        banks[c].resize(banksPerRank);
93        actTicks[c].resize(activationLimit, 0);
94    }
95
96    // perform a basic check of the write thresholds
97    if (p->write_low_thresh_perc >= p->write_high_thresh_perc)
98        fatal("Write buffer low threshold %d must be smaller than the "
99              "high threshold %d\n", p->write_low_thresh_perc,
100              p->write_high_thresh_perc);
101
102    // determine the rows per bank by looking at the total capacity
103    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
104
105    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
106            AbstractMemory::size());
107
108    DPRINTF(DRAM, "Row buffer size %d bytes with %d columns per row buffer\n",
109            rowBufferSize, columnsPerRowBuffer);
110
111    rowsPerBank = capacity / (rowBufferSize * banksPerRank * ranksPerChannel);
112
113    if (range.interleaved()) {
114        if (channels != range.stripes())
115            fatal("%s has %d interleaved address stripes but %d channel(s)\n",
116                  name(), range.stripes(), channels);
117
118        if (addrMapping == Enums::RoRaBaChCo) {
119            if (rowBufferSize != range.granularity()) {
120                fatal("Interleaving of %s doesn't match RoRaBaChCo "
121                      "address map\n", name());
122            }
123        } else if (addrMapping == Enums::RoRaBaCoCh) {
124            if (system()->cacheLineSize() != range.granularity()) {
125                fatal("Interleaving of %s doesn't match RoRaBaCoCh "
126                      "address map\n", name());
127            }
128        } else if (addrMapping == Enums::RoCoRaBaCh) {
129            if (system()->cacheLineSize() != range.granularity())
130                fatal("Interleaving of %s doesn't match RoCoRaBaCh "
131                      "address map\n", name());
132        }
133    }
134}
135
136void
137DRAMCtrl::init()
138{
139    if (!port.isConnected()) {
140        fatal("DRAMCtrl %s is unconnected!\n", name());
141    } else {
142        port.sendRangeChange();
143    }
144}
145
146void
147DRAMCtrl::startup()
148{
149    // update the start tick for the precharge accounting to the
150    // current tick
151    startTickPrechargeAll = curTick();
152
153    // shift the bus busy time sufficiently far ahead that we never
154    // have to worry about negative values when computing the time for
155    // the next request, this will add an insignificant bubble at the
156    // start of simulation
157    busBusyUntil = curTick() + tRP + tRCD + tCL;
158
159    // print the configuration of the controller
160    printParams();
161
162    // kick off the refresh
163    schedule(refreshEvent, curTick() + tREFI);
164}
165
166Tick
167DRAMCtrl::recvAtomic(PacketPtr pkt)
168{
169    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
170
171    // do the actual memory access and turn the packet into a response
172    access(pkt);
173
174    Tick latency = 0;
175    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
176        // this value is not supposed to be accurate, just enough to
177        // keep things going, mimic a closed page
178        latency = tRP + tRCD + tCL;
179    }
180    return latency;
181}
182
183bool
184DRAMCtrl::readQueueFull(unsigned int neededEntries) const
185{
186    DPRINTF(DRAM, "Read queue limit %d, current size %d, entries needed %d\n",
187            readBufferSize, readQueue.size() + respQueue.size(),
188            neededEntries);
189
190    return
191        (readQueue.size() + respQueue.size() + neededEntries) > readBufferSize;
192}
193
194bool
195DRAMCtrl::writeQueueFull(unsigned int neededEntries) const
196{
197    DPRINTF(DRAM, "Write queue limit %d, current size %d, entries needed %d\n",
198            writeBufferSize, writeQueue.size(), neededEntries);
199    return (writeQueue.size() + neededEntries) > writeBufferSize;
200}
201
202DRAMCtrl::DRAMPacket*
203DRAMCtrl::decodeAddr(PacketPtr pkt, Addr dramPktAddr, unsigned size,
204                       bool isRead)
205{
206    // decode the address based on the address mapping scheme, with
207    // Ro, Ra, Co, Ba and Ch denoting row, rank, column, bank and
208    // channel, respectively
209    uint8_t rank;
210    uint8_t bank;
211    uint16_t row;
212
213    // truncate the address to the access granularity
214    Addr addr = dramPktAddr / burstSize;
215
216    // we have removed the lowest order address bits that denote the
217    // position within the column
218    if (addrMapping == Enums::RoRaBaChCo) {
219        // the lowest order bits denote the column to ensure that
220        // sequential cache lines occupy the same row
221        addr = addr / columnsPerRowBuffer;
222
223        // take out the channel part of the address
224        addr = addr / channels;
225
226        // after the channel bits, get the bank bits to interleave
227        // over the banks
228        bank = addr % banksPerRank;
229        addr = addr / banksPerRank;
230
231        // after the bank, we get the rank bits which thus interleaves
232        // over the ranks
233        rank = addr % ranksPerChannel;
234        addr = addr / ranksPerChannel;
235
236        // lastly, get the row bits
237        row = addr % rowsPerBank;
238        addr = addr / rowsPerBank;
239    } else if (addrMapping == Enums::RoRaBaCoCh) {
240        // take out the channel part of the address
241        addr = addr / channels;
242
243        // next, the column
244        addr = addr / columnsPerRowBuffer;
245
246        // after the column bits, we get the bank bits to interleave
247        // over the banks
248        bank = addr % banksPerRank;
249        addr = addr / banksPerRank;
250
251        // after the bank, we get the rank bits which thus interleaves
252        // over the ranks
253        rank = addr % ranksPerChannel;
254        addr = addr / ranksPerChannel;
255
256        // lastly, get the row bits
257        row = addr % rowsPerBank;
258        addr = addr / rowsPerBank;
259    } else if (addrMapping == Enums::RoCoRaBaCh) {
260        // optimise for closed page mode and utilise maximum
261        // parallelism of the DRAM (at the cost of power)
262
263        // take out the channel part of the address, not that this has
264        // to match with how accesses are interleaved between the
265        // controllers in the address mapping
266        addr = addr / channels;
267
268        // start with the bank bits, as this provides the maximum
269        // opportunity for parallelism between requests
270        bank = addr % banksPerRank;
271        addr = addr / banksPerRank;
272
273        // next get the rank bits
274        rank = addr % ranksPerChannel;
275        addr = addr / ranksPerChannel;
276
277        // next the column bits which we do not need to keep track of
278        // and simply skip past
279        addr = addr / columnsPerRowBuffer;
280
281        // lastly, get the row bits
282        row = addr % rowsPerBank;
283        addr = addr / rowsPerBank;
284    } else
285        panic("Unknown address mapping policy chosen!");
286
287    assert(rank < ranksPerChannel);
288    assert(bank < banksPerRank);
289    assert(row < rowsPerBank);
290
291    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
292            dramPktAddr, rank, bank, row);
293
294    // create the corresponding DRAM packet with the entry time and
295    // ready time set to the current tick, the latter will be updated
296    // later
297    uint16_t bank_id = banksPerRank * rank + bank;
298    return new DRAMPacket(pkt, isRead, rank, bank, row, bank_id, dramPktAddr,
299                          size, banks[rank][bank]);
300}
301
302void
303DRAMCtrl::addToReadQueue(PacketPtr pkt, unsigned int pktCount)
304{
305    // only add to the read queue here. whenever the request is
306    // eventually done, set the readyTime, and call schedule()
307    assert(!pkt->isWrite());
308
309    assert(pktCount != 0);
310
311    // if the request size is larger than burst size, the pkt is split into
312    // multiple DRAM packets
313    // Note if the pkt starting address is not aligened to burst size, the
314    // address of first DRAM packet is kept unaliged. Subsequent DRAM packets
315    // are aligned to burst size boundaries. This is to ensure we accurately
316    // check read packets against packets in write queue.
317    Addr addr = pkt->getAddr();
318    unsigned pktsServicedByWrQ = 0;
319    BurstHelper* burst_helper = NULL;
320    for (int cnt = 0; cnt < pktCount; ++cnt) {
321        unsigned size = std::min((addr | (burstSize - 1)) + 1,
322                        pkt->getAddr() + pkt->getSize()) - addr;
323        readPktSize[ceilLog2(size)]++;
324        readBursts++;
325
326        // First check write buffer to see if the data is already at
327        // the controller
328        bool foundInWrQ = false;
329        for (auto i = writeQueue.begin(); i != writeQueue.end(); ++i) {
330            // check if the read is subsumed in the write entry we are
331            // looking at
332            if ((*i)->addr <= addr &&
333                (addr + size) <= ((*i)->addr + (*i)->size)) {
334                foundInWrQ = true;
335                servicedByWrQ++;
336                pktsServicedByWrQ++;
337                DPRINTF(DRAM, "Read to addr %lld with size %d serviced by "
338                        "write queue\n", addr, size);
339                bytesReadWrQ += burstSize;
340                break;
341            }
342        }
343
344        // If not found in the write q, make a DRAM packet and
345        // push it onto the read queue
346        if (!foundInWrQ) {
347
348            // Make the burst helper for split packets
349            if (pktCount > 1 && burst_helper == NULL) {
350                DPRINTF(DRAM, "Read to addr %lld translates to %d "
351                        "dram requests\n", pkt->getAddr(), pktCount);
352                burst_helper = new BurstHelper(pktCount);
353            }
354
355            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, true);
356            dram_pkt->burstHelper = burst_helper;
357
358            assert(!readQueueFull(1));
359            rdQLenPdf[readQueue.size() + respQueue.size()]++;
360
361            DPRINTF(DRAM, "Adding to read queue\n");
362
363            readQueue.push_back(dram_pkt);
364
365            // Update stats
366            avgRdQLen = readQueue.size() + respQueue.size();
367        }
368
369        // Starting address of next dram pkt (aligend to burstSize boundary)
370        addr = (addr | (burstSize - 1)) + 1;
371    }
372
373    // If all packets are serviced by write queue, we send the repsonse back
374    if (pktsServicedByWrQ == pktCount) {
375        accessAndRespond(pkt, frontendLatency);
376        return;
377    }
378
379    // Update how many split packets are serviced by write queue
380    if (burst_helper != NULL)
381        burst_helper->burstsServiced = pktsServicedByWrQ;
382
383    // If we are not already scheduled to get a request out of the
384    // queue, do so now
385    if (!nextReqEvent.scheduled()) {
386        DPRINTF(DRAM, "Request scheduled immediately\n");
387        schedule(nextReqEvent, curTick());
388    }
389}
390
391void
392DRAMCtrl::addToWriteQueue(PacketPtr pkt, unsigned int pktCount)
393{
394    // only add to the write queue here. whenever the request is
395    // eventually done, set the readyTime, and call schedule()
396    assert(pkt->isWrite());
397
398    // if the request size is larger than burst size, the pkt is split into
399    // multiple DRAM packets
400    Addr addr = pkt->getAddr();
401    for (int cnt = 0; cnt < pktCount; ++cnt) {
402        unsigned size = std::min((addr | (burstSize - 1)) + 1,
403                        pkt->getAddr() + pkt->getSize()) - addr;
404        writePktSize[ceilLog2(size)]++;
405        writeBursts++;
406
407        // see if we can merge with an existing item in the write
408        // queue and keep track of whether we have merged or not so we
409        // can stop at that point and also avoid enqueueing a new
410        // request
411        bool merged = false;
412        auto w = writeQueue.begin();
413
414        while(!merged && w != writeQueue.end()) {
415            // either of the two could be first, if they are the same
416            // it does not matter which way we go
417            if ((*w)->addr >= addr) {
418                // the existing one starts after the new one, figure
419                // out where the new one ends with respect to the
420                // existing one
421                if ((addr + size) >= ((*w)->addr + (*w)->size)) {
422                    // check if the existing one is completely
423                    // subsumed in the new one
424                    DPRINTF(DRAM, "Merging write covering existing burst\n");
425                    merged = true;
426                    // update both the address and the size
427                    (*w)->addr = addr;
428                    (*w)->size = size;
429                } else if ((addr + size) >= (*w)->addr &&
430                           ((*w)->addr + (*w)->size - addr) <= burstSize) {
431                    // the new one is just before or partially
432                    // overlapping with the existing one, and together
433                    // they fit within a burst
434                    DPRINTF(DRAM, "Merging write before existing burst\n");
435                    merged = true;
436                    // the existing queue item needs to be adjusted with
437                    // respect to both address and size
438                    (*w)->size = (*w)->addr + (*w)->size - addr;
439                    (*w)->addr = addr;
440                }
441            } else {
442                // the new one starts after the current one, figure
443                // out where the existing one ends with respect to the
444                // new one
445                if (((*w)->addr + (*w)->size) >= (addr + size)) {
446                    // check if the new one is completely subsumed in the
447                    // existing one
448                    DPRINTF(DRAM, "Merging write into existing burst\n");
449                    merged = true;
450                    // no adjustments necessary
451                } else if (((*w)->addr + (*w)->size) >= addr &&
452                           (addr + size - (*w)->addr) <= burstSize) {
453                    // the existing one is just before or partially
454                    // overlapping with the new one, and together
455                    // they fit within a burst
456                    DPRINTF(DRAM, "Merging write after existing burst\n");
457                    merged = true;
458                    // the address is right, and only the size has
459                    // to be adjusted
460                    (*w)->size = addr + size - (*w)->addr;
461                }
462            }
463            ++w;
464        }
465
466        // if the item was not merged we need to create a new write
467        // and enqueue it
468        if (!merged) {
469            DRAMPacket* dram_pkt = decodeAddr(pkt, addr, size, false);
470
471            assert(writeQueue.size() < writeBufferSize);
472            wrQLenPdf[writeQueue.size()]++;
473
474            DPRINTF(DRAM, "Adding to write queue\n");
475
476            writeQueue.push_back(dram_pkt);
477
478            // Update stats
479            avgWrQLen = writeQueue.size();
480        } else {
481            // keep track of the fact that this burst effectively
482            // disappeared as it was merged with an existing one
483            mergedWrBursts++;
484        }
485
486        // Starting address of next dram pkt (aligend to burstSize boundary)
487        addr = (addr | (burstSize - 1)) + 1;
488    }
489
490    // we do not wait for the writes to be send to the actual memory,
491    // but instead take responsibility for the consistency here and
492    // snoop the write queue for any upcoming reads
493    // @todo, if a pkt size is larger than burst size, we might need a
494    // different front end latency
495    accessAndRespond(pkt, frontendLatency);
496
497    // If we are not already scheduled to get a request out of the
498    // queue, do so now
499    if (!nextReqEvent.scheduled()) {
500        DPRINTF(DRAM, "Request scheduled immediately\n");
501        schedule(nextReqEvent, curTick());
502    }
503}
504
505void
506DRAMCtrl::printParams() const
507{
508    // Sanity check print of important parameters
509    DPRINTF(DRAM,
510            "Memory controller %s physical organization\n"      \
511            "Number of devices per rank   %d\n"                 \
512            "Device bus width (in bits)   %d\n"                 \
513            "DRAM data bus burst (bytes)  %d\n"                 \
514            "Row buffer size (bytes)      %d\n"                 \
515            "Columns per row buffer       %d\n"                 \
516            "Rows    per bank             %d\n"                 \
517            "Banks   per rank             %d\n"                 \
518            "Ranks   per channel          %d\n"                 \
519            "Total mem capacity (bytes)   %u\n",
520            name(), devicesPerRank, deviceBusWidth, burstSize, rowBufferSize,
521            columnsPerRowBuffer, rowsPerBank, banksPerRank, ranksPerChannel,
522            rowBufferSize * rowsPerBank * banksPerRank * ranksPerChannel);
523
524    string scheduler =  memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
525    string address_mapping = addrMapping == Enums::RoRaBaChCo ? "RoRaBaChCo" :
526        (addrMapping == Enums::RoRaBaCoCh ? "RoRaBaCoCh" : "RoCoRaBaCh");
527    string page_policy = pageMgmt == Enums::open ? "OPEN" :
528        (pageMgmt == Enums::open_adaptive ? "OPEN (adaptive)" :
529        (pageMgmt == Enums::close_adaptive ? "CLOSE (adaptive)" : "CLOSE"));
530
531    DPRINTF(DRAM,
532            "Memory controller %s characteristics\n"    \
533            "Read buffer size     %d\n"                 \
534            "Write buffer size    %d\n"                 \
535            "Write high thresh    %d\n"                 \
536            "Write low thresh     %d\n"                 \
537            "Scheduler            %s\n"                 \
538            "Address mapping      %s\n"                 \
539            "Page policy          %s\n",
540            name(), readBufferSize, writeBufferSize, writeHighThreshold,
541            writeLowThreshold, scheduler, address_mapping, page_policy);
542
543    DPRINTF(DRAM, "Memory controller %s timing specs\n" \
544            "tRCD      %d ticks\n"                        \
545            "tCL       %d ticks\n"                        \
546            "tRP       %d ticks\n"                        \
547            "tBURST    %d ticks\n"                        \
548            "tRFC      %d ticks\n"                        \
549            "tREFI     %d ticks\n"                        \
550            "tWTR      %d ticks\n"                        \
551            "tRTW      %d ticks\n"                        \
552            "tXAW (%d) %d ticks\n",
553            name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR,
554            tRTW, activationLimit, tXAW);
555}
556
557void
558DRAMCtrl::printQs() const {
559    DPRINTF(DRAM, "===READ QUEUE===\n\n");
560    for (auto i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
561        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
562    }
563    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
564    for (auto i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
565        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
566    }
567    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
568    for (auto i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
569        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
570    }
571}
572
573bool
574DRAMCtrl::recvTimingReq(PacketPtr pkt)
575{
576    /// @todo temporary hack to deal with memory corruption issues until
577    /// 4-phase transactions are complete
578    for (int x = 0; x < pendingDelete.size(); x++)
579        delete pendingDelete[x];
580    pendingDelete.clear();
581
582    // This is where we enter from the outside world
583    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
584            pkt->cmdString(), pkt->getAddr(), pkt->getSize());
585
586    // simply drop inhibited packets for now
587    if (pkt->memInhibitAsserted()) {
588        DPRINTF(DRAM, "Inhibited packet -- Dropping it now\n");
589        pendingDelete.push_back(pkt);
590        return true;
591    }
592
593    // Calc avg gap between requests
594    if (prevArrival != 0) {
595        totGap += curTick() - prevArrival;
596    }
597    prevArrival = curTick();
598
599
600    // Find out how many dram packets a pkt translates to
601    // If the burst size is equal or larger than the pkt size, then a pkt
602    // translates to only one dram packet. Otherwise, a pkt translates to
603    // multiple dram packets
604    unsigned size = pkt->getSize();
605    unsigned offset = pkt->getAddr() & (burstSize - 1);
606    unsigned int dram_pkt_count = divCeil(offset + size, burstSize);
607
608    // check local buffers and do not accept if full
609    if (pkt->isRead()) {
610        assert(size != 0);
611        if (readQueueFull(dram_pkt_count)) {
612            DPRINTF(DRAM, "Read queue full, not accepting\n");
613            // remember that we have to retry this port
614            retryRdReq = true;
615            numRdRetry++;
616            return false;
617        } else {
618            addToReadQueue(pkt, dram_pkt_count);
619            readReqs++;
620            bytesReadSys += size;
621        }
622    } else if (pkt->isWrite()) {
623        assert(size != 0);
624        if (writeQueueFull(dram_pkt_count)) {
625            DPRINTF(DRAM, "Write queue full, not accepting\n");
626            // remember that we have to retry this port
627            retryWrReq = true;
628            numWrRetry++;
629            return false;
630        } else {
631            addToWriteQueue(pkt, dram_pkt_count);
632            writeReqs++;
633            bytesWrittenSys += size;
634        }
635    } else {
636        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
637        neitherReadNorWrite++;
638        accessAndRespond(pkt, 1);
639    }
640
641    return true;
642}
643
644void
645DRAMCtrl::processRespondEvent()
646{
647    DPRINTF(DRAM,
648            "processRespondEvent(): Some req has reached its readyTime\n");
649
650    DRAMPacket* dram_pkt = respQueue.front();
651
652    if (dram_pkt->burstHelper) {
653        // it is a split packet
654        dram_pkt->burstHelper->burstsServiced++;
655        if (dram_pkt->burstHelper->burstsServiced ==
656            dram_pkt->burstHelper->burstCount) {
657            // we have now serviced all children packets of a system packet
658            // so we can now respond to the requester
659            // @todo we probably want to have a different front end and back
660            // end latency for split packets
661            accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
662            delete dram_pkt->burstHelper;
663            dram_pkt->burstHelper = NULL;
664        }
665    } else {
666        // it is not a split packet
667        accessAndRespond(dram_pkt->pkt, frontendLatency + backendLatency);
668    }
669
670    delete respQueue.front();
671    respQueue.pop_front();
672
673    if (!respQueue.empty()) {
674        assert(respQueue.front()->readyTime >= curTick());
675        assert(!respondEvent.scheduled());
676        schedule(respondEvent, respQueue.front()->readyTime);
677    } else {
678        // if there is nothing left in any queue, signal a drain
679        if (writeQueue.empty() && readQueue.empty() &&
680            drainManager) {
681            drainManager->signalDrainDone();
682            drainManager = NULL;
683        }
684    }
685
686    // We have made a location in the queue available at this point,
687    // so if there is a read that was forced to wait, retry now
688    if (retryRdReq) {
689        retryRdReq = false;
690        port.sendRetry();
691    }
692}
693
694void
695DRAMCtrl::chooseNext(std::deque<DRAMPacket*>& queue)
696{
697    // This method does the arbitration between requests. The chosen
698    // packet is simply moved to the head of the queue. The other
699    // methods know that this is the place to look. For example, with
700    // FCFS, this method does nothing
701    assert(!queue.empty());
702
703    if (queue.size() == 1) {
704        DPRINTF(DRAM, "Single request, nothing to do\n");
705        return;
706    }
707
708    if (memSchedPolicy == Enums::fcfs) {
709        // Do nothing, since the correct request is already head
710    } else if (memSchedPolicy == Enums::frfcfs) {
711        reorderQueue(queue);
712    } else
713        panic("No scheduling policy chosen\n");
714}
715
716void
717DRAMCtrl::reorderQueue(std::deque<DRAMPacket*>& queue)
718{
719    // Only determine this when needed
720    uint64_t earliest_banks = 0;
721
722    // Search for row hits first, if no row hit is found then schedule the
723    // packet to one of the earliest banks available
724    bool found_earliest_pkt = false;
725    auto selected_pkt_it = queue.begin();
726
727    for (auto i = queue.begin(); i != queue.end() ; ++i) {
728        DRAMPacket* dram_pkt = *i;
729        const Bank& bank = dram_pkt->bankRef;
730        // Check if it is a row hit
731        if (bank.openRow == dram_pkt->row) {
732            DPRINTF(DRAM, "Row buffer hit\n");
733            selected_pkt_it = i;
734            break;
735        } else if (!found_earliest_pkt) {
736            // No row hit, go for first ready
737            if (earliest_banks == 0)
738                earliest_banks = minBankFreeAt(queue);
739
740            // Bank is ready or is the first available bank
741            if (bank.freeAt <= curTick() ||
742                bits(earliest_banks, dram_pkt->bankId, dram_pkt->bankId)) {
743                // Remember the packet to be scheduled to one of the earliest
744                // banks available
745                selected_pkt_it = i;
746                found_earliest_pkt = true;
747            }
748        }
749    }
750
751    DRAMPacket* selected_pkt = *selected_pkt_it;
752    queue.erase(selected_pkt_it);
753    queue.push_front(selected_pkt);
754}
755
756void
757DRAMCtrl::accessAndRespond(PacketPtr pkt, Tick static_latency)
758{
759    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
760
761    bool needsResponse = pkt->needsResponse();
762    // do the actual memory access which also turns the packet into a
763    // response
764    access(pkt);
765
766    // turn packet around to go back to requester if response expected
767    if (needsResponse) {
768        // access already turned the packet into a response
769        assert(pkt->isResponse());
770
771        // @todo someone should pay for this
772        pkt->busFirstWordDelay = pkt->busLastWordDelay = 0;
773
774        // queue the packet in the response queue to be sent out after
775        // the static latency has passed
776        port.schedTimingResp(pkt, curTick() + static_latency);
777    } else {
778        // @todo the packet is going to be deleted, and the DRAMPacket
779        // is still having a pointer to it
780        pendingDelete.push_back(pkt);
781    }
782
783    DPRINTF(DRAM, "Done\n");
784
785    return;
786}
787
788pair<Tick, Tick>
789DRAMCtrl::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
790{
791    // If a request reaches a bank at tick 'inTime', how much time
792    // *after* that does it take to finish the request, depending
793    // on bank status and page open policy. Note that this method
794    // considers only the time taken for the actual read or write
795    // to complete, NOT any additional time thereafter for tRAS or
796    // tRP.
797    Tick accLat = 0;
798    Tick bankLat = 0;
799    rowHitFlag = false;
800    Tick potentialActTick;
801
802    const Bank& bank = dram_pkt->bankRef;
803     // open-page policy or close_adaptive policy
804    if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive ||
805        pageMgmt == Enums::close_adaptive) {
806        if (bank.openRow == dram_pkt->row) {
807            // When we have a row-buffer hit,
808            // we don't care about tRAS having expired or not,
809            // but do care about bank being free for access
810            rowHitFlag = true;
811
812            // When a series of requests arrive to the same row,
813            // DDR systems are capable of streaming data continuously
814            // at maximum bandwidth (subject to tCCD). Here, we approximate
815            // this condition, and assume that if whenever a bank is already
816            // busy and a new request comes in, it can be completed with no
817            // penalty beyond waiting for the existing read to complete.
818            if (bank.freeAt > inTime) {
819                accLat += bank.freeAt - inTime;
820                bankLat += 0;
821            } else {
822               // CAS latency only
823               accLat += tCL;
824               bankLat += tCL;
825            }
826
827        } else {
828            // Row-buffer miss, need to close existing row
829            // once tRAS has expired, then open the new one,
830            // then add cas latency.
831            Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt);
832
833            if (freeTime > inTime)
834               accLat += freeTime - inTime;
835
836            // If the there is no open row (open adaptive), then there
837            // is no precharge delay, otherwise go with tRP
838            Tick precharge_delay = bank.openRow == -1 ? 0 : tRP;
839
840            //The bank is free, and you may be able to activate
841            potentialActTick = inTime + accLat + precharge_delay;
842            if (potentialActTick < bank.actAllowedAt)
843                accLat += bank.actAllowedAt - potentialActTick;
844
845            accLat += precharge_delay + tRCD + tCL;
846            bankLat += precharge_delay + tRCD + tCL;
847        }
848    } else if (pageMgmt == Enums::close) {
849        // With a close page policy, no notion of
850        // bank.tRASDoneAt
851        if (bank.freeAt > inTime)
852            accLat += bank.freeAt - inTime;
853
854        //The bank is free, and you may be able to activate
855        potentialActTick = inTime + accLat;
856        if (potentialActTick < bank.actAllowedAt)
857            accLat += bank.actAllowedAt - potentialActTick;
858
859        // page already closed, simply open the row, and
860        // add cas latency
861        accLat += tRCD + tCL;
862        bankLat += tRCD + tCL;
863    } else
864        panic("No page management policy chosen\n");
865
866    DPRINTF(DRAM, "Returning < %lld, %lld > from estimateLatency()\n",
867            bankLat, accLat);
868
869    return make_pair(bankLat, accLat);
870}
871
872void
873DRAMCtrl::recordActivate(Tick act_tick, uint8_t rank, uint8_t bank)
874{
875    assert(0 <= rank && rank < ranksPerChannel);
876    assert(actTicks[rank].size() == activationLimit);
877
878    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
879
880    // Tracking accesses after all banks are precharged.
881    // startTickPrechargeAll: is the tick when all the banks were again
882    // precharged. The difference between act_tick and startTickPrechargeAll
883    // gives the time for which DRAM doesn't get any accesses after refreshing
884    // or after a page is closed in closed-page or open-adaptive-page policy.
885    if ((numBanksActive == 0) && (act_tick > startTickPrechargeAll)) {
886        prechargeAllTime += act_tick - startTickPrechargeAll;
887    }
888
889    // No need to update number of active banks for closed-page policy as only 1
890    // bank will be activated at any given point, which will be instatntly
891    // precharged
892    if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive ||
893        pageMgmt == Enums::close_adaptive)
894        ++numBanksActive;
895
896    // start by enforcing tRRD
897    for(int i = 0; i < banksPerRank; i++) {
898        // next activate must not happen before tRRD
899        banks[rank][i].actAllowedAt = act_tick + tRRD;
900    }
901    // tRC should be added to activation tick of the bank currently accessed,
902    // where tRC = tRAS + tRP, this is just for a check as actAllowedAt for same
903    // bank is already captured by bank.freeAt and bank.tRASDoneAt
904    banks[rank][bank].actAllowedAt = act_tick + tRAS + tRP;
905
906    // next, we deal with tXAW, if the activation limit is disabled
907    // then we are done
908    if (actTicks[rank].empty())
909        return;
910
911    // sanity check
912    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
913        // @todo For now, stick with a warning
914        warn("Got %d activates in window %d (%d - %d) which is smaller "
915             "than %d\n", activationLimit, act_tick - actTicks[rank].back(),
916             act_tick, actTicks[rank].back(), tXAW);
917    }
918
919    // shift the times used for the book keeping, the last element
920    // (highest index) is the oldest one and hence the lowest value
921    actTicks[rank].pop_back();
922
923    // record an new activation (in the future)
924    actTicks[rank].push_front(act_tick);
925
926    // cannot activate more than X times in time window tXAW, push the
927    // next one (the X + 1'st activate) to be tXAW away from the
928    // oldest in our window of X
929    if (actTicks[rank].back() && (act_tick - actTicks[rank].back()) < tXAW) {
930        DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
931                "than %d\n", activationLimit, actTicks[rank].back() + tXAW);
932            for(int j = 0; j < banksPerRank; j++)
933                // next activate must not happen before end of window
934                banks[rank][j].actAllowedAt = actTicks[rank].back() + tXAW;
935    }
936}
937
938void
939DRAMCtrl::doDRAMAccess(DRAMPacket* dram_pkt)
940{
941
942    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
943            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
944
945    // estimate the bank and access latency
946    pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());
947    Tick bankLat = lat.first;
948    Tick accessLat = lat.second;
949    Tick actTick;
950
951    // This request was woken up at this time based on a prior call
952    // to estimateLatency(). However, between then and now, both the
953    // accessLatency and/or busBusyUntil may have changed. We need
954    // to correct for that.
955
956    Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
957        busBusyUntil - (curTick() + accessLat) : 0;
958
959    Bank& bank = dram_pkt->bankRef;
960
961    // Update bank state
962    if (pageMgmt == Enums::open || pageMgmt == Enums::open_adaptive ||
963        pageMgmt == Enums::close_adaptive) {
964        bank.freeAt = curTick() + addDelay + accessLat;
965
966        // If you activated a new row do to this access, the next access
967        // will have to respect tRAS for this bank.
968        if (!rowHitFlag) {
969            // any waiting for banks account for in freeAt
970            actTick = bank.freeAt - tCL - tRCD;
971            bank.tRASDoneAt = actTick + tRAS;
972            recordActivate(actTick, dram_pkt->rank, dram_pkt->bank);
973
974            // if we closed an open row as a result of this access,
975            // then sample the number of bytes accessed before
976            // resetting it
977            if (bank.openRow != -1)
978                bytesPerActivate.sample(bank.bytesAccessed);
979
980            // update the open row
981            bank.openRow = dram_pkt->row;
982
983            // start counting anew, this covers both the case when we
984            // auto-precharged, and when this access is forced to
985            // precharge
986            bank.bytesAccessed = 0;
987            bank.rowAccesses = 0;
988        }
989
990        // increment the bytes accessed and the accesses per row
991        bank.bytesAccessed += burstSize;
992        ++bank.rowAccesses;
993
994        // if we reached the max, then issue with an auto-precharge
995        bool auto_precharge = bank.rowAccesses == maxAccessesPerRow;
996
997        // if we did not hit the limit, we might still want to
998        // auto-precharge
999        if (!auto_precharge &&
1000            (pageMgmt == Enums::open_adaptive ||
1001             pageMgmt == Enums::close_adaptive)) {
1002            // a twist on the open and close page policies:
1003            // 1) open_adaptive page policy does not blindly keep the
1004            // page open, but close it if there are no row hits, and there
1005            // are bank conflicts in the queue
1006            // 2) close_adaptive page policy does not blindly close the
1007            // page, but closes it only if there are no row hits in the queue.
1008            // In this case, only force an auto precharge when there
1009            // are no same page hits in the queue
1010            bool got_more_hits = false;
1011            bool got_bank_conflict = false;
1012
1013            // either look at the read queue or write queue
1014            const deque<DRAMPacket*>& queue = dram_pkt->isRead ? readQueue :
1015                writeQueue;
1016            auto p = queue.begin();
1017            // make sure we are not considering the packet that we are
1018            // currently dealing with (which is the head of the queue)
1019            ++p;
1020
1021            // keep on looking until we have found required condition or
1022            // reached the end
1023            while (!(got_more_hits &&
1024                    (got_bank_conflict || pageMgmt == Enums::close_adaptive)) &&
1025                   p != queue.end()) {
1026                bool same_rank_bank = (dram_pkt->rank == (*p)->rank) &&
1027                    (dram_pkt->bank == (*p)->bank);
1028                bool same_row = dram_pkt->row == (*p)->row;
1029                got_more_hits |= same_rank_bank && same_row;
1030                got_bank_conflict |= same_rank_bank && !same_row;
1031                ++p;
1032            }
1033
1034            // auto pre-charge when either
1035            // 1) open_adaptive policy, we have not got any more hits, and
1036            //    have a bank conflict
1037            // 2) close_adaptive policy and we have not got any more hits
1038            auto_precharge = !got_more_hits &&
1039                (got_bank_conflict || pageMgmt == Enums::close_adaptive);
1040        }
1041
1042        // if this access should use auto-precharge, then we are
1043        // closing the row
1044        if (auto_precharge) {
1045            bank.openRow = -1;
1046            bank.freeAt = std::max(bank.freeAt, bank.tRASDoneAt) + tRP;
1047            --numBanksActive;
1048            if (numBanksActive == 0) {
1049                startTickPrechargeAll = std::max(startTickPrechargeAll,
1050                                                 bank.freeAt);
1051                DPRINTF(DRAM, "All banks precharged at tick: %ld\n",
1052                        startTickPrechargeAll);
1053            }
1054
1055            // sample the bytes per activate here since we are closing
1056            // the page
1057            bytesPerActivate.sample(bank.bytesAccessed);
1058
1059            DPRINTF(DRAM, "Auto-precharged bank: %d\n", dram_pkt->bankId);
1060        }
1061
1062        DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt);
1063    } else if (pageMgmt == Enums::close) {
1064        actTick = curTick() + addDelay + accessLat - tRCD - tCL;
1065        recordActivate(actTick, dram_pkt->rank, dram_pkt->bank);
1066
1067        // If the DRAM has a very quick tRAS, bank can be made free
1068        // after consecutive tCL,tRCD,tRP times. In general, however,
1069        // an additional wait is required to respect tRAS.
1070        bank.freeAt = std::max(actTick + tRAS + tRP,
1071                actTick + tRCD + tCL + tRP);
1072        DPRINTF(DRAM, "doDRAMAccess::bank.freeAt is %lld\n", bank.freeAt);
1073        bytesPerActivate.sample(burstSize);
1074        startTickPrechargeAll = std::max(startTickPrechargeAll, bank.freeAt);
1075    } else
1076        panic("No page management policy chosen\n");
1077
1078    // Update request parameters
1079    dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
1080
1081
1082    DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \
1083                  "readytime is %lld busbusyuntil is %lld. " \
1084                  "Scheduling at readyTime\n", dram_pkt->addr,
1085                   curTick(), accessLat, dram_pkt->readyTime, busBusyUntil);
1086
1087    // Make sure requests are not overlapping on the databus
1088    assert(dram_pkt->readyTime - busBusyUntil >= tBURST);
1089
1090    // Update bus state
1091    busBusyUntil = dram_pkt->readyTime;
1092
1093    DPRINTF(DRAM,"Access time is %lld\n",
1094            dram_pkt->readyTime - dram_pkt->entryTime);
1095
1096    // Update the minimum timing between the requests, this is a
1097    // conservative estimate of when we have to schedule the next
1098    // request to not introduce any unecessary bubbles. In most cases
1099    // we will wake up sooner than we have to.
1100    nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1101
1102    // Update the stats and schedule the next request
1103    if (dram_pkt->isRead) {
1104        ++readsThisTime;
1105        if (rowHitFlag)
1106            readRowHits++;
1107        bytesReadDRAM += burstSize;
1108        perBankRdBursts[dram_pkt->bankId]++;
1109
1110        // Update latency stats
1111        totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
1112        totBankLat += bankLat;
1113        totBusLat += tBURST;
1114        totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat -
1115            tBURST;
1116    } else {
1117        ++writesThisTime;
1118        if (rowHitFlag)
1119            writeRowHits++;
1120        bytesWritten += burstSize;
1121        perBankWrBursts[dram_pkt->bankId]++;
1122    }
1123}
1124
1125void
1126DRAMCtrl::moveToRespQ()
1127{
1128    // Remove from read queue
1129    DRAMPacket* dram_pkt = readQueue.front();
1130    readQueue.pop_front();
1131
1132    // sanity check
1133    assert(dram_pkt->size <= burstSize);
1134
1135    // Insert into response queue sorted by readyTime
1136    // It will be sent back to the requestor at its
1137    // readyTime
1138    if (respQueue.empty()) {
1139        respQueue.push_front(dram_pkt);
1140        assert(!respondEvent.scheduled());
1141        assert(dram_pkt->readyTime >= curTick());
1142        schedule(respondEvent, dram_pkt->readyTime);
1143    } else {
1144        bool done = false;
1145        auto i = respQueue.begin();
1146        while (!done && i != respQueue.end()) {
1147            if ((*i)->readyTime > dram_pkt->readyTime) {
1148                respQueue.insert(i, dram_pkt);
1149                done = true;
1150            }
1151            ++i;
1152        }
1153
1154        if (!done)
1155            respQueue.push_back(dram_pkt);
1156
1157        assert(respondEvent.scheduled());
1158
1159        if (respQueue.front()->readyTime < respondEvent.when()) {
1160            assert(respQueue.front()->readyTime >= curTick());
1161            reschedule(respondEvent, respQueue.front()->readyTime);
1162        }
1163    }
1164}
1165
1166void
1167DRAMCtrl::processNextReqEvent()
1168{
1169    if (busState == READ_TO_WRITE) {
1170        DPRINTF(DRAM, "Switching to writes after %d reads with %d reads "
1171                "waiting\n", readsThisTime, readQueue.size());
1172
1173        // sample and reset the read-related stats as we are now
1174        // transitioning to writes, and all reads are done
1175        rdPerTurnAround.sample(readsThisTime);
1176        readsThisTime = 0;
1177
1178        // now proceed to do the actual writes
1179        busState = WRITE;
1180    } else if (busState == WRITE_TO_READ) {
1181        DPRINTF(DRAM, "Switching to reads after %d writes with %d writes "
1182                "waiting\n", writesThisTime, writeQueue.size());
1183
1184        wrPerTurnAround.sample(writesThisTime);
1185        writesThisTime = 0;
1186
1187        busState = READ;
1188    }
1189
1190    // when we get here it is either a read or a write
1191    if (busState == READ) {
1192
1193        // track if we should switch or not
1194        bool switch_to_writes = false;
1195
1196        if (readQueue.empty()) {
1197            // In the case there is no read request to go next,
1198            // trigger writes if we have passed the low threshold (or
1199            // if we are draining)
1200            if (!writeQueue.empty() &&
1201                (drainManager || writeQueue.size() > writeLowThreshold)) {
1202
1203                switch_to_writes = true;
1204            } else {
1205                // check if we are drained
1206                if (respQueue.empty () && drainManager) {
1207                    drainManager->signalDrainDone();
1208                    drainManager = NULL;
1209                }
1210
1211                // nothing to do, not even any point in scheduling an
1212                // event for the next request
1213                return;
1214            }
1215        } else {
1216            // Figure out which read request goes next, and move it to the
1217            // front of the read queue
1218            chooseNext(readQueue);
1219
1220            doDRAMAccess(readQueue.front());
1221
1222            // At this point we're done dealing with the request
1223            // It will be moved to a separate response queue with a
1224            // correct readyTime, and eventually be sent back at that
1225            // time
1226            moveToRespQ();
1227
1228            // we have so many writes that we have to transition
1229            if (writeQueue.size() > writeHighThreshold) {
1230                switch_to_writes = true;
1231            }
1232        }
1233
1234        // switching to writes, either because the read queue is empty
1235        // and the writes have passed the low threshold (or we are
1236        // draining), or because the writes hit the hight threshold
1237        if (switch_to_writes) {
1238            // transition to writing
1239            busState = READ_TO_WRITE;
1240
1241            // add a bubble to the data bus, as defined by the
1242            // tRTW parameter
1243            busBusyUntil += tRTW;
1244
1245            // update the minimum timing between the requests,
1246            // this shifts us back in time far enough to do any
1247            // bank preparation
1248            nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1249        }
1250    } else {
1251        chooseNext(writeQueue);
1252        DRAMPacket* dram_pkt = writeQueue.front();
1253        // sanity check
1254        assert(dram_pkt->size <= burstSize);
1255        doDRAMAccess(dram_pkt);
1256
1257        writeQueue.pop_front();
1258        delete dram_pkt;
1259
1260        // If we emptied the write queue, or got sufficiently below the
1261        // threshold (using the minWritesPerSwitch as the hysteresis) and
1262        // are not draining, or we have reads waiting and have done enough
1263        // writes, then switch to reads.
1264        if (writeQueue.empty() ||
1265            (writeQueue.size() + minWritesPerSwitch < writeLowThreshold &&
1266             !drainManager) ||
1267            (!readQueue.empty() && writesThisTime >= minWritesPerSwitch)) {
1268            // turn the bus back around for reads again
1269            busState = WRITE_TO_READ;
1270
1271            // note that the we switch back to reads also in the idle
1272            // case, which eventually will check for any draining and
1273            // also pause any further scheduling if there is really
1274            // nothing to do
1275
1276            // here we get a bit creative and shift the bus busy time not
1277            // just the tWTR, but also a CAS latency to capture the fact
1278            // that we are allowed to prepare a new bank, but not issue a
1279            // read command until after tWTR, in essence we capture a
1280            // bubble on the data bus that is tWTR + tCL
1281            busBusyUntil += tWTR + tCL;
1282
1283            // update the minimum timing between the requests, this shifts
1284            // us back in time far enough to do any bank preparation
1285            nextReqTime = busBusyUntil - (tRP + tRCD + tCL);
1286        }
1287    }
1288
1289    schedule(nextReqEvent, std::max(nextReqTime, curTick()));
1290
1291    // If there is space available and we have writes waiting then let
1292    // them retry. This is done here to ensure that the retry does not
1293    // cause a nextReqEvent to be scheduled before we do so as part of
1294    // the next request processing
1295    if (retryWrReq && writeQueue.size() < writeBufferSize) {
1296        retryWrReq = false;
1297        port.sendRetry();
1298    }
1299}
1300
1301Tick
1302DRAMCtrl::maxBankFreeAt() const
1303{
1304    Tick banksFree = 0;
1305
1306    for(int i = 0; i < ranksPerChannel; i++)
1307        for(int j = 0; j < banksPerRank; j++)
1308            banksFree = std::max(banks[i][j].freeAt, banksFree);
1309
1310    return banksFree;
1311}
1312
1313uint64_t
1314DRAMCtrl::minBankFreeAt(const deque<DRAMPacket*>& queue) const
1315{
1316    uint64_t bank_mask = 0;
1317    Tick freeAt = MaxTick;
1318
1319    // detemrine if we have queued transactions targetting the
1320    // bank in question
1321    vector<bool> got_waiting(ranksPerChannel * banksPerRank, false);
1322    for (auto p = queue.begin(); p != queue.end(); ++p) {
1323        got_waiting[(*p)->bankId] = true;
1324    }
1325
1326    for (int i = 0; i < ranksPerChannel; i++) {
1327        for (int j = 0; j < banksPerRank; j++) {
1328            // if we have waiting requests for the bank, and it is
1329            // amongst the first available, update the mask
1330            if (got_waiting[i * banksPerRank + j] &&
1331                banks[i][j].freeAt <= freeAt) {
1332                // reset bank mask if new minimum is found
1333                if (banks[i][j].freeAt < freeAt)
1334                    bank_mask = 0;
1335                // set the bit corresponding to the available bank
1336                uint8_t bit_index = i * ranksPerChannel + j;
1337                replaceBits(bank_mask, bit_index, bit_index, 1);
1338                freeAt = banks[i][j].freeAt;
1339            }
1340        }
1341    }
1342    return bank_mask;
1343}
1344
1345void
1346DRAMCtrl::processRefreshEvent()
1347{
1348    DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick());
1349
1350    Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC;
1351
1352    for(int i = 0; i < ranksPerChannel; i++)
1353        for(int j = 0; j < banksPerRank; j++) {
1354            banks[i][j].freeAt = banksFree;
1355            banks[i][j].openRow = -1;
1356        }
1357
1358    // updating startTickPrechargeAll, isprechargeAll
1359    numBanksActive = 0;
1360    startTickPrechargeAll = banksFree;
1361
1362    schedule(refreshEvent, curTick() + tREFI);
1363}
1364
1365void
1366DRAMCtrl::regStats()
1367{
1368    using namespace Stats;
1369
1370    AbstractMemory::regStats();
1371
1372    readReqs
1373        .name(name() + ".readReqs")
1374        .desc("Number of read requests accepted");
1375
1376    writeReqs
1377        .name(name() + ".writeReqs")
1378        .desc("Number of write requests accepted");
1379
1380    readBursts
1381        .name(name() + ".readBursts")
1382        .desc("Number of DRAM read bursts, "
1383              "including those serviced by the write queue");
1384
1385    writeBursts
1386        .name(name() + ".writeBursts")
1387        .desc("Number of DRAM write bursts, "
1388              "including those merged in the write queue");
1389
1390    servicedByWrQ
1391        .name(name() + ".servicedByWrQ")
1392        .desc("Number of DRAM read bursts serviced by the write queue");
1393
1394    mergedWrBursts
1395        .name(name() + ".mergedWrBursts")
1396        .desc("Number of DRAM write bursts merged with an existing one");
1397
1398    neitherReadNorWrite
1399        .name(name() + ".neitherReadNorWriteReqs")
1400        .desc("Number of requests that are neither read nor write");
1401
1402    perBankRdBursts
1403        .init(banksPerRank * ranksPerChannel)
1404        .name(name() + ".perBankRdBursts")
1405        .desc("Per bank write bursts");
1406
1407    perBankWrBursts
1408        .init(banksPerRank * ranksPerChannel)
1409        .name(name() + ".perBankWrBursts")
1410        .desc("Per bank write bursts");
1411
1412    avgRdQLen
1413        .name(name() + ".avgRdQLen")
1414        .desc("Average read queue length when enqueuing")
1415        .precision(2);
1416
1417    avgWrQLen
1418        .name(name() + ".avgWrQLen")
1419        .desc("Average write queue length when enqueuing")
1420        .precision(2);
1421
1422    totQLat
1423        .name(name() + ".totQLat")
1424        .desc("Total ticks spent queuing");
1425
1426    totBankLat
1427        .name(name() + ".totBankLat")
1428        .desc("Total ticks spent accessing banks");
1429
1430    totBusLat
1431        .name(name() + ".totBusLat")
1432        .desc("Total ticks spent in databus transfers");
1433
1434    totMemAccLat
1435        .name(name() + ".totMemAccLat")
1436        .desc("Total ticks spent from burst creation until serviced "
1437              "by the DRAM");
1438
1439    avgQLat
1440        .name(name() + ".avgQLat")
1441        .desc("Average queueing delay per DRAM burst")
1442        .precision(2);
1443
1444    avgQLat = totQLat / (readBursts - servicedByWrQ);
1445
1446    avgBankLat
1447        .name(name() + ".avgBankLat")
1448        .desc("Average bank access latency per DRAM burst")
1449        .precision(2);
1450
1451    avgBankLat = totBankLat / (readBursts - servicedByWrQ);
1452
1453    avgBusLat
1454        .name(name() + ".avgBusLat")
1455        .desc("Average bus latency per DRAM burst")
1456        .precision(2);
1457
1458    avgBusLat = totBusLat / (readBursts - servicedByWrQ);
1459
1460    avgMemAccLat
1461        .name(name() + ".avgMemAccLat")
1462        .desc("Average memory access latency per DRAM burst")
1463        .precision(2);
1464
1465    avgMemAccLat = totMemAccLat / (readBursts - servicedByWrQ);
1466
1467    numRdRetry
1468        .name(name() + ".numRdRetry")
1469        .desc("Number of times read queue was full causing retry");
1470
1471    numWrRetry
1472        .name(name() + ".numWrRetry")
1473        .desc("Number of times write queue was full causing retry");
1474
1475    readRowHits
1476        .name(name() + ".readRowHits")
1477        .desc("Number of row buffer hits during reads");
1478
1479    writeRowHits
1480        .name(name() + ".writeRowHits")
1481        .desc("Number of row buffer hits during writes");
1482
1483    readRowHitRate
1484        .name(name() + ".readRowHitRate")
1485        .desc("Row buffer hit rate for reads")
1486        .precision(2);
1487
1488    readRowHitRate = (readRowHits / (readBursts - servicedByWrQ)) * 100;
1489
1490    writeRowHitRate
1491        .name(name() + ".writeRowHitRate")
1492        .desc("Row buffer hit rate for writes")
1493        .precision(2);
1494
1495    writeRowHitRate = (writeRowHits / (writeBursts - mergedWrBursts)) * 100;
1496
1497    readPktSize
1498        .init(ceilLog2(burstSize) + 1)
1499        .name(name() + ".readPktSize")
1500        .desc("Read request sizes (log2)");
1501
1502     writePktSize
1503        .init(ceilLog2(burstSize) + 1)
1504        .name(name() + ".writePktSize")
1505        .desc("Write request sizes (log2)");
1506
1507     rdQLenPdf
1508        .init(readBufferSize)
1509        .name(name() + ".rdQLenPdf")
1510        .desc("What read queue length does an incoming req see");
1511
1512     wrQLenPdf
1513        .init(writeBufferSize)
1514        .name(name() + ".wrQLenPdf")
1515        .desc("What write queue length does an incoming req see");
1516
1517     bytesPerActivate
1518         .init(maxAccessesPerRow)
1519         .name(name() + ".bytesPerActivate")
1520         .desc("Bytes accessed per row activation")
1521         .flags(nozero);
1522
1523     rdPerTurnAround
1524         .init(readBufferSize)
1525         .name(name() + ".rdPerTurnAround")
1526         .desc("Reads before turning the bus around for writes")
1527         .flags(nozero);
1528
1529     wrPerTurnAround
1530         .init(writeBufferSize)
1531         .name(name() + ".wrPerTurnAround")
1532         .desc("Writes before turning the bus around for reads")
1533         .flags(nozero);
1534
1535    bytesReadDRAM
1536        .name(name() + ".bytesReadDRAM")
1537        .desc("Total number of bytes read from DRAM");
1538
1539    bytesReadWrQ
1540        .name(name() + ".bytesReadWrQ")
1541        .desc("Total number of bytes read from write queue");
1542
1543    bytesWritten
1544        .name(name() + ".bytesWritten")
1545        .desc("Total number of bytes written to DRAM");
1546
1547    bytesReadSys
1548        .name(name() + ".bytesReadSys")
1549        .desc("Total read bytes from the system interface side");
1550
1551    bytesWrittenSys
1552        .name(name() + ".bytesWrittenSys")
1553        .desc("Total written bytes from the system interface side");
1554
1555    avgRdBW
1556        .name(name() + ".avgRdBW")
1557        .desc("Average DRAM read bandwidth in MiByte/s")
1558        .precision(2);
1559
1560    avgRdBW = (bytesReadDRAM / 1000000) / simSeconds;
1561
1562    avgWrBW
1563        .name(name() + ".avgWrBW")
1564        .desc("Average achieved write bandwidth in MiByte/s")
1565        .precision(2);
1566
1567    avgWrBW = (bytesWritten / 1000000) / simSeconds;
1568
1569    avgRdBWSys
1570        .name(name() + ".avgRdBWSys")
1571        .desc("Average system read bandwidth in MiByte/s")
1572        .precision(2);
1573
1574    avgRdBWSys = (bytesReadSys / 1000000) / simSeconds;
1575
1576    avgWrBWSys
1577        .name(name() + ".avgWrBWSys")
1578        .desc("Average system write bandwidth in MiByte/s")
1579        .precision(2);
1580
1581    avgWrBWSys = (bytesWrittenSys / 1000000) / simSeconds;
1582
1583    peakBW
1584        .name(name() + ".peakBW")
1585        .desc("Theoretical peak bandwidth in MiByte/s")
1586        .precision(2);
1587
1588    peakBW = (SimClock::Frequency / tBURST) * burstSize / 1000000;
1589
1590    busUtil
1591        .name(name() + ".busUtil")
1592        .desc("Data bus utilization in percentage")
1593        .precision(2);
1594
1595    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1596
1597    totGap
1598        .name(name() + ".totGap")
1599        .desc("Total gap between requests");
1600
1601    avgGap
1602        .name(name() + ".avgGap")
1603        .desc("Average gap between requests")
1604        .precision(2);
1605
1606    avgGap = totGap / (readReqs + writeReqs);
1607
1608    // Stats for DRAM Power calculation based on Micron datasheet
1609    busUtilRead
1610        .name(name() + ".busUtilRead")
1611        .desc("Data bus utilization in percentage for reads")
1612        .precision(2);
1613
1614    busUtilRead = avgRdBW / peakBW * 100;
1615
1616    busUtilWrite
1617        .name(name() + ".busUtilWrite")
1618        .desc("Data bus utilization in percentage for writes")
1619        .precision(2);
1620
1621    busUtilWrite = avgWrBW / peakBW * 100;
1622
1623    pageHitRate
1624        .name(name() + ".pageHitRate")
1625        .desc("Row buffer hit rate, read and write combined")
1626        .precision(2);
1627
1628    pageHitRate = (writeRowHits + readRowHits) /
1629        (writeBursts - mergedWrBursts + readBursts - servicedByWrQ) * 100;
1630
1631    prechargeAllPercent
1632        .name(name() + ".prechargeAllPercent")
1633        .desc("Percentage of time for which DRAM has all the banks in "
1634              "precharge state")
1635        .precision(2);
1636
1637    prechargeAllPercent = prechargeAllTime / simTicks * 100;
1638}
1639
1640void
1641DRAMCtrl::recvFunctional(PacketPtr pkt)
1642{
1643    // rely on the abstract memory
1644    functionalAccess(pkt);
1645}
1646
1647BaseSlavePort&
1648DRAMCtrl::getSlavePort(const string &if_name, PortID idx)
1649{
1650    if (if_name != "port") {
1651        return MemObject::getSlavePort(if_name, idx);
1652    } else {
1653        return port;
1654    }
1655}
1656
1657unsigned int
1658DRAMCtrl::drain(DrainManager *dm)
1659{
1660    unsigned int count = port.drain(dm);
1661
1662    // if there is anything in any of our internal queues, keep track
1663    // of that as well
1664    if (!(writeQueue.empty() && readQueue.empty() &&
1665          respQueue.empty())) {
1666        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
1667                " resp: %d\n", writeQueue.size(), readQueue.size(),
1668                respQueue.size());
1669        ++count;
1670        drainManager = dm;
1671
1672        // the only part that is not drained automatically over time
1673        // is the write queue, thus kick things into action if needed
1674        if (!writeQueue.empty() && !nextReqEvent.scheduled()) {
1675            schedule(nextReqEvent, curTick());
1676        }
1677    }
1678
1679    if (count)
1680        setDrainState(Drainable::Draining);
1681    else
1682        setDrainState(Drainable::Drained);
1683    return count;
1684}
1685
1686DRAMCtrl::MemoryPort::MemoryPort(const std::string& name, DRAMCtrl& _memory)
1687    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1688      memory(_memory)
1689{ }
1690
1691AddrRangeList
1692DRAMCtrl::MemoryPort::getAddrRanges() const
1693{
1694    AddrRangeList ranges;
1695    ranges.push_back(memory.getAddrRange());
1696    return ranges;
1697}
1698
1699void
1700DRAMCtrl::MemoryPort::recvFunctional(PacketPtr pkt)
1701{
1702    pkt->pushLabel(memory.name());
1703
1704    if (!queue.checkFunctional(pkt)) {
1705        // Default implementation of SimpleTimingPort::recvFunctional()
1706        // calls recvAtomic() and throws away the latency; we can save a
1707        // little here by just not calculating the latency.
1708        memory.recvFunctional(pkt);
1709    }
1710
1711    pkt->popLabel();
1712}
1713
1714Tick
1715DRAMCtrl::MemoryPort::recvAtomic(PacketPtr pkt)
1716{
1717    return memory.recvAtomic(pkt);
1718}
1719
1720bool
1721DRAMCtrl::MemoryPort::recvTimingReq(PacketPtr pkt)
1722{
1723    // pass it to the memory controller
1724    return memory.recvTimingReq(pkt);
1725}
1726
1727DRAMCtrl*
1728DRAMCtrlParams::create()
1729{
1730    return new DRAMCtrl(this);
1731}
1732