dram_ctrl.cc revision 9567
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Hansson
38 *          Ani Udipi
39 */
40
41#include "base/trace.hh"
42#include "debug/Drain.hh"
43#include "debug/DRAM.hh"
44#include "debug/DRAMWR.hh"
45#include "mem/simple_dram.hh"
46
47using namespace std;
48
49SimpleDRAM::SimpleDRAM(const SimpleDRAMParams* p) :
50    AbstractMemory(p),
51    port(name() + ".port", *this),
52    retryRdReq(false), retryWrReq(false),
53    rowHitFlag(false), stopReads(false), actTicks(p->activation_limit, 0),
54    writeEvent(this), respondEvent(this),
55    refreshEvent(this), nextReqEvent(this), drainManager(NULL),
56    bytesPerCacheLine(0),
57    linesPerRowBuffer(p->lines_per_rowbuffer),
58    ranksPerChannel(p->ranks_per_channel),
59    banksPerRank(p->banks_per_rank), channels(p->channels), rowsPerBank(0),
60    readBufferSize(p->read_buffer_size),
61    writeBufferSize(p->write_buffer_size),
62    writeThresholdPerc(p->write_thresh_perc),
63    tWTR(p->tWTR), tBURST(p->tBURST),
64    tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP),
65    tRFC(p->tRFC), tREFI(p->tREFI),
66    tXAW(p->tXAW), activationLimit(p->activation_limit),
67    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
68    pageMgmt(p->page_policy),
69    busBusyUntil(0), writeStartTime(0),
70    prevArrival(0), numReqs(0)
71{
72    // create the bank states based on the dimensions of the ranks and
73    // banks
74    banks.resize(ranksPerChannel);
75    for (size_t c = 0; c < ranksPerChannel; ++c) {
76        banks[c].resize(banksPerRank);
77    }
78
79    // round the write threshold percent to a whole number of entries
80    // in the buffer
81    writeThreshold = writeBufferSize * writeThresholdPerc / 100.0;
82}
83
84void
85SimpleDRAM::init()
86{
87    if (!port.isConnected()) {
88        fatal("SimpleDRAM %s is unconnected!\n", name());
89    } else {
90        port.sendRangeChange();
91    }
92
93    // get the burst size from the connected port as it is currently
94    // assumed to be equal to the cache line size
95    bytesPerCacheLine = port.peerBlockSize();
96
97    // we could deal with plenty options here, but for now do a quick
98    // sanity check
99    if (bytesPerCacheLine != 64 && bytesPerCacheLine != 32)
100        panic("Unexpected burst size %d", bytesPerCacheLine);
101
102    // determine the rows per bank by looking at the total capacity
103    uint64_t capacity = ULL(1) << ceilLog2(AbstractMemory::size());
104
105    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
106            AbstractMemory::size());
107    rowsPerBank = capacity / (bytesPerCacheLine * linesPerRowBuffer *
108                              banksPerRank * ranksPerChannel);
109
110    if (range.interleaved()) {
111        if (channels != range.stripes())
112            panic("%s has %d interleaved address stripes but %d channel(s)\n",
113                  name(), range.stripes(), channels);
114
115        if (addrMapping == Enums::openmap) {
116            if (bytesPerCacheLine * linesPerRowBuffer !=
117                range.granularity()) {
118                panic("Interleaving of %s doesn't match open address map\n",
119                      name());
120            }
121        } else if (addrMapping == Enums::closemap) {
122            if (bytesPerCacheLine != range.granularity())
123                panic("Interleaving of %s doesn't match closed address map\n",
124                      name());
125        }
126    }
127}
128
129void
130SimpleDRAM::startup()
131{
132    // print the configuration of the controller
133    printParams();
134
135    // kick off the refresh
136    schedule(refreshEvent, curTick() + tREFI);
137}
138
139Tick
140SimpleDRAM::recvAtomic(PacketPtr pkt)
141{
142    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
143
144    // do the actual memory access and turn the packet into a response
145    access(pkt);
146
147    Tick latency = 0;
148    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
149        // this value is not supposed to be accurate, just enough to
150        // keep things going, mimic a closed page
151        latency = tRP + tRCD + tCL;
152    }
153    return latency;
154}
155
156bool
157SimpleDRAM::readQueueFull() const
158{
159    DPRINTF(DRAM, "Read queue limit %d current size %d\n",
160            readBufferSize, readQueue.size() + respQueue.size());
161
162    return (readQueue.size() + respQueue.size()) == readBufferSize;
163}
164
165bool
166SimpleDRAM::writeQueueFull() const
167{
168    DPRINTF(DRAM, "Write queue limit %d current size %d\n",
169            writeBufferSize, writeQueue.size());
170    return writeQueue.size() == writeBufferSize;
171}
172
173SimpleDRAM::DRAMPacket*
174SimpleDRAM::decodeAddr(PacketPtr pkt)
175{
176    // decode the address based on the address mapping scheme
177    //
178    // with R, C, B and K denoting rank, column, bank and rank,
179    // respectively, and going from MSB to LSB, the two schemes are
180    // RKBC (openmap) and RCKB (closedmap)
181    uint8_t rank;
182    uint16_t bank;
183    uint16_t row;
184
185    Addr addr = pkt->getAddr();
186
187    // truncate the address to the access granularity
188    addr = addr / bytesPerCacheLine;
189
190    // we have removed the lowest order address bits that denote the
191    // position within the cache line, proceed and select the
192    // appropriate bits for bank, rank and row (no column address is
193    // needed)
194    if (addrMapping == Enums::openmap) {
195        // the lowest order bits denote the column to ensure that
196        // sequential cache lines occupy the same row
197        addr = addr / linesPerRowBuffer;
198
199        // take out the channel part of the address, note that this has
200        // to match with how accesses are interleaved between the
201        // controllers in the address mapping
202        addr = addr / channels;
203
204        // after the column bits, we get the bank bits to interleave
205        // over the banks
206        bank = addr % banksPerRank;
207        addr = addr / banksPerRank;
208
209        // after the bank, we get the rank bits which thus interleaves
210        // over the ranks
211        rank = addr % ranksPerChannel;
212        addr = addr / ranksPerChannel;
213
214        // lastly, get the row bits
215        row = addr % rowsPerBank;
216        addr = addr / rowsPerBank;
217    } else if (addrMapping == Enums::closemap) {
218        // optimise for closed page mode and utilise maximum
219        // parallelism of the DRAM (at the cost of power)
220
221        // take out the channel part of the address, not that this has
222        // to match with how accesses are interleaved between the
223        // controllers in the address mapping
224        addr = addr / channels;
225
226        // start with the bank bits, as this provides the maximum
227        // opportunity for parallelism between requests
228        bank = addr % banksPerRank;
229        addr = addr / banksPerRank;
230
231        // next get the rank bits
232        rank = addr % ranksPerChannel;
233        addr = addr / ranksPerChannel;
234
235        // next the column bits which we do not need to keep track of
236        // and simply skip past
237        addr = addr / linesPerRowBuffer;
238
239        // lastly, get the row bits
240        row = addr % rowsPerBank;
241        addr = addr / rowsPerBank;
242    } else
243        panic("Unknown address mapping policy chosen!");
244
245    assert(rank < ranksPerChannel);
246    assert(bank < banksPerRank);
247    assert(row < rowsPerBank);
248
249    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
250            pkt->getAddr(), rank, bank, row);
251
252    // create the corresponding DRAM packet with the entry time and
253    // ready time set to the current tick, the latter will be updated
254    // later
255    return new DRAMPacket(pkt, rank, bank, row, pkt->getAddr(),
256                          banks[rank][bank]);
257}
258
259void
260SimpleDRAM::addToReadQueue(PacketPtr pkt)
261{
262    // only add to the read queue here. whenever the request is
263    // eventually done, set the readyTime, and call schedule()
264    assert(!pkt->isWrite());
265
266    // First check write buffer to see if the data is already at
267    // the controller
268    list<DRAMPacket*>::const_iterator i;
269    Addr addr = pkt->getAddr();
270
271    // @todo: add size check
272    for (i = writeQueue.begin(); i != writeQueue.end(); ++i) {
273        if ((*i)->addr == addr){
274            servicedByWrQ++;
275            DPRINTF(DRAM, "Read to %lld serviced by write queue\n", addr);
276            bytesRead += bytesPerCacheLine;
277            bytesConsumedRd += pkt->getSize();
278            accessAndRespond(pkt);
279            return;
280        }
281    }
282
283    DRAMPacket* dram_pkt = decodeAddr(pkt);
284
285    assert(readQueue.size() + respQueue.size() < readBufferSize);
286    rdQLenPdf[readQueue.size() + respQueue.size()]++;
287
288    DPRINTF(DRAM, "Adding to read queue\n");
289
290    readQueue.push_back(dram_pkt);
291
292    // Update stats
293    uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
294    assert(bank_id < ranksPerChannel * banksPerRank);
295    perBankRdReqs[bank_id]++;
296
297    avgRdQLen = readQueue.size() + respQueue.size();
298
299    // If we are not already scheduled to get the read request out of
300    // the queue, do so now
301    if (!nextReqEvent.scheduled() && !stopReads) {
302        DPRINTF(DRAM, "Request scheduled immediately\n");
303        schedule(nextReqEvent, curTick());
304    }
305}
306
307void
308SimpleDRAM::processWriteEvent()
309{
310    assert(!writeQueue.empty());
311    uint32_t numWritesThisTime = 0;
312
313    DPRINTF(DRAMWR, "Beginning DRAM Writes\n");
314    Tick temp1 M5_VAR_USED = std::max(curTick(), busBusyUntil);
315    Tick temp2 M5_VAR_USED = std::max(curTick(), maxBankFreeAt());
316
317    // @todo: are there any dangers with the untimed while loop?
318    while (!writeQueue.empty()) {
319        if (numWritesThisTime > writeThreshold) {
320            DPRINTF(DRAMWR, "Hit write threshold %d\n", writeThreshold);
321            break;
322        }
323
324        chooseNextWrite();
325        DRAMPacket* dram_pkt = writeQueue.front();
326        // What's the earliest the request can be put on the bus
327        Tick schedTime = std::max(curTick(), busBusyUntil);
328
329        DPRINTF(DRAMWR, "Asking for latency estimate at %lld\n",
330                schedTime + tBURST);
331
332        pair<Tick, Tick> lat = estimateLatency(dram_pkt, schedTime + tBURST);
333        Tick accessLat = lat.second;
334
335        // look at the rowHitFlag set by estimateLatency
336        if (rowHitFlag)
337            writeRowHits++;
338
339        Bank& bank = dram_pkt->bank_ref;
340
341        if (pageMgmt == Enums::open) {
342            bank.openRow = dram_pkt->row;
343            bank.freeAt = schedTime + tBURST + std::max(accessLat, tCL);
344            busBusyUntil = bank.freeAt - tCL;
345
346            if (!rowHitFlag) {
347                bank.tRASDoneAt = bank.freeAt + tRP;
348                recordActivate(bank.freeAt - tCL - tRCD);
349                busBusyUntil = bank.freeAt - tCL - tRCD;
350            }
351        } else if (pageMgmt == Enums::close) {
352            bank.freeAt = schedTime + tBURST + accessLat + tRP + tRP;
353            // Work backwards from bank.freeAt to determine activate time
354            recordActivate(bank.freeAt - tRP - tRP - tCL - tRCD);
355            busBusyUntil = bank.freeAt - tRP - tRP - tCL - tRCD;
356            DPRINTF(DRAMWR, "processWriteEvent::bank.freeAt for "
357                    "banks_id %d is %lld\n",
358                    dram_pkt->rank * banksPerRank + dram_pkt->bank,
359                    bank.freeAt);
360        } else
361            panic("Unknown page management policy chosen\n");
362
363        DPRINTF(DRAMWR, "Done writing to address %lld\n", dram_pkt->addr);
364
365        DPRINTF(DRAMWR, "schedtime is %lld, tBURST is %lld, "
366                "busbusyuntil is %lld\n",
367                schedTime, tBURST, busBusyUntil);
368
369        writeQueue.pop_front();
370        delete dram_pkt;
371
372        numWritesThisTime++;
373    }
374
375    DPRINTF(DRAMWR, "Completed %d writes, bus busy for %lld ticks,"\
376            "banks busy for %lld ticks\n", numWritesThisTime,
377            busBusyUntil - temp1, maxBankFreeAt() - temp2);
378
379    // Update stats
380    avgWrQLen = writeQueue.size();
381
382    // turn the bus back around for reads again
383    busBusyUntil += tWTR;
384    stopReads = false;
385
386    if (retryWrReq) {
387        retryWrReq = false;
388        port.sendRetry();
389    }
390
391    // if there is nothing left in any queue, signal a drain
392    if (writeQueue.empty() && readQueue.empty() &&
393        respQueue.empty () && drainManager) {
394        drainManager->signalDrainDone();
395        drainManager = NULL;
396    }
397
398    // Once you're done emptying the write queue, check if there's
399    // anything in the read queue, and call schedule if required
400    schedule(nextReqEvent, busBusyUntil);
401}
402
403void
404SimpleDRAM::triggerWrites()
405{
406    DPRINTF(DRAM, "Writes triggered at %lld\n", curTick());
407    // Flag variable to stop any more read scheduling
408    stopReads = true;
409
410    writeStartTime = std::max(busBusyUntil, curTick()) + tWTR;
411
412    DPRINTF(DRAM, "Writes scheduled at %lld\n", writeStartTime);
413
414    assert(writeStartTime >= curTick());
415    assert(!writeEvent.scheduled());
416    schedule(writeEvent, writeStartTime);
417}
418
419void
420SimpleDRAM::addToWriteQueue(PacketPtr pkt)
421{
422    // only add to the write queue here. whenever the request is
423    // eventually done, set the readyTime, and call schedule()
424    assert(pkt->isWrite());
425
426    DRAMPacket* dram_pkt = decodeAddr(pkt);
427
428    assert(writeQueue.size() < writeBufferSize);
429    wrQLenPdf[writeQueue.size()]++;
430
431    DPRINTF(DRAM, "Adding to write queue\n");
432
433    writeQueue.push_back(dram_pkt);
434
435    // Update stats
436    uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
437    assert(bank_id < ranksPerChannel * banksPerRank);
438    perBankWrReqs[bank_id]++;
439
440    avgWrQLen = writeQueue.size();
441
442    // we do not wait for the writes to be send to the actual memory,
443    // but instead take responsibility for the consistency here and
444    // snoop the write queue for any upcoming reads
445
446    bytesConsumedWr += pkt->getSize();
447    bytesWritten += bytesPerCacheLine;
448    accessAndRespond(pkt);
449
450    // If your write buffer is starting to fill up, drain it!
451    if (writeQueue.size() > writeThreshold && !stopReads){
452        triggerWrites();
453    }
454}
455
456void
457SimpleDRAM::printParams() const
458{
459    // Sanity check print of important parameters
460    DPRINTF(DRAM,
461            "Memory controller %s physical organization\n"      \
462            "Bytes per cacheline  %d\n"                         \
463            "Lines per row buffer %d\n"                         \
464            "Rows  per bank       %d\n"                         \
465            "Banks per rank       %d\n"                         \
466            "Ranks per channel    %d\n"                         \
467            "Total mem capacity   %u\n",
468            name(), bytesPerCacheLine, linesPerRowBuffer, rowsPerBank,
469            banksPerRank, ranksPerChannel, bytesPerCacheLine *
470            linesPerRowBuffer * rowsPerBank * banksPerRank * ranksPerChannel);
471
472    string scheduler =  memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
473    string address_mapping = addrMapping == Enums::openmap ? "OPENMAP" :
474        "CLOSEMAP";
475    string page_policy = pageMgmt == Enums::open ? "OPEN" : "CLOSE";
476
477    DPRINTF(DRAM,
478            "Memory controller %s characteristics\n"    \
479            "Read buffer size     %d\n"                 \
480            "Write buffer size    %d\n"                 \
481            "Write buffer thresh  %d\n"                 \
482            "Scheduler            %s\n"                 \
483            "Address mapping      %s\n"                 \
484            "Page policy          %s\n",
485            name(), readBufferSize, writeBufferSize, writeThreshold,
486            scheduler, address_mapping, page_policy);
487
488    DPRINTF(DRAM, "Memory controller %s timing specs\n" \
489            "tRCD      %d ticks\n"                        \
490            "tCL       %d ticks\n"                        \
491            "tRP       %d ticks\n"                        \
492            "tBURST    %d ticks\n"                        \
493            "tRFC      %d ticks\n"                        \
494            "tREFI     %d ticks\n"                        \
495            "tWTR      %d ticks\n"                        \
496            "tXAW (%d) %d ticks\n",
497            name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR,
498            activationLimit, tXAW);
499}
500
501void
502SimpleDRAM::printQs() const {
503
504    list<DRAMPacket*>::const_iterator i;
505
506    DPRINTF(DRAM, "===READ QUEUE===\n\n");
507    for (i = readQueue.begin() ;  i != readQueue.end() ; ++i) {
508        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
509    }
510    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
511    for (i = respQueue.begin() ;  i != respQueue.end() ; ++i) {
512        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
513    }
514    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
515    for (i = writeQueue.begin() ;  i != writeQueue.end() ; ++i) {
516        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
517    }
518}
519
520bool
521SimpleDRAM::recvTimingReq(PacketPtr pkt)
522{
523    /// @todo temporary hack to deal with memory corruption issues until
524    /// 4-phase transactions are complete
525    for (int x = 0; x < pendingDelete.size(); x++)
526        delete pendingDelete[x];
527    pendingDelete.clear();
528
529    // This is where we enter from the outside world
530    DPRINTF(DRAM, "recvTimingReq: request %s addr %lld size %d\n",
531            pkt->cmdString(),pkt->getAddr(), pkt->getSize());
532
533    // simply drop inhibited packets for now
534    if (pkt->memInhibitAsserted()) {
535        DPRINTF(DRAM,"Inhibited packet -- Dropping it now\n");
536        pendingDelete.push_back(pkt);
537        return true;
538    }
539
540   if (pkt->getSize() == bytesPerCacheLine)
541       cpuReqs++;
542
543   // Every million accesses, print the state of the queues
544   if (numReqs % 1000000 == 0)
545       printQs();
546
547    // Calc avg gap between requests
548    if (prevArrival != 0) {
549        totGap += curTick() - prevArrival;
550    }
551    prevArrival = curTick();
552
553    unsigned size = pkt->getSize();
554    if (size > bytesPerCacheLine)
555        panic("Request size %d is greater than burst size %d",
556              size, bytesPerCacheLine);
557
558    // check local buffers and do not accept if full
559    if (pkt->isRead()) {
560        assert(size != 0);
561        if (readQueueFull()) {
562            DPRINTF(DRAM, "Read queue full, not accepting\n");
563            // remember that we have to retry this port
564            retryRdReq = true;
565            numRdRetry++;
566            return false;
567        } else {
568            readPktSize[ceilLog2(size)]++;
569            addToReadQueue(pkt);
570            readReqs++;
571            numReqs++;
572        }
573    } else if (pkt->isWrite()) {
574        assert(size != 0);
575        if (writeQueueFull()) {
576            DPRINTF(DRAM, "Write queue full, not accepting\n");
577            // remember that we have to retry this port
578            retryWrReq = true;
579            numWrRetry++;
580            return false;
581        } else {
582            writePktSize[ceilLog2(size)]++;
583            addToWriteQueue(pkt);
584            writeReqs++;
585            numReqs++;
586        }
587    } else {
588        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
589        neitherReadNorWrite++;
590        accessAndRespond(pkt);
591    }
592
593    retryRdReq = false;
594    retryWrReq = false;
595    return true;
596}
597
598void
599SimpleDRAM::processRespondEvent()
600{
601    DPRINTF(DRAM,
602            "processRespondEvent(): Some req has reached its readyTime\n");
603
604     PacketPtr pkt = respQueue.front()->pkt;
605
606     // Actually responds to the requestor
607     bytesConsumedRd += pkt->getSize();
608     bytesRead += bytesPerCacheLine;
609     accessAndRespond(pkt);
610
611     delete respQueue.front();
612     respQueue.pop_front();
613
614     // Update stats
615     avgRdQLen = readQueue.size() + respQueue.size();
616
617     if (!respQueue.empty()) {
618         assert(respQueue.front()->readyTime >= curTick());
619         assert(!respondEvent.scheduled());
620         schedule(respondEvent, respQueue.front()->readyTime);
621     } else {
622         // if there is nothing left in any queue, signal a drain
623         if (writeQueue.empty() && readQueue.empty() &&
624             drainManager) {
625             drainManager->signalDrainDone();
626             drainManager = NULL;
627         }
628     }
629
630     // We have made a location in the queue available at this point,
631     // so if there is a read that was forced to wait, retry now
632     if (retryRdReq) {
633         retryRdReq = false;
634         port.sendRetry();
635     }
636}
637
638void
639SimpleDRAM::chooseNextWrite()
640{
641    // This method does the arbitration between write requests. The
642    // chosen packet is simply moved to the head of the write
643    // queue. The other methods know that this is the place to
644    // look. For example, with FCFS, this method does nothing
645    assert(!writeQueue.empty());
646
647    if (writeQueue.size() == 1) {
648        DPRINTF(DRAMWR, "Single write request, nothing to do\n");
649        return;
650    }
651
652    if (memSchedPolicy == Enums::fcfs) {
653        // Do nothing, since the correct request is already head
654    } else if (memSchedPolicy == Enums::frfcfs) {
655        list<DRAMPacket*>::iterator i = writeQueue.begin();
656        bool foundRowHit = false;
657        while (!foundRowHit && i != writeQueue.end()) {
658            DRAMPacket* dram_pkt = *i;
659            const Bank& bank = dram_pkt->bank_ref;
660            if (bank.openRow == dram_pkt->row) { //FR part
661                DPRINTF(DRAMWR, "Write row buffer hit\n");
662                writeQueue.erase(i);
663                writeQueue.push_front(dram_pkt);
664                foundRowHit = true;
665            } else { //FCFS part
666                ;
667            }
668            ++i;
669        }
670    } else
671        panic("No scheduling policy chosen\n");
672
673    DPRINTF(DRAMWR, "Selected next write request\n");
674}
675
676bool
677SimpleDRAM::chooseNextRead()
678{
679    // This method does the arbitration between read requests. The
680    // chosen packet is simply moved to the head of the queue. The
681    // other methods know that this is the place to look. For example,
682    // with FCFS, this method does nothing
683    if (readQueue.empty()) {
684        DPRINTF(DRAM, "No read request to select\n");
685        return false;
686    }
687
688    // If there is only one request then there is nothing left to do
689    if (readQueue.size() == 1)
690        return true;
691
692    if (memSchedPolicy == Enums::fcfs) {
693        // Do nothing, since the request to serve is already the first
694        // one in the read queue
695    } else if (memSchedPolicy == Enums::frfcfs) {
696        for (list<DRAMPacket*>::iterator i = readQueue.begin();
697             i != readQueue.end() ; ++i) {
698            DRAMPacket* dram_pkt = *i;
699            const Bank& bank = dram_pkt->bank_ref;
700            // Check if it is a row hit
701            if (bank.openRow == dram_pkt->row) { //FR part
702                DPRINTF(DRAM, "Row buffer hit\n");
703                readQueue.erase(i);
704                readQueue.push_front(dram_pkt);
705                break;
706            } else { //FCFS part
707                ;
708            }
709        }
710    } else
711        panic("No scheduling policy chosen!\n");
712
713    DPRINTF(DRAM, "Selected next read request\n");
714    return true;
715}
716
717void
718SimpleDRAM::accessAndRespond(PacketPtr pkt)
719{
720    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
721
722    bool needsResponse = pkt->needsResponse();
723    // do the actual memory access which also turns the packet into a
724    // response
725    access(pkt);
726
727    // turn packet around to go back to requester if response expected
728    if (needsResponse) {
729        // access already turned the packet into a response
730        assert(pkt->isResponse());
731
732        // @todo someone should pay for this
733        pkt->busFirstWordDelay = pkt->busLastWordDelay = 0;
734
735        // queue the packet in the response queue to be sent out the
736        // next tick
737        port.schedTimingResp(pkt, curTick() + 1);
738    } else {
739    }
740
741    DPRINTF(DRAM, "Done\n");
742
743    return;
744}
745
746pair<Tick, Tick>
747SimpleDRAM::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
748{
749    // If a request reaches a bank at tick 'inTime', how much time
750    // *after* that does it take to finish the request, depending
751    // on bank status and page open policy. Note that this method
752    // considers only the time taken for the actual read or write
753    // to complete, NOT any additional time thereafter for tRAS or
754    // tRP.
755    Tick accLat = 0;
756    Tick bankLat = 0;
757    rowHitFlag = false;
758
759    const Bank& bank = dram_pkt->bank_ref;
760    if (pageMgmt == Enums::open) { // open-page policy
761        if (bank.openRow == dram_pkt->row) {
762            // When we have a row-buffer hit,
763            // we don't care about tRAS having expired or not,
764            // but do care about bank being free for access
765            rowHitFlag = true;
766
767            if (bank.freeAt < inTime) {
768               // CAS latency only
769               accLat += tCL;
770               bankLat += tCL;
771            } else {
772                accLat += 0;
773                bankLat += 0;
774            }
775
776        } else {
777            // Row-buffer miss, need to close existing row
778            // once tRAS has expired, then open the new one,
779            // then add cas latency.
780            Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt);
781
782            if (freeTime > inTime)
783               accLat += freeTime - inTime;
784
785            accLat += tRP + tRCD + tCL;
786            bankLat += tRP + tRCD + tCL;
787        }
788    } else if (pageMgmt == Enums::close) {
789        // With a close page policy, no notion of
790        // bank.tRASDoneAt
791        if (bank.freeAt > inTime)
792            accLat += bank.freeAt - inTime;
793
794        // page already closed, simply open the row, and
795        // add cas latency
796        accLat += tRCD + tCL;
797        bankLat += tRCD + tCL;
798    } else
799        panic("No page management policy chosen\n");
800
801    DPRINTF(DRAM, "Returning < %lld, %lld > from estimateLatency()\n",
802            bankLat, accLat);
803
804    return make_pair(bankLat, accLat);
805}
806
807void
808SimpleDRAM::processNextReqEvent()
809{
810    scheduleNextReq();
811}
812
813void
814SimpleDRAM::recordActivate(Tick act_tick)
815{
816    assert(actTicks.size() == activationLimit);
817
818    DPRINTF(DRAM, "Activate at tick %d\n", act_tick);
819
820    // sanity check
821    if (actTicks.back() && (act_tick - actTicks.back()) < tXAW) {
822        panic("Got %d activates in window %d (%d - %d) which is smaller "
823              "than %d\n", activationLimit, act_tick - actTicks.back(),
824              act_tick, actTicks.back(), tXAW);
825    }
826
827    // shift the times used for the book keeping, the last element
828    // (highest index) is the oldest one and hence the lowest value
829    actTicks.pop_back();
830
831    // record an new activation (in the future)
832    actTicks.push_front(act_tick);
833
834    // cannot activate more than X times in time window tXAW, push the
835    // next one (the X + 1'st activate) to be tXAW away from the
836    // oldest in our window of X
837    if (actTicks.back() && (act_tick - actTicks.back()) < tXAW) {
838        DPRINTF(DRAM, "Enforcing tXAW with X = %d, next activate no earlier "
839                "than %d\n", activationLimit, actTicks.back() + tXAW);
840        for(int i = 0; i < ranksPerChannel; i++)
841            for(int j = 0; j < banksPerRank; j++)
842                // next activate must not happen before end of window
843                banks[i][j].freeAt = std::max(banks[i][j].freeAt,
844                                              actTicks.back() + tXAW);
845    }
846}
847
848void
849SimpleDRAM::doDRAMAccess(DRAMPacket* dram_pkt)
850{
851
852    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
853            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
854
855    // estimate the bank and access latency
856    pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());
857    Tick bankLat = lat.first;
858    Tick accessLat = lat.second;
859
860    // This request was woken up at this time based on a prior call
861    // to estimateLatency(). However, between then and now, both the
862    // accessLatency and/or busBusyUntil may have changed. We need
863    // to correct for that.
864
865    Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
866        busBusyUntil - (curTick() + accessLat) : 0;
867
868    Bank& bank = dram_pkt->bank_ref;
869
870    // Update bank state
871    if (pageMgmt == Enums::open) {
872        bank.openRow = dram_pkt->row;
873        bank.freeAt = curTick() + addDelay + accessLat;
874        // If you activated a new row do to this access, the next access
875        // will have to respect tRAS for this bank. Assume tRAS ~= 3 * tRP.
876        // Also need to account for t_XAW
877        if (!rowHitFlag) {
878            bank.tRASDoneAt = bank.freeAt + tRP;
879            recordActivate(bank.freeAt - tCL - tRCD); //since this is open page,
880                                                      //no tRP by default
881        }
882    } else if (pageMgmt == Enums::close) { // accounting for tRAS also
883        // assuming that tRAS ~= 3 * tRP, and tRC ~= 4 * tRP, as is common
884        // (refer Jacob/Ng/Wang and Micron datasheets)
885        bank.freeAt = curTick() + addDelay + accessLat + tRP + tRP;
886        recordActivate(bank.freeAt - tRP - tRP - tCL - tRCD); //essentially (freeAt - tRC)
887        DPRINTF(DRAM,"doDRAMAccess::bank.freeAt is %lld\n",bank.freeAt);
888    } else
889        panic("No page management policy chosen\n");
890
891    // Update request parameters
892    dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
893
894
895    DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \
896                  "readytime is %lld busbusyuntil is %lld. " \
897                  "Scheduling at readyTime\n", dram_pkt->addr,
898                   curTick(), accessLat, dram_pkt->readyTime, busBusyUntil);
899
900    // Make sure requests are not overlapping on the databus
901    assert (dram_pkt->readyTime - busBusyUntil >= tBURST);
902
903    // Update bus state
904    busBusyUntil = dram_pkt->readyTime;
905
906    DPRINTF(DRAM,"Access time is %lld\n",
907            dram_pkt->readyTime - dram_pkt->entryTime);
908
909    // Update stats
910    totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
911    totBankLat += bankLat;
912    totBusLat += tBURST;
913    totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - tBURST;
914
915    if (rowHitFlag)
916        readRowHits++;
917
918    // At this point we're done dealing with the request
919    // It will be moved to a separate response queue with a
920    // correct readyTime, and eventually be sent back at that
921    //time
922    moveToRespQ();
923
924    // The absolute soonest you have to start thinking about the
925    // next request is the longest access time that can occur before
926    // busBusyUntil. Assuming you need to meet tRAS, then precharge,
927    // open a new row, and access, it is ~4*tRCD.
928
929
930    Tick newTime = (busBusyUntil > 4 * tRCD) ?
931                   std::max(busBusyUntil - 4 * tRCD, curTick()) :
932                   curTick();
933
934    if (!nextReqEvent.scheduled() && !stopReads){
935        schedule(nextReqEvent, newTime);
936    } else {
937        if (newTime < nextReqEvent.when())
938            reschedule(nextReqEvent, newTime);
939    }
940
941
942}
943
944void
945SimpleDRAM::moveToRespQ()
946{
947    // Remove from read queue
948    DRAMPacket* dram_pkt = readQueue.front();
949    readQueue.pop_front();
950
951    // Insert into response queue sorted by readyTime
952    // It will be sent back to the requestor at its
953    // readyTime
954    if (respQueue.empty()) {
955        respQueue.push_front(dram_pkt);
956        assert(!respondEvent.scheduled());
957        assert(dram_pkt->readyTime >= curTick());
958        schedule(respondEvent, dram_pkt->readyTime);
959    } else {
960        bool done = false;
961        list<DRAMPacket*>::iterator i = respQueue.begin();
962        while (!done && i != respQueue.end()) {
963            if ((*i)->readyTime > dram_pkt->readyTime) {
964                respQueue.insert(i, dram_pkt);
965                done = true;
966            }
967            ++i;
968        }
969
970        if (!done)
971            respQueue.push_back(dram_pkt);
972
973        assert(respondEvent.scheduled());
974
975        if (respQueue.front()->readyTime < respondEvent.when()) {
976            assert(respQueue.front()->readyTime >= curTick());
977            reschedule(respondEvent, respQueue.front()->readyTime);
978        }
979    }
980}
981
982void
983SimpleDRAM::scheduleNextReq()
984{
985    DPRINTF(DRAM, "Reached scheduleNextReq()\n");
986
987    // Figure out which read request goes next, and move it to the
988    // front of the read queue
989    if (!chooseNextRead()) {
990        // In the case there is no read request to go next, see if we
991        // are asked to drain, and if so trigger writes, this also
992        // ensures that if we hit the write limit we will do this
993        // multiple times until we are completely drained
994        if (drainManager && !writeQueue.empty() && !writeEvent.scheduled())
995            triggerWrites();
996    } else {
997        doDRAMAccess(readQueue.front());
998    }
999}
1000
1001Tick
1002SimpleDRAM::maxBankFreeAt() const
1003{
1004    Tick banksFree = 0;
1005
1006    for(int i = 0; i < ranksPerChannel; i++)
1007        for(int j = 0; j < banksPerRank; j++)
1008            banksFree = std::max(banks[i][j].freeAt, banksFree);
1009
1010    return banksFree;
1011}
1012
1013void
1014SimpleDRAM::processRefreshEvent()
1015{
1016    DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick());
1017
1018    Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC;
1019
1020    for(int i = 0; i < ranksPerChannel; i++)
1021        for(int j = 0; j < banksPerRank; j++)
1022            banks[i][j].freeAt = banksFree;
1023
1024    schedule(refreshEvent, curTick() + tREFI);
1025}
1026
1027void
1028SimpleDRAM::regStats()
1029{
1030    using namespace Stats;
1031
1032    AbstractMemory::regStats();
1033
1034    readReqs
1035        .name(name() + ".readReqs")
1036        .desc("Total number of read requests seen");
1037
1038    writeReqs
1039        .name(name() + ".writeReqs")
1040        .desc("Total number of write requests seen");
1041
1042    servicedByWrQ
1043        .name(name() + ".servicedByWrQ")
1044        .desc("Number of read reqs serviced by write Q");
1045
1046    cpuReqs
1047        .name(name() + ".cpureqs")
1048        .desc("Reqs generatd by CPU via cache - shady");
1049
1050    neitherReadNorWrite
1051        .name(name() + ".neitherReadNorWrite")
1052        .desc("Reqs where no action is needed");
1053
1054    perBankRdReqs
1055        .init(banksPerRank * ranksPerChannel)
1056        .name(name() + ".perBankRdReqs")
1057        .desc("Track reads on a per bank basis");
1058
1059    perBankWrReqs
1060        .init(banksPerRank * ranksPerChannel)
1061        .name(name() + ".perBankWrReqs")
1062        .desc("Track writes on a per bank basis");
1063
1064    avgRdQLen
1065        .name(name() + ".avgRdQLen")
1066        .desc("Average read queue length over time")
1067        .precision(2);
1068
1069    avgWrQLen
1070        .name(name() + ".avgWrQLen")
1071        .desc("Average write queue length over time")
1072        .precision(2);
1073
1074    totQLat
1075        .name(name() + ".totQLat")
1076        .desc("Total cycles spent in queuing delays");
1077
1078    totBankLat
1079        .name(name() + ".totBankLat")
1080        .desc("Total cycles spent in bank access");
1081
1082    totBusLat
1083        .name(name() + ".totBusLat")
1084        .desc("Total cycles spent in databus access");
1085
1086    totMemAccLat
1087        .name(name() + ".totMemAccLat")
1088        .desc("Sum of mem lat for all requests");
1089
1090    avgQLat
1091        .name(name() + ".avgQLat")
1092        .desc("Average queueing delay per request")
1093        .precision(2);
1094
1095    avgQLat = totQLat / (readReqs - servicedByWrQ);
1096
1097    avgBankLat
1098        .name(name() + ".avgBankLat")
1099        .desc("Average bank access latency per request")
1100        .precision(2);
1101
1102    avgBankLat = totBankLat / (readReqs - servicedByWrQ);
1103
1104    avgBusLat
1105        .name(name() + ".avgBusLat")
1106        .desc("Average bus latency per request")
1107        .precision(2);
1108
1109    avgBusLat = totBusLat / (readReqs - servicedByWrQ);
1110
1111    avgMemAccLat
1112        .name(name() + ".avgMemAccLat")
1113        .desc("Average memory access latency")
1114        .precision(2);
1115
1116    avgMemAccLat = totMemAccLat / (readReqs - servicedByWrQ);
1117
1118    numRdRetry
1119        .name(name() + ".numRdRetry")
1120        .desc("Number of times rd buffer was full causing retry");
1121
1122    numWrRetry
1123        .name(name() + ".numWrRetry")
1124        .desc("Number of times wr buffer was full causing retry");
1125
1126    readRowHits
1127        .name(name() + ".readRowHits")
1128        .desc("Number of row buffer hits during reads");
1129
1130    writeRowHits
1131        .name(name() + ".writeRowHits")
1132        .desc("Number of row buffer hits during writes");
1133
1134    readRowHitRate
1135        .name(name() + ".readRowHitRate")
1136        .desc("Row buffer hit rate for reads")
1137        .precision(2);
1138
1139    readRowHitRate = (readRowHits / (readReqs - servicedByWrQ)) * 100;
1140
1141    writeRowHitRate
1142        .name(name() + ".writeRowHitRate")
1143        .desc("Row buffer hit rate for writes")
1144        .precision(2);
1145
1146    writeRowHitRate = (writeRowHits / writeReqs) * 100;
1147
1148    readPktSize
1149        .init(ceilLog2(bytesPerCacheLine) + 1)
1150        .name(name() + ".readPktSize")
1151        .desc("Categorize read packet sizes");
1152
1153     writePktSize
1154        .init(ceilLog2(bytesPerCacheLine) + 1)
1155        .name(name() + ".writePktSize")
1156        .desc("Categorize write packet sizes");
1157
1158     rdQLenPdf
1159        .init(readBufferSize)
1160        .name(name() + ".rdQLenPdf")
1161        .desc("What read queue length does an incoming req see");
1162
1163     wrQLenPdf
1164        .init(writeBufferSize)
1165        .name(name() + ".wrQLenPdf")
1166        .desc("What write queue length does an incoming req see");
1167
1168
1169    bytesRead
1170        .name(name() + ".bytesRead")
1171        .desc("Total number of bytes read from memory");
1172
1173    bytesWritten
1174        .name(name() + ".bytesWritten")
1175        .desc("Total number of bytes written to memory");
1176
1177    bytesConsumedRd
1178        .name(name() + ".bytesConsumedRd")
1179        .desc("bytesRead derated as per pkt->getSize()");
1180
1181    bytesConsumedWr
1182        .name(name() + ".bytesConsumedWr")
1183        .desc("bytesWritten derated as per pkt->getSize()");
1184
1185    avgRdBW
1186        .name(name() + ".avgRdBW")
1187        .desc("Average achieved read bandwidth in MB/s")
1188        .precision(2);
1189
1190    avgRdBW = (bytesRead / 1000000) / simSeconds;
1191
1192    avgWrBW
1193        .name(name() + ".avgWrBW")
1194        .desc("Average achieved write bandwidth in MB/s")
1195        .precision(2);
1196
1197    avgWrBW = (bytesWritten / 1000000) / simSeconds;
1198
1199    avgConsumedRdBW
1200        .name(name() + ".avgConsumedRdBW")
1201        .desc("Average consumed read bandwidth in MB/s")
1202        .precision(2);
1203
1204    avgConsumedRdBW = (bytesConsumedRd / 1000000) / simSeconds;
1205
1206    avgConsumedWrBW
1207        .name(name() + ".avgConsumedWrBW")
1208        .desc("Average consumed write bandwidth in MB/s")
1209        .precision(2);
1210
1211    avgConsumedWrBW = (bytesConsumedWr / 1000000) / simSeconds;
1212
1213    peakBW
1214        .name(name() + ".peakBW")
1215        .desc("Theoretical peak bandwidth in MB/s")
1216        .precision(2);
1217
1218    peakBW = (SimClock::Frequency / tBURST) * bytesPerCacheLine / 1000000;
1219
1220    busUtil
1221        .name(name() + ".busUtil")
1222        .desc("Data bus utilization in percentage")
1223        .precision(2);
1224
1225    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1226
1227    totGap
1228        .name(name() + ".totGap")
1229        .desc("Total gap between requests");
1230
1231    avgGap
1232        .name(name() + ".avgGap")
1233        .desc("Average gap between requests")
1234        .precision(2);
1235
1236    avgGap = totGap / (readReqs + writeReqs);
1237}
1238
1239void
1240SimpleDRAM::recvFunctional(PacketPtr pkt)
1241{
1242    // rely on the abstract memory
1243    functionalAccess(pkt);
1244}
1245
1246BaseSlavePort&
1247SimpleDRAM::getSlavePort(const string &if_name, PortID idx)
1248{
1249    if (if_name != "port") {
1250        return MemObject::getSlavePort(if_name, idx);
1251    } else {
1252        return port;
1253    }
1254}
1255
1256unsigned int
1257SimpleDRAM::drain(DrainManager *dm)
1258{
1259    unsigned int count = port.drain(dm);
1260
1261    // if there is anything in any of our internal queues, keep track
1262    // of that as well
1263    if (!(writeQueue.empty() && readQueue.empty() &&
1264          respQueue.empty())) {
1265        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
1266                " resp: %d\n", writeQueue.size(), readQueue.size(),
1267                respQueue.size());
1268        ++count;
1269        drainManager = dm;
1270        // the only part that is not drained automatically over time
1271        // is the write queue, thus trigger writes if there are any
1272        // waiting and no reads waiting, otherwise wait until the
1273        // reads are done
1274        if (readQueue.empty() && !writeQueue.empty() &&
1275            !writeEvent.scheduled())
1276            triggerWrites();
1277    }
1278
1279    if (count)
1280        setDrainState(Drainable::Draining);
1281    else
1282        setDrainState(Drainable::Drained);
1283    return count;
1284}
1285
1286SimpleDRAM::MemoryPort::MemoryPort(const std::string& name, SimpleDRAM& _memory)
1287    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1288      memory(_memory)
1289{ }
1290
1291AddrRangeList
1292SimpleDRAM::MemoryPort::getAddrRanges() const
1293{
1294    AddrRangeList ranges;
1295    ranges.push_back(memory.getAddrRange());
1296    return ranges;
1297}
1298
1299void
1300SimpleDRAM::MemoryPort::recvFunctional(PacketPtr pkt)
1301{
1302    pkt->pushLabel(memory.name());
1303
1304    if (!queue.checkFunctional(pkt)) {
1305        // Default implementation of SimpleTimingPort::recvFunctional()
1306        // calls recvAtomic() and throws away the latency; we can save a
1307        // little here by just not calculating the latency.
1308        memory.recvFunctional(pkt);
1309    }
1310
1311    pkt->popLabel();
1312}
1313
1314Tick
1315SimpleDRAM::MemoryPort::recvAtomic(PacketPtr pkt)
1316{
1317    return memory.recvAtomic(pkt);
1318}
1319
1320bool
1321SimpleDRAM::MemoryPort::recvTimingReq(PacketPtr pkt)
1322{
1323    // pass it to the memory controller
1324    return memory.recvTimingReq(pkt);
1325}
1326
1327SimpleDRAM*
1328SimpleDRAMParams::create()
1329{
1330    return new SimpleDRAM(this);
1331}
1332