dram_ctrl.cc revision 9487
1/*
2 * Copyright (c) 2010-2012 ARM Limited
3 * All rights reserved
4 *
5 * The license below extends only to copyright in the software and shall
6 * not be construed as granting a license to any other intellectual
7 * property including but not limited to intellectual property relating
8 * to a hardware implementation of the functionality of the software
9 * licensed hereunder.  You may use the software subject to the license
10 * terms below provided that you ensure that this notice is replicated
11 * unmodified and in its entirety in all distributions of the software,
12 * modified or unmodified, in source code or in binary form.
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions are
16 * met: redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer;
18 * redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution;
21 * neither the name of the copyright holders nor the names of its
22 * contributors may be used to endorse or promote products derived from
23 * this software without specific prior written permission.
24 *
25 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
26 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
27 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
28 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
29 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
30 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
31 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
32 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
33 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
34 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
35 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36 *
37 * Authors: Andreas Hansson
38 *          Ani Udipi
39 */
40
41#include "base/trace.hh"
42#include "debug/Drain.hh"
43#include "debug/DRAM.hh"
44#include "debug/DRAMWR.hh"
45#include "mem/simple_dram.hh"
46#include "sim/stat_control.hh"
47
48using namespace std;
49
50SimpleDRAM::SimpleDRAM(const SimpleDRAMParams* p) :
51    AbstractMemory(p),
52    port(name() + ".port", *this),
53    retryRdReq(false), retryWrReq(false),
54    rowHitFlag(false), stopReads(false),
55    writeEvent(this), respondEvent(this),
56    refreshEvent(this), nextReqEvent(this), drainManager(NULL),
57    bytesPerCacheLine(0),
58    linesPerRowBuffer(p->lines_per_rowbuffer),
59    ranksPerChannel(p->ranks_per_channel),
60    banksPerRank(p->banks_per_rank), rowsPerBank(0),
61    readBufferSize(p->read_buffer_size),
62    writeBufferSize(p->write_buffer_size),
63    writeThresholdPerc(p->write_thresh_perc),
64    tWTR(p->tWTR), tBURST(p->tBURST),
65    tRCD(p->tRCD), tCL(p->tCL), tRP(p->tRP),
66    tRFC(p->tRFC), tREFI(p->tREFI),
67    memSchedPolicy(p->mem_sched_policy), addrMapping(p->addr_mapping),
68    pageMgmt(p->page_policy),
69    busBusyUntil(0), prevdramaccess(0), writeStartTime(0),
70    prevArrival(0), numReqs(0)
71{
72    // create the bank states based on the dimensions of the ranks and
73    // banks
74    banks.resize(ranksPerChannel);
75    for (size_t c = 0; c < ranksPerChannel; ++c) {
76        banks[c].resize(banksPerRank);
77    }
78
79    // round the write threshold percent to a whole number of entries
80    // in the buffer
81    writeThreshold = writeBufferSize * writeThresholdPerc / 100.0;
82}
83
84void
85SimpleDRAM::init()
86{
87    if (!port.isConnected()) {
88        fatal("SimpleDRAM %s is unconnected!\n", name());
89    } else {
90        port.sendRangeChange();
91    }
92
93    // get the cache line size from the connected port
94    bytesPerCacheLine = port.peerBlockSize();
95
96    // we could deal with plenty options here, but for now do a quick
97    // sanity check
98    if (bytesPerCacheLine != 64 && bytesPerCacheLine != 32)
99        panic("Unexpected cache line size %d", bytesPerCacheLine);
100
101    // determine the rows per bank by looking at the total capacity
102    uint64_t capacity = AbstractMemory::size();
103    uint64_t i = 1;
104    while (i < 64 && capacity > ((1 << i))) {
105        ++i;
106    }
107
108    // rounded up to nearest power of two
109    DPRINTF(DRAM, "i is %lld\n", i);
110    capacity = 1 << i;
111
112    DPRINTF(DRAM, "Memory capacity %lld (%lld) bytes\n", capacity,
113            AbstractMemory::size());
114    rowsPerBank = capacity / (bytesPerCacheLine * linesPerRowBuffer *
115                              banksPerRank * ranksPerChannel);
116
117}
118
119void
120SimpleDRAM::startup()
121{
122    // print the configuration of the controller
123    printParams();
124
125    // kick off the refresh
126    schedule(&refreshEvent, curTick() + tREFI);
127}
128
129
130Tick
131SimpleDRAM::recvAtomic(PacketPtr pkt)
132{
133    DPRINTF(DRAM, "recvAtomic: %s 0x%x\n", pkt->cmdString(), pkt->getAddr());
134
135    // do the actual memory access and turn the packet into a response
136    access(pkt);
137
138    Tick latency = 0;
139    if (!pkt->memInhibitAsserted() && pkt->hasData()) {
140        // this value is not supposed to be accurate, just enough to
141        // keep things going, mimic a closed page
142        latency = tRP + tRCD + tCL;
143    }
144    return latency;
145}
146
147bool
148SimpleDRAM::readQueueFull() const
149{
150    DPRINTF(DRAM, "Read queue limit %d current size %d\n",
151            readBufferSize, dramReadQueue.size() + dramRespQueue.size());
152
153    return (dramReadQueue.size() + dramRespQueue.size()) == readBufferSize;
154}
155
156bool
157SimpleDRAM::writeQueueFull() const
158{
159    DPRINTF(DRAM, "Write queue limit %d current size %d\n",
160            writeBufferSize, dramWriteQueue.size());
161    return dramWriteQueue.size() == writeBufferSize;
162}
163
164
165SimpleDRAM::DRAMPacket*
166SimpleDRAM::decodeAddr(PacketPtr pkt)
167{
168    uint8_t rank;
169    uint16_t bank;
170    uint16_t row;
171
172    Addr addr = pkt->getAddr();
173    Addr temp = addr;
174
175    // truncate the address to the access granularity
176    addr = addr / bytesPerCacheLine;
177
178    if (addrMapping == Enums::openmap) {
179        addr = addr / linesPerRowBuffer;
180
181        bank = addr % banksPerRank;
182        addr = addr / banksPerRank;
183
184        rank = addr % ranksPerChannel;
185        addr = addr / ranksPerChannel;
186
187        row = addr % rowsPerBank;
188        addr = addr / rowsPerBank;
189    } else if (addrMapping == Enums::closemap) {
190        bank = addr % banksPerRank;
191        addr = addr / banksPerRank;
192
193        rank = addr % ranksPerChannel;
194        addr = addr / ranksPerChannel;
195
196        addr = addr / linesPerRowBuffer;
197
198        row = addr % rowsPerBank;
199        addr = addr / rowsPerBank;
200    } else
201        panic("Unknown address mapping policy chosen!");
202
203    assert(rank < ranksPerChannel);
204    assert(bank < banksPerRank);
205    assert(row < rowsPerBank);
206
207    DPRINTF(DRAM, "Address: %lld Rank %d Bank %d Row %d\n",
208            temp, rank, bank, row);
209
210    // create the corresponding DRAM packet with the entry time and
211    // ready time set to the current tick, they will be updated later
212    DRAMPacket* dram_pkt = new DRAMPacket(pkt, rank, bank, row, temp,
213                                          banks[rank][bank]);
214
215    return dram_pkt;
216}
217
218void
219SimpleDRAM::addToReadQueue(PacketPtr pkt)
220{
221    // only add to the read queue here. whenever the request is
222    // eventually done, set the readyTime, and call schedule()
223    assert(!pkt->isWrite());
224
225    // First check write buffer to see if the data is already at
226    // the controller
227    std::list<DRAMPacket*>::const_iterator i;
228    Addr addr = pkt->getAddr();
229
230    // @todo: add size check
231    for (i = dramWriteQueue.begin();  i != dramWriteQueue.end(); ++i) {
232        if ((*i)->addr == addr){
233            servicedByWrQ++;
234            DPRINTF(DRAM,"Serviced by write Q\n");
235            bytesRead += bytesPerCacheLine;
236            bytesConsumedRd += pkt->getSize();
237            accessAndRespond(pkt);
238            return;
239        }
240    }
241
242    DRAMPacket* dram_pkt = decodeAddr(pkt);
243
244    assert(dramReadQueue.size() + dramRespQueue.size() < readBufferSize);
245    rdQLenPdf[dramReadQueue.size() + dramRespQueue.size()]++;
246
247    DPRINTF(DRAM, "Adding to read queue\n");
248
249    dramReadQueue.push_back(dram_pkt);
250
251    // Update stats
252    uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
253    assert(bank_id < ranksPerChannel * banksPerRank);
254    perBankRdReqs[bank_id]++;
255
256    avgRdQLen = dramReadQueue.size() + dramRespQueue.size();
257
258    // Special case where no arbitration is required between requests
259    if (!nextReqEvent.scheduled() && !stopReads) {
260        DPRINTF(DRAM, "Request %lld - need to schedule immediately");
261        schedule(&nextReqEvent, curTick() + 1);
262    }
263}
264
265void
266SimpleDRAM::processWriteEvent()
267{
268    assert(!dramWriteQueue.empty());
269    uint32_t numWritesThisTime = 0;
270
271    DPRINTF(DRAMWR, "Beginning DRAM Writes\n");
272    Tick temp1 M5_VAR_USED = std::max(curTick(), busBusyUntil);
273    Tick temp2 M5_VAR_USED = std::max(curTick(), maxBankFreeAt());
274
275    // @todo: are there any dangers with the untimed while loop?
276    while (!dramWriteQueue.empty()) {
277        if (numWritesThisTime > writeThreshold)
278            break;
279
280        chooseNextWrite();
281        DRAMPacket* dram_pkt = dramWriteQueue.front();
282        // What's the earlier the request can be put on the bus
283        Tick schedTime = std::max(curTick(), busBusyUntil);
284
285        DPRINTF(DRAMWR, "Asking for latency estimate at %lld\n",
286                schedTime + tBURST);
287
288        pair<Tick, Tick> lat = estimateLatency(dram_pkt, schedTime + tBURST);
289        Tick accessLat = lat.second;
290
291        // look at the rowHitFlag set by estimateLatency
292
293        // @todo: Race condition here where another packet gives rise
294        // to another call to estimateLatency in the meanwhile?
295        if (rowHitFlag)
296            writeRowHits++;
297
298        Bank& bank = dram_pkt->bank_ref;
299
300        if (pageMgmt == Enums::open) {
301            bank.openRow = dram_pkt->row;
302            bank.freeAt = schedTime + tBURST + std::max(accessLat, tCL);
303            busBusyUntil = bank.freeAt - tCL;
304
305            if (!rowHitFlag) {
306                bank.tRASDoneAt = bank.freeAt + tRP;
307                busBusyUntil = bank.freeAt - tCL - tRCD;
308            }
309        } else if (pageMgmt == Enums::close) {
310            bank.freeAt = schedTime + tBURST + accessLat + tRP + tRP;
311            busBusyUntil = bank.freeAt - tRP - tRP - tCL - tRCD;
312            DPRINTF(DRAMWR, "processWriteEvent::bank.freeAt for "
313                    "banks_id %d is %lld\n",
314                    dram_pkt->rank * banksPerRank + dram_pkt->bank,
315                    bank.freeAt);
316        } else
317            panic("Unknown page management policy chosen\n");
318
319        DPRINTF(DRAMWR,"Done writing to address %lld\n",dram_pkt->addr);
320
321        DPRINTF(DRAMWR,"schedtime is %lld, tBURST is %lld, "
322                "busbusyuntil is %lld\n",
323                schedTime, tBURST, busBusyUntil);
324
325        dramWriteQueue.pop_front();
326        delete dram_pkt;
327
328        numWritesThisTime++;
329    }
330
331    DPRINTF(DRAMWR, "Completed %d writes, bus busy for %lld ticks,"\
332            "banks busy for %lld ticks\n", numWritesThisTime,
333            busBusyUntil - temp1, maxBankFreeAt() - temp2);
334
335    // Update stats
336    avgWrQLen = dramWriteQueue.size();
337
338    // turn the bus back around for reads again
339    busBusyUntil += tWTR;
340    stopReads = false;
341
342    if (retryWrReq) {
343        retryWrReq = false;
344        port.sendRetry();
345    }
346
347    // if there is nothing left in any queue, signal a drain
348    if (dramWriteQueue.empty() && dramReadQueue.empty() &&
349        dramRespQueue.empty () && drainManager) {
350        drainManager->signalDrainDone();
351        drainManager = NULL;
352    }
353
354    // Once you're done emptying the write queue, check if there's
355    // anything in the read queue, and call schedule if required
356    schedule(&nextReqEvent, busBusyUntil);
357}
358
359void
360SimpleDRAM::triggerWrites()
361{
362    DPRINTF(DRAM, "Writes triggered at %lld\n", curTick());
363    // Flag variable to stop any more read scheduling
364    stopReads = true;
365
366    writeStartTime = std::max(busBusyUntil, curTick()) + tWTR;
367
368    DPRINTF(DRAM, "Writes scheduled at %lld\n", writeStartTime);
369
370    assert(writeStartTime >= curTick());
371    assert(!writeEvent.scheduled());
372    schedule(&writeEvent, writeStartTime);
373}
374
375void
376SimpleDRAM::addToWriteQueue(PacketPtr pkt)
377{
378    // only add to the write queue here. whenever the request is
379    // eventually done, set the readyTime, and call schedule()
380    assert(pkt->isWrite());
381
382    DRAMPacket* dram_pkt = decodeAddr(pkt);
383
384    assert(dramWriteQueue.size() < writeBufferSize);
385    wrQLenPdf[dramWriteQueue.size()]++;
386
387    DPRINTF(DRAM, "Adding to write queue\n");
388
389    dramWriteQueue.push_back(dram_pkt);
390
391    // Update stats
392    uint32_t bank_id = banksPerRank * dram_pkt->rank + dram_pkt->bank;
393    assert(bank_id < ranksPerChannel * banksPerRank);
394    perBankWrReqs[bank_id]++;
395
396    avgWrQLen = dramWriteQueue.size();
397
398    // we do not wait for the writes to be send to the actual memory,
399    // but instead take responsibility for the consistency here and
400    // snoop the write queue for any upcoming reads
401
402    bytesConsumedWr += pkt->getSize();
403    bytesWritten += bytesPerCacheLine;
404    accessAndRespond(pkt);
405
406    // If your write buffer is starting to fill up, drain it!
407    if (dramWriteQueue.size() > writeThreshold  && !stopReads){
408        triggerWrites();
409    }
410}
411
412void
413SimpleDRAM::printParams() const
414{
415    // Sanity check print of important parameters
416    DPRINTF(DRAM,
417            "Memory controller %s physical organization\n"      \
418            "Bytes per cacheline  %d\n"                         \
419            "Lines per row buffer %d\n"                         \
420            "Rows  per bank       %d\n"                         \
421            "Banks per rank       %d\n"                         \
422            "Ranks per channel    %d\n"                         \
423            "Total mem capacity   %u\n",
424            name(), bytesPerCacheLine ,linesPerRowBuffer, rowsPerBank,
425            banksPerRank, ranksPerChannel, bytesPerCacheLine *
426            linesPerRowBuffer * rowsPerBank * banksPerRank * ranksPerChannel);
427
428    string scheduler =  memSchedPolicy == Enums::fcfs ? "FCFS" : "FR-FCFS";
429    string address_mapping = addrMapping == Enums::openmap ? "OPENMAP" :
430        "CLOSEMAP";
431    string page_policy = pageMgmt == Enums::open ? "OPEN" : "CLOSE";
432
433    DPRINTF(DRAM,
434            "Memory controller %s characteristics\n"    \
435            "Read buffer size     %d\n"                 \
436            "Write buffer size    %d\n"                 \
437            "Write buffer thresh  %d\n"                 \
438            "Scheduler            %s\n"                 \
439            "Address mapping      %s\n"                 \
440            "Page policy          %s\n",
441            name(), readBufferSize, writeBufferSize, writeThreshold,
442            scheduler, address_mapping, page_policy);
443
444    DPRINTF(DRAM, "Memory controller %s timing specs\n" \
445            "tRCD    %d ticks\n"                        \
446            "tCL     %d ticks\n"                        \
447            "tRP     %d ticks\n"                        \
448            "tBURST  %d ticks\n"                        \
449            "tRFC    %d ticks\n"                        \
450            "tREFI   %d ticks\n"                        \
451            "tWTR    %d ticks\n",
452            name(), tRCD, tCL, tRP, tBURST, tRFC, tREFI, tWTR);
453}
454
455void
456SimpleDRAM::printQs() const {
457
458    list<DRAMPacket*>::const_iterator i;
459
460    DPRINTF(DRAM, "===READ QUEUE===\n\n");
461    for (i = dramReadQueue.begin() ;  i != dramReadQueue.end() ; ++i) {
462        DPRINTF(DRAM, "Read %lu\n", (*i)->addr);
463    }
464    DPRINTF(DRAM, "\n===RESP QUEUE===\n\n");
465    for (i = dramRespQueue.begin() ;  i != dramRespQueue.end() ; ++i) {
466        DPRINTF(DRAM, "Response %lu\n", (*i)->addr);
467    }
468    DPRINTF(DRAM, "\n===WRITE QUEUE===\n\n");
469    for (i = dramWriteQueue.begin() ;  i != dramWriteQueue.end() ; ++i) {
470        DPRINTF(DRAM, "Write %lu\n", (*i)->addr);
471    }
472}
473
474bool
475SimpleDRAM::recvTimingReq(PacketPtr pkt)
476{
477    /// @todo temporary hack to deal with memory corruption issues until
478    /// 4-phase transactions are complete
479    for (int x = 0; x < pendingDelete.size(); x++)
480        delete pendingDelete[x];
481    pendingDelete.clear();
482
483
484    // This is where we enter from the outside world
485    DPRINTF(DRAM, "Inside recvTimingReq: request %s addr %lld size %d\n",
486            pkt->cmdString(),pkt->getAddr(), pkt->getSize());
487
488   int index;
489
490   if (pkt->getSize() == bytesPerCacheLine)
491       cpuReqs++;
492
493   if (numReqs % 1000000 == 0)
494       printQs();
495
496    // Calc avg gap between requests
497    if (prevArrival != 0) {
498        totGap += curTick() - prevArrival;
499    }
500    prevArrival = curTick();
501
502    // simply drop inhibited packets for now
503    if (pkt->memInhibitAsserted()) {
504        DPRINTF(DRAM,"Inhibited packet -- Dropping it now\n");
505        pendingDelete.push_back(pkt);
506        return true;
507    }
508
509    unsigned size = pkt->getSize();
510    if (size > bytesPerCacheLine)
511        panic("Request size %d is greater than cache line size %d",
512              size, bytesPerCacheLine);
513
514    if (size == 0)
515        index = log2(bytesPerCacheLine) + 1;
516    else
517        index = log2(size);
518
519    if (size != 0 && (1 << index) != size)
520        index = log2(bytesPerCacheLine) + 2;
521
522    // @todo: Do we really want to do all this before the packet is
523    // actually accepted?
524
525    /* Index 0 - Size 1 byte
526       Index 1 - Size 2 bytes
527       Index 2 - Size 4 bytes
528         .
529         .
530       Index 6 - Size 64 bytes
531       Index 7 - Size 0 bytes
532       Index 8 - Non-power-of-2 size */
533
534    if (pkt->isRead())
535        readPktSize[index]++;
536    else if (pkt->isWrite())
537        writePktSize[index]++;
538    else
539        neitherPktSize[index]++;
540
541    // check local buffers and do not accept if full
542    if (pkt->isRead()) {
543        if (readQueueFull()) {
544            DPRINTF(DRAM,"Read queue full, not accepting\n");
545            // remember that we have to retry this port
546            retryRdReq = true;
547            numRdRetry++;
548            return false;
549        } else {
550            addToReadQueue(pkt);
551            readReqs++;
552            numReqs++;
553        }
554    } else if (pkt->isWrite()) {
555        if (writeQueueFull()) {
556            DPRINTF(DRAM,"Write queue full, not accepting\n");
557            // remember that we have to retry this port
558            retryWrReq = true;
559            numWrRetry++;
560            return false;
561        } else {
562            addToWriteQueue(pkt);
563            writeReqs++;
564            numReqs++;
565        }
566    } else {
567        DPRINTF(DRAM,"Neither read nor write, ignore timing\n");
568        neitherReadNorWrite++;
569        accessAndRespond(pkt);
570    }
571
572
573    retryRdReq = false;
574    retryWrReq = false;
575    return true;
576}
577
578void
579SimpleDRAM::processRespondEvent()
580{
581    DPRINTF(DRAM,
582            "processRespondEvent(): Some req has reached its readyTime\n");
583
584     PacketPtr pkt = dramRespQueue.front()->pkt;
585
586     // Actually responds to the requestor
587     bytesConsumedRd += pkt->getSize();
588     bytesRead += bytesPerCacheLine;
589     accessAndRespond(pkt);
590
591     DRAMPacket* dram_pkt = dramRespQueue.front();
592     dramRespQueue.pop_front();
593     delete dram_pkt;
594
595     // Update stats
596     avgRdQLen = dramReadQueue.size() + dramRespQueue.size();
597
598     if (!dramRespQueue.empty()){
599         assert(dramRespQueue.front()->readyTime >= curTick());
600         assert(!respondEvent.scheduled());
601         schedule(&respondEvent, dramRespQueue.front()->readyTime);
602     } else {
603         // if there is nothing left in any queue, signal a drain
604         if (dramWriteQueue.empty() && dramReadQueue.empty() &&
605             drainManager) {
606             drainManager->signalDrainDone();
607             drainManager = NULL;
608         }
609     }
610}
611
612void
613SimpleDRAM::chooseNextWrite()
614{
615    // This method does the arbitration between requests. The chosen
616    // packet is simply moved to the head of the queue. The other
617    // methods know that this is the place to look. For example, with
618    // FCFS, this method does nothing
619    assert(!dramWriteQueue.empty());
620
621    if (dramWriteQueue.size() == 1) {
622        DPRINTF(DRAMWR, "chooseNextWrite(): Single element, nothing to do\n");
623        return;
624    }
625
626    if (memSchedPolicy == Enums::fcfs) {
627
628        // Do nothing, since the correct request is already head
629
630    } else if (memSchedPolicy == Enums::frfcfs) {
631
632        list<DRAMPacket*>::iterator i = dramWriteQueue.begin();
633        bool foundRowHit = false;
634        while (!foundRowHit && i != dramWriteQueue.end()) {
635            DRAMPacket* dram_pkt = *i;
636            const Bank& bank = dram_pkt->bank_ref;
637            if (bank.openRow == dram_pkt->row) { //FR part
638                DPRINTF(DRAMWR,"Row buffer hit\n");
639                dramWriteQueue.erase(i);
640                dramWriteQueue.push_front(dram_pkt);
641                foundRowHit = true;
642            } else { //FCFS part
643                ;
644            }
645            ++i;
646        }
647
648    } else
649        panic("No scheduling policy chosen\n");
650
651    DPRINTF(DRAMWR, "chooseNextWrite(): Something chosen\n");
652}
653
654bool
655SimpleDRAM::chooseNextReq()
656{
657    // This method does the arbitration between requests.
658    // The chosen packet is simply moved to the head of the
659    // queue. The other methods know that this is the place
660    // to look. For example, with FCFS, this method does nothing
661    list<DRAMPacket*>::iterator i;
662    DRAMPacket* dram_pkt;
663
664    if (dramReadQueue.empty()){
665        DPRINTF(DRAM, "chooseNextReq(): Returning False\n");
666        return false;
667    }
668
669    if (dramReadQueue.size() == 1)
670        return true;
671
672    if (memSchedPolicy == Enums::fcfs) {
673
674        // Do nothing, since the correct request is already head
675
676    } else if (memSchedPolicy == Enums::frfcfs) {
677
678        for (i = dramReadQueue.begin() ; i != dramReadQueue.end() ; ++i) {
679            dram_pkt = *i;
680            const Bank& bank = dram_pkt->bank_ref;
681            if (bank.openRow == dram_pkt->row) { //FR part
682                DPRINTF(DRAM, "Row buffer hit\n");
683                dramReadQueue.erase(i);
684                dramReadQueue.push_front(dram_pkt);
685                break;
686            } else { //FCFS part
687                ;
688            }
689
690        }
691
692    } else
693        panic("No scheduling policy chosen!\n");
694
695
696    DPRINTF(DRAM,"chooseNextReq(): Chosen something, returning True\n");
697    return true;
698}
699
700void
701SimpleDRAM::accessAndRespond(PacketPtr pkt)
702{
703    DPRINTF(DRAM, "Responding to Address %lld.. ",pkt->getAddr());
704
705    bool needsResponse = pkt->needsResponse();
706    // do the actual memory access which also turns the packet into a
707    // response
708    access(pkt);
709
710    // turn packet around to go back to requester if response expected
711    if (needsResponse) {
712        // access already turned the packet into a response
713        assert(pkt->isResponse());
714
715        // queue the packet in the response queue to be sent out the
716        // next tick
717        port.schedTimingResp(pkt, curTick() + 1);
718    } else {
719    }
720
721    DPRINTF(DRAM, "Done\n");
722
723    return;
724}
725
726pair<Tick, Tick>
727SimpleDRAM::estimateLatency(DRAMPacket* dram_pkt, Tick inTime)
728{
729    // If a request reaches a bank at tick 'inTime', how much time
730    // *after* that does it take to finish the request, depending
731    // on bank status and page open policy. Note that this method
732    // considers only the time taken for the actual read or write
733    // to complete, NOT any additional time thereafter for tRAS or
734    // tRP.
735    Tick accLat = 0;
736    Tick bankLat = 0;
737    rowHitFlag = false;
738
739    const Bank& bank = dram_pkt->bank_ref;
740    if (pageMgmt == Enums::open) { // open-page policy
741        if (bank.openRow == dram_pkt->row) {
742            // When we have a row-buffer hit,
743            // we don't care about tRAS having expired or not,
744            // but do care about bank being free for access
745            rowHitFlag = true;
746
747            if (bank.freeAt < inTime) {
748               // CAS latency only
749               accLat += tCL;
750               bankLat += tCL;
751            } else {
752                accLat += 0;
753                bankLat += 0;
754            }
755
756        } else {
757            // Row-buffer miss, need to close existing row
758            // once tRAS has expired, then open the new one,
759            // then add cas latency.
760            Tick freeTime = std::max(bank.tRASDoneAt, bank.freeAt);
761
762            if (freeTime > inTime)
763               accLat += freeTime - inTime;
764
765            accLat += tRP + tRCD + tCL;
766            bankLat += tRP + tRCD + tCL;
767        }
768    } else if (pageMgmt == Enums::close) {
769
770        // With a close page policy, no notion of
771        // bank.tRASDoneAt
772        if (bank.freeAt > inTime)
773            accLat += bank.freeAt - inTime;
774
775        // page already closed, simply open the row, and
776        // add cas latency
777        accLat += tRCD + tCL;
778        bankLat += tRCD + tCL;
779    } else
780        panic("No page management policy chosen\n");
781
782    DPRINTF(DRAM, "Returning < %lld, %lld > from estimateLatency()\n",
783            bankLat, accLat);
784
785    return make_pair(bankLat, accLat);
786}
787
788void
789SimpleDRAM::processNextReqEvent()
790{
791    scheduleNextReq();
792}
793
794void
795SimpleDRAM::doDRAMAccess(DRAMPacket* dram_pkt)
796{
797
798    DPRINTF(DRAM, "Timing access to addr %lld, rank/bank/row %d %d %d\n",
799            dram_pkt->addr, dram_pkt->rank, dram_pkt->bank, dram_pkt->row);
800
801    assert(curTick() >= prevdramaccess);
802    prevdramaccess = curTick();
803
804    // estimate the bank and access latency
805    pair<Tick, Tick> lat = estimateLatency(dram_pkt, curTick());
806    Tick bankLat = lat.first;
807    Tick accessLat = lat.second;
808
809    // This request was woken up at this time based on a prior call
810    // to estimateLatency(). However, between then and now, both the
811    // accessLatency and/or busBusyUntil may have changed. We need
812    // to correct for that.
813
814    Tick addDelay = (curTick() + accessLat < busBusyUntil) ?
815        busBusyUntil - (curTick() + accessLat) : 0;
816
817    Bank& bank = dram_pkt->bank_ref;
818
819    // Update bank state
820    if (pageMgmt == Enums::open) {
821        bank.openRow = dram_pkt->row;
822        bank.freeAt = curTick() + addDelay + accessLat;
823        // If you activated a new row do to this access, the next access
824        // will have to respect tRAS for this bank. Assume tRAS ~= 3 * tRP
825        if (!rowHitFlag)
826            bank.tRASDoneAt = bank.freeAt + tRP;
827
828    } else if (pageMgmt == Enums::close) { // accounting for tRAS also
829        // assuming that tRAS ~= 3 * tRP, and tRAS ~= 4 * tRP, as is common
830        // (refer Jacob/Ng/Wang and Micron datasheets)
831        bank.freeAt = curTick() + addDelay + accessLat + tRP + tRP;
832        DPRINTF(DRAM,"doDRAMAccess::bank.freeAt is %lld\n",bank.freeAt);
833    } else
834        panic("No page management policy chosen\n");
835
836    // Update request parameters
837    dram_pkt->readyTime = curTick() + addDelay + accessLat + tBURST;
838
839
840    DPRINTF(DRAM, "Req %lld: curtick is %lld accessLat is %d " \
841                  "readytime is %lld busbusyuntil is %lld. " \
842                  "Scheduling at readyTime\n", dram_pkt->addr,
843                   curTick(), accessLat, dram_pkt->readyTime, busBusyUntil);
844
845    // Make sure requests are not overlapping on the databus
846    assert (dram_pkt->readyTime - busBusyUntil >= tBURST);
847
848    // Update bus state
849    busBusyUntil = dram_pkt->readyTime;
850
851    DPRINTF(DRAM,"Access time is %lld\n",
852            dram_pkt->readyTime - dram_pkt->entryTime);
853
854    // Update stats
855    totMemAccLat += dram_pkt->readyTime - dram_pkt->entryTime;
856    totBankLat += bankLat;
857    totBusLat += tBURST;
858    totQLat += dram_pkt->readyTime - dram_pkt->entryTime - bankLat - tBURST;
859
860    if (rowHitFlag)
861        readRowHits++;
862
863    // At this point we're done dealing with the request
864    // It will be moved to a separate response queue with a
865    // correct readyTime, and eventually be sent back at that
866    //time
867    moveToRespQ();
868
869    // The absolute soonest you have to start thinking about the
870    // next request is the longest access time that can occur before
871    // busBusyUntil. Assuming you need to meet tRAS, then precharge,
872    // open a new row, and access, it is ~4*tRCD.
873
874
875    Tick newTime = (busBusyUntil > 4 * tRCD) ?
876                   std::max(busBusyUntil - 4 * tRCD, curTick()) :
877                   curTick();
878
879    if (!nextReqEvent.scheduled() && !stopReads){
880        schedule(&nextReqEvent, newTime);
881    } else {
882        if (newTime < nextReqEvent.when())
883            reschedule(&nextReqEvent, newTime);
884    }
885
886
887}
888
889void
890SimpleDRAM::moveToRespQ()
891{
892    // Remove from read queue
893    DRAMPacket* dram_pkt = dramReadQueue.front();
894    dramReadQueue.pop_front();
895
896    // Insert into response queue sorted by readyTime
897    // It will be sent back to the requestor at its
898    // readyTime
899    if (dramRespQueue.empty()) {
900        dramRespQueue.push_front(dram_pkt);
901        assert(!respondEvent.scheduled());
902        assert(dram_pkt->readyTime >= curTick());
903        schedule(&respondEvent, dram_pkt->readyTime);
904    } else {
905        bool done = false;
906        std::list<DRAMPacket*>::iterator i = dramRespQueue.begin();
907        while (!done && i != dramRespQueue.end()) {
908            if ((*i)->readyTime > dram_pkt->readyTime) {
909                dramRespQueue.insert(i, dram_pkt);
910                done = true;
911            }
912            ++i;
913        }
914
915        if (!done)
916            dramRespQueue.push_back(dram_pkt);
917
918        assert(respondEvent.scheduled());
919
920        if (dramRespQueue.front()->readyTime < respondEvent.when()) {
921            assert(dramRespQueue.front()->readyTime >= curTick());
922            reschedule(&respondEvent, dramRespQueue.front()->readyTime);
923        }
924    }
925
926    if (retryRdReq) {
927         retryRdReq = false;
928         port.sendRetry();
929     }
930}
931
932void
933SimpleDRAM::scheduleNextReq()
934{
935    DPRINTF(DRAM, "Reached scheduleNextReq()\n");
936
937    // Figure out which request goes next, and move it to front()
938    if (!chooseNextReq()) {
939        // In the case there is no read request to go next, see if we
940        // are asked to drain, and if so trigger writes, this also
941        // ensures that if we hit the write limit we will do this
942        // multiple times until we are completely drained
943        if (drainManager && !dramWriteQueue.empty() && !writeEvent.scheduled())
944            triggerWrites();
945    } else {
946        doDRAMAccess(dramReadQueue.front());
947    }
948}
949
950Tick
951SimpleDRAM::maxBankFreeAt() const
952{
953    Tick banksFree = 0;
954
955    for(int i = 0; i < ranksPerChannel; i++)
956        for(int j = 0; j < banksPerRank; j++)
957            banksFree = std::max(banks[i][j].freeAt, banksFree);
958
959    return banksFree;
960}
961
962void
963SimpleDRAM::processRefreshEvent()
964{
965    DPRINTF(DRAM, "Refreshing at tick %ld\n", curTick());
966
967    Tick banksFree = std::max(curTick(), maxBankFreeAt()) + tRFC;
968
969    for(int i = 0; i < ranksPerChannel; i++)
970        for(int j = 0; j < banksPerRank; j++)
971            banks[i][j].freeAt = banksFree;
972
973    schedule(&refreshEvent, curTick() + tREFI);
974}
975
976void
977SimpleDRAM::regStats()
978{
979    using namespace Stats;
980
981    AbstractMemory::regStats();
982
983    readReqs
984        .name(name() + ".readReqs")
985        .desc("Total number of read requests seen");
986
987    writeReqs
988        .name(name() + ".writeReqs")
989        .desc("Total number of write requests seen");
990
991    servicedByWrQ
992        .name(name() + ".servicedByWrQ")
993        .desc("Number of read reqs serviced by write Q");
994
995    cpuReqs
996        .name(name() + ".cpureqs")
997        .desc("Reqs generatd by CPU via cache - shady");
998
999    neitherReadNorWrite
1000        .name(name() + ".neitherReadNorWrite")
1001        .desc("Reqs where no action is needed");
1002
1003    perBankRdReqs
1004        .init(banksPerRank * ranksPerChannel)
1005        .name(name() + ".perBankRdReqs")
1006        .desc("Track reads on a per bank basis");
1007
1008    perBankWrReqs
1009        .init(banksPerRank * ranksPerChannel)
1010        .name(name() + ".perBankWrReqs")
1011        .desc("Track writes on a per bank basis");
1012
1013    avgRdQLen
1014        .name(name() + ".avgRdQLen")
1015        .desc("Average read queue length over time")
1016        .precision(2);
1017
1018    avgWrQLen
1019        .name(name() + ".avgWrQLen")
1020        .desc("Average write queue length over time")
1021        .precision(2);
1022
1023    totQLat
1024        .name(name() + ".totQLat")
1025        .desc("Total cycles spent in queuing delays");
1026
1027    totBankLat
1028        .name(name() + ".totBankLat")
1029        .desc("Total cycles spent in bank access");
1030
1031    totBusLat
1032        .name(name() + ".totBusLat")
1033        .desc("Total cycles spent in databus access");
1034
1035    totMemAccLat
1036        .name(name() + ".totMemAccLat")
1037        .desc("Sum of mem lat for all requests");
1038
1039    avgQLat
1040        .name(name() + ".avgQLat")
1041        .desc("Average queueing delay per request")
1042        .precision(2);
1043
1044    avgQLat = totQLat / (readReqs - servicedByWrQ);
1045
1046    avgBankLat
1047        .name(name() + ".avgBankLat")
1048        .desc("Average bank access latency per request")
1049        .precision(2);
1050
1051    avgBankLat = totBankLat / (readReqs - servicedByWrQ);
1052
1053    avgBusLat
1054        .name(name() + ".avgBusLat")
1055        .desc("Average bus latency per request")
1056        .precision(2);
1057
1058    avgBusLat = totBusLat / (readReqs - servicedByWrQ);
1059
1060    avgMemAccLat
1061        .name(name() + ".avgMemAccLat")
1062        .desc("Average memory access latency")
1063        .precision(2);
1064
1065    avgMemAccLat = totMemAccLat / (readReqs - servicedByWrQ);
1066
1067    numRdRetry
1068        .name(name() + ".numRdRetry")
1069        .desc("Number of times rd buffer was full causing retry");
1070
1071    numWrRetry
1072        .name(name() + ".numWrRetry")
1073        .desc("Number of times wr buffer was full causing retry");
1074
1075    readRowHits
1076        .name(name() + ".readRowHits")
1077        .desc("Number of row buffer hits during reads");
1078
1079    writeRowHits
1080        .name(name() + ".writeRowHits")
1081        .desc("Number of row buffer hits during writes");
1082
1083    readRowHitRate
1084        .name(name() + ".readRowHitRate")
1085        .desc("Row buffer hit rate for reads")
1086        .precision(2);
1087
1088    readRowHitRate = (readRowHits / (readReqs - servicedByWrQ)) * 100;
1089
1090    writeRowHitRate
1091        .name(name() + ".writeRowHitRate")
1092        .desc("Row buffer hit rate for writes")
1093        .precision(2);
1094
1095    writeRowHitRate = (writeRowHits / writeReqs) * 100;
1096
1097    readPktSize
1098        .init(log2(bytesPerCacheLine)+3)
1099        .name(name() + ".readPktSize")
1100        .desc("Categorize read packet sizes");
1101
1102     writePktSize
1103        .init(log2(bytesPerCacheLine)+3)
1104        .name(name() + ".writePktSize")
1105        .desc("categorize write packet sizes");
1106
1107     neitherPktSize
1108        .init(log2(bytesPerCacheLine)+3)
1109        .name(name() + ".neitherpktsize")
1110        .desc("categorize neither packet sizes");
1111
1112     rdQLenPdf
1113        .init(readBufferSize + 1)
1114        .name(name() + ".rdQLenPdf")
1115        .desc("What read queue length does an incoming req see");
1116
1117     wrQLenPdf
1118        .init(writeBufferSize + 1)
1119        .name(name() + ".wrQLenPdf")
1120        .desc("What write queue length does an incoming req see");
1121
1122
1123    bytesRead
1124        .name(name() + ".bytesRead")
1125        .desc("Total number of bytes read from memory");
1126
1127    bytesWritten
1128        .name(name() + ".bytesWritten")
1129        .desc("Total number of bytes written to memory");
1130
1131    bytesConsumedRd
1132        .name(name() + ".bytesConsumedRd")
1133        .desc("bytesRead derated as per pkt->getSize()");
1134
1135    bytesConsumedWr
1136        .name(name() + ".bytesConsumedWr")
1137        .desc("bytesWritten derated as per pkt->getSize()");
1138
1139    avgRdBW
1140        .name(name() + ".avgRdBW")
1141        .desc("Average achieved read bandwidth in MB/s")
1142        .precision(2);
1143
1144    avgRdBW = (bytesRead / 1000000) / simSeconds;
1145
1146    avgWrBW
1147        .name(name() + ".avgWrBW")
1148        .desc("Average achieved write bandwidth in MB/s")
1149        .precision(2);
1150
1151    avgWrBW = (bytesWritten / 1000000) / simSeconds;
1152
1153    avgConsumedRdBW
1154        .name(name() + ".avgConsumedRdBW")
1155        .desc("Average consumed read bandwidth in MB/s")
1156        .precision(2);
1157
1158    avgConsumedRdBW = (bytesConsumedRd / 1000000) / simSeconds;
1159
1160    avgConsumedWrBW
1161        .name(name() + ".avgConsumedWrBW")
1162        .desc("Average consumed write bandwidth in MB/s")
1163        .precision(2);
1164
1165    avgConsumedWrBW = (bytesConsumedWr / 1000000) / simSeconds;
1166
1167    peakBW
1168        .name(name() + ".peakBW")
1169        .desc("Theoretical peak bandwidth in MB/s")
1170        .precision(2);
1171
1172    peakBW = (SimClock::Frequency / tBURST) * bytesPerCacheLine / 1000000;
1173
1174    busUtil
1175        .name(name() + ".busUtil")
1176        .desc("Data bus utilization in percentage")
1177        .precision(2);
1178
1179    busUtil = (avgRdBW + avgWrBW) / peakBW * 100;
1180
1181    totGap
1182        .name(name() + ".totGap")
1183        .desc("Total gap between requests");
1184
1185    avgGap
1186        .name(name() + ".avgGap")
1187        .desc("Average gap between requests")
1188        .precision(2);
1189
1190    avgGap = totGap / (readReqs + writeReqs);
1191}
1192
1193void
1194SimpleDRAM::recvFunctional(PacketPtr pkt)
1195{
1196    // rely on the abstract memory
1197    functionalAccess(pkt);
1198}
1199
1200BaseSlavePort&
1201SimpleDRAM::getSlavePort(const string &if_name, PortID idx)
1202{
1203    if (if_name != "port") {
1204        return MemObject::getSlavePort(if_name, idx);
1205    } else {
1206        return port;
1207    }
1208}
1209
1210unsigned int
1211SimpleDRAM::drain(DrainManager *dm)
1212{
1213    unsigned int count = port.drain(dm);
1214
1215    // if there is anything in any of our internal queues, keep track
1216    // of that as well
1217    if (!(dramWriteQueue.empty() && dramReadQueue.empty() &&
1218          dramRespQueue.empty())) {
1219        DPRINTF(Drain, "DRAM controller not drained, write: %d, read: %d,"
1220                " resp: %d\n", dramWriteQueue.size(), dramReadQueue.size(),
1221                dramRespQueue.size());
1222        ++count;
1223        drainManager = dm;
1224        // the only part that is not drained automatically over time
1225        // is the write queue, thus trigger writes if there are any
1226        // waiting and no reads waiting, otherwise wait until the
1227        // reads are done
1228        if (dramReadQueue.empty() && !dramWriteQueue.empty() &&
1229            !writeEvent.scheduled())
1230            triggerWrites();
1231    }
1232
1233    if (count)
1234        setDrainState(Drainable::Draining);
1235    else
1236        setDrainState(Drainable::Drained);
1237    return count;
1238}
1239
1240SimpleDRAM::MemoryPort::MemoryPort(const std::string& name, SimpleDRAM& _memory)
1241    : QueuedSlavePort(name, &_memory, queue), queue(_memory, *this),
1242      memory(_memory)
1243{ }
1244
1245AddrRangeList
1246SimpleDRAM::MemoryPort::getAddrRanges() const
1247{
1248    AddrRangeList ranges;
1249    ranges.push_back(memory.getAddrRange());
1250    return ranges;
1251}
1252
1253void
1254SimpleDRAM::MemoryPort::recvFunctional(PacketPtr pkt)
1255{
1256    pkt->pushLabel(memory.name());
1257
1258    if (!queue.checkFunctional(pkt)) {
1259        // Default implementation of SimpleTimingPort::recvFunctional()
1260        // calls recvAtomic() and throws away the latency; we can save a
1261        // little here by just not calculating the latency.
1262        memory.recvFunctional(pkt);
1263    }
1264
1265    pkt->popLabel();
1266}
1267
1268Tick
1269SimpleDRAM::MemoryPort::recvAtomic(PacketPtr pkt)
1270{
1271    return memory.recvAtomic(pkt);
1272}
1273
1274bool
1275SimpleDRAM::MemoryPort::recvTimingReq(PacketPtr pkt)
1276{
1277    // pass it to the memory controller
1278    return memory.recvTimingReq(pkt);
1279}
1280
1281SimpleDRAM*
1282SimpleDRAMParams::create()
1283{
1284    return new SimpleDRAM(this);
1285}
1286